Abstract

In this paper, the influence of radially higher index p of Laguerre–Gaussian (LG) beams on the rotation of nanowires is studied. Radially higher-order LG beams are produced by computer-generated holograms, which are displayed on a spatial light modulator. A series of experiments on manipulating ZnO nanowires was performed on our holographic optical tweezers platform. The experiments demonstrated that radially higher-order LG beams could effectively rotate nanowires along the innermost bright ring of themselves. Compared with radially low-order LG beams, they have larger torques exerted on nanowires and can make nanowires rotate more quickly.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
    [CrossRef]
  2. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
    [CrossRef]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef]
  4. A. T. O’Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139–143 (2000).
    [CrossRef]
  5. K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B 15, 524–534 (1998).
    [CrossRef]
  6. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
    [CrossRef]
  7. D. G. Grier and Y. Roichman, “Holographic optical trapping,” Appl. Opt. 45, 880–887 (2006).
    [CrossRef]
  8. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [CrossRef]
  9. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005).
    [CrossRef]
  10. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
    [CrossRef]
  11. Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
    [CrossRef]
  12. D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78–79, 125–131 (2005).
    [CrossRef]
  13. Y. Ohtake, T. Ando, N. Fukuchi, N. Matsumoto, H. Ito, and T. Hara, “Universal generation of higher-order multiringed Laguerre–Gaussian beams by using a spatial light modulator,” Opt. Lett. 32, 1411–1413 (2007).
    [CrossRef]
  14. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre–Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25, 1642–1651 (2008).
    [CrossRef]
  15. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
    [CrossRef]
  16. T. Tao, J. Li, Q. Long, and X. Wu, “3D trapping and manipulation of micro-particles using holographic optical tweezers with optimized computer-generated holograms,” Chin. Opt. Lett. 9, 120010 (2011).
    [CrossRef]

2011 (1)

2008 (1)

2007 (1)

2006 (2)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[CrossRef]

D. G. Grier and Y. Roichman, “Holographic optical trapping,” Appl. Opt. 45, 880–887 (2006).
[CrossRef]

2005 (3)

R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005).
[CrossRef]

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
[CrossRef]

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78–79, 125–131 (2005).
[CrossRef]

2004 (1)

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

2000 (1)

A. T. O’Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139–143 (2000).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Agarwal, R.

Allen, L.

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Ando, T.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Businaro, L.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78–79, 125–131 (2005).
[CrossRef]

Cojoc, D.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78–79, 125–131 (2005).
[CrossRef]

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

Dholakia, K.

Di Fabrizio, E.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78–79, 125–131 (2005).
[CrossRef]

Ferrari, E.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78–79, 125–131 (2005).
[CrossRef]

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef]

Fukuchi, N.

Gahagan, K. T.

Garbin, V.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78–79, 125–131 (2005).
[CrossRef]

Grier, D. G.

Hara, T.

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef]

Hong, J.-M.

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
[CrossRef]

Inoue, T.

Ito, H.

Ladavac, K.

Li, J.

Li, Y.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[CrossRef]

Lieber, C. M.

Long, Q.

Matsumoto, N.

Ni, Y.-H.

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
[CrossRef]

O’Neil, A. T.

A. T. O’Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139–143 (2000).
[CrossRef]

Ohtake, Y.

Padgett, M. J.

A. T. O’Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139–143 (2000).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[CrossRef]

Qian, F.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[CrossRef]

Roichman, Y.

Romanato, F.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78–79, 125–131 (2005).
[CrossRef]

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef]

Simpson, N. B.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Swartzlander, G. A.

Tao, T.

Wei, X.-W.

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
[CrossRef]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Wu, X.

Xiang, J.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[CrossRef]

Ye, Y.

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
[CrossRef]

Yu, G.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Mater. Sci. Eng. B (1)

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
[CrossRef]

Mater. Today (1)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[CrossRef]

Microelectron. Eng. (1)

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78–79, 125–131 (2005).
[CrossRef]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

Opt. Commun. (1)

A. T. O’Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139–143 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Phys. Rev. Lett. (2)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

CGH for generating a LG44 mode added with a blazed phase grating.

Fig. 2.
Fig. 2.

(a) Theoretical calculations and (b) observed beam patterns of LGp4 (p=0, 2, 4) beams.

Fig. 3.
Fig. 3.

Calculated radial profiles of LGp4 (p=0, 2, 4) beams on the SLM’s surface.

Fig. 4.
Fig. 4.

The schematic of a holographic optical tweezers system.

Fig. 5.
Fig. 5.

Sequence photo of a ZnO nanowire with a radius of 100 nm and a length of 4 μm rotated by a LG33 beam as laser power P is 0.49 W. The white arrow denotes one end of the rotating nanowire. In (b) two white circles represent the positions of the innermost bright ring and the outmost bright ring.

Fig. 6.
Fig. 6.

Rotating period T vs. laser power P for a LG33 beam.

Fig. 7.
Fig. 7.

Dependence of rotating period T on radial index p for LGp4 (p=04) beams.

Fig. 8.
Fig. 8.

A sequence photo of a ZnO nanowire with a radius of 100 nm and a length of 8.8 μm, rotated by a LG33 beam with one end rotating around a fixed point of the other end.

Tables (1)

Tables Icon

Table 1. Comparison of Equivalent Torque Among LGp4(p=04) Modes

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

up(r,ϕ,z)=(1)p[2π·p!(p+||)!]1/2(2rwZ)||exp[r2wz2]×Lp||(2r2wz2)exp(iϕ)exp[ikr2z2(z2+zR2)]×exp[i(2p+||+1)tan1(z/zR)],
φ(r,ϕ)=ϕ+πθ(Lp||(2r2/w02)),
Ip(r,ϕ,0)=|up(r,ϕ,0)|2,
n=1p+1Tnn=1p+1Fnrnn=1p+1ηnrn.

Metrics