Abstract

We have demonstrated sensing of formaldehyde (H2CO) using a room-temperature distributed feedback interband cascade laser (ICL) emitting around 3493 nm. The ICL has been characterized and proved to be very suitable for tunable laser spectroscopy (TLS). The H2CO TLS spectra were recorded in direct absorption mode and showed excellent agreement with the Pacific Northwest National Laboratory database. The measurements reported here were taken from a series of measurements of a mixture of H2CO in air obtained by vaporizing a solution also containing methanol and formic acid. We obtained a resolution limit better than 1ppm×m assuming a relative absorption of 103.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007).
    [CrossRef]
  2. D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000).
    [CrossRef]
  3. L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
    [CrossRef]
  4. P. Kluczynski, S. Lundqvist, S. Belahsene, and Y. Rouillard, “Tunable-diode-laser spectroscopy of C2H2 using a 3.03 μm GaInAsSb/AlGaInAsSb distributed-feedback laser,” Opt. Lett. 34, 3767–3769 (2009).
    [CrossRef]
  5. P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Naehle, P. Fuchs, M. Fischer, and J. Koeth, “Detection of propane using tunable diode laser spectroscopy at 3.37 mm,” Appl. Phys. B 108, 183–188 (2012).
    [CrossRef]
  6. A. Bauer, M. Dallner, F. Langer, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for sensing applications,” Opt. Eng. 49, 111117 (2010).
  7. M. Kim, W. W. Bewley, J. R. Lindle, C. Kim, C. L. Canedy, J. A. Bell, I. Vurgaftman, and J. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4  μm spectral band,” presented at Laser Applications to Chemical Security and Environmental Analysis, San Diego, California, 31 January–3 February 2010, paper LMA2.
  8. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452–1461 (2004).
    [CrossRef]
  9. A. Perrin, D. Jacquemart, F. Kwabia Tchana, and N. Lacome, “Absolute line intensities measurements and calculations for the 5.7 and 3.6 μm bands of formaldehyde,” J. Quant. Spectrosc. Radiat. Transfer 110, 700–716 (2009).
    [CrossRef]
  10. S. Persijn, F. Harren, and A. van der Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100, 383–390 (2010).
    [CrossRef]

2012

P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Naehle, P. Fuchs, M. Fischer, and J. Koeth, “Detection of propane using tunable diode laser spectroscopy at 3.37 mm,” Appl. Phys. B 108, 183–188 (2012).
[CrossRef]

2011

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

2010

A. Bauer, M. Dallner, F. Langer, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for sensing applications,” Opt. Eng. 49, 111117 (2010).

S. Persijn, F. Harren, and A. van der Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100, 383–390 (2010).
[CrossRef]

2009

A. Perrin, D. Jacquemart, F. Kwabia Tchana, and N. Lacome, “Absolute line intensities measurements and calculations for the 5.7 and 3.6 μm bands of formaldehyde,” J. Quant. Spectrosc. Radiat. Transfer 110, 700–716 (2009).
[CrossRef]

P. Kluczynski, S. Lundqvist, S. Belahsene, and Y. Rouillard, “Tunable-diode-laser spectroscopy of C2H2 using a 3.03 μm GaInAsSb/AlGaInAsSb distributed-feedback laser,” Opt. Lett. 34, 3767–3769 (2009).
[CrossRef]

2007

M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007).
[CrossRef]

2004

2000

Bauer, A.

A. Bauer, M. Dallner, F. Langer, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for sensing applications,” Opt. Eng. 49, 111117 (2010).

Belahsene, S.

P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Naehle, P. Fuchs, M. Fischer, and J. Koeth, “Detection of propane using tunable diode laser spectroscopy at 3.37 mm,” Appl. Phys. B 108, 183–188 (2012).
[CrossRef]

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

P. Kluczynski, S. Lundqvist, S. Belahsene, and Y. Rouillard, “Tunable-diode-laser spectroscopy of C2H2 using a 3.03 μm GaInAsSb/AlGaInAsSb distributed-feedback laser,” Opt. Lett. 34, 3767–3769 (2009).
[CrossRef]

Bell, J. A.

M. Kim, W. W. Bewley, J. R. Lindle, C. Kim, C. L. Canedy, J. A. Bell, I. Vurgaftman, and J. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4  μm spectral band,” presented at Laser Applications to Chemical Security and Environmental Analysis, San Diego, California, 31 January–3 February 2010, paper LMA2.

Bewley, W. W.

M. Kim, W. W. Bewley, J. R. Lindle, C. Kim, C. L. Canedy, J. A. Bell, I. Vurgaftman, and J. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4  μm spectral band,” presented at Laser Applications to Chemical Security and Environmental Analysis, San Diego, California, 31 January–3 February 2010, paper LMA2.

Boissier, G.

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

Canedy, C. L.

M. Kim, W. W. Bewley, J. R. Lindle, C. Kim, C. L. Canedy, J. A. Bell, I. Vurgaftman, and J. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4  μm spectral band,” presented at Laser Applications to Chemical Security and Environmental Analysis, San Diego, California, 31 January–3 February 2010, paper LMA2.

Chu, P. M.

Dallner, M.

A. Bauer, M. Dallner, F. Langer, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for sensing applications,” Opt. Eng. 49, 111117 (2010).

Fischer, M.

P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Naehle, P. Fuchs, M. Fischer, and J. Koeth, “Detection of propane using tunable diode laser spectroscopy at 3.37 mm,” Appl. Phys. B 108, 183–188 (2012).
[CrossRef]

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

Forchel, A.

A. Bauer, M. Dallner, F. Langer, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for sensing applications,” Opt. Eng. 49, 111117 (2010).

Fried, A.

Fuchs, P.

P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Naehle, P. Fuchs, M. Fischer, and J. Koeth, “Detection of propane using tunable diode laser spectroscopy at 3.37 mm,” Appl. Phys. B 108, 183–188 (2012).
[CrossRef]

Grech, P.

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

Harren, F.

S. Persijn, F. Harren, and A. van der Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100, 383–390 (2010).
[CrossRef]

Henry, B.

Höfling, S.

A. Bauer, M. Dallner, F. Langer, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for sensing applications,” Opt. Eng. 49, 111117 (2010).

Jacquemart, D.

A. Perrin, D. Jacquemart, F. Kwabia Tchana, and N. Lacome, “Absolute line intensities measurements and calculations for the 5.7 and 3.6 μm bands of formaldehyde,” J. Quant. Spectrosc. Radiat. Transfer 110, 700–716 (2009).
[CrossRef]

Johnson, P. A.

Johnson, T. J.

Kamp, M.

A. Bauer, M. Dallner, F. Langer, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for sensing applications,” Opt. Eng. 49, 111117 (2010).

Kim, C.

M. Kim, W. W. Bewley, J. R. Lindle, C. Kim, C. L. Canedy, J. A. Bell, I. Vurgaftman, and J. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4  μm spectral band,” presented at Laser Applications to Chemical Security and Environmental Analysis, San Diego, California, 31 January–3 February 2010, paper LMA2.

Kim, M.

M. Kim, W. W. Bewley, J. R. Lindle, C. Kim, C. L. Canedy, J. A. Bell, I. Vurgaftman, and J. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4  μm spectral band,” presented at Laser Applications to Chemical Security and Environmental Analysis, San Diego, California, 31 January–3 February 2010, paper LMA2.

Kluczynski, P.

P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Naehle, P. Fuchs, M. Fischer, and J. Koeth, “Detection of propane using tunable diode laser spectroscopy at 3.37 mm,” Appl. Phys. B 108, 183–188 (2012).
[CrossRef]

P. Kluczynski, S. Lundqvist, S. Belahsene, and Y. Rouillard, “Tunable-diode-laser spectroscopy of C2H2 using a 3.03 μm GaInAsSb/AlGaInAsSb distributed-feedback laser,” Opt. Lett. 34, 3767–3769 (2009).
[CrossRef]

Koeth, J.

P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Naehle, P. Fuchs, M. Fischer, and J. Koeth, “Detection of propane using tunable diode laser spectroscopy at 3.37 mm,” Appl. Phys. B 108, 183–188 (2012).
[CrossRef]

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

Kwabia Tchana, F.

A. Perrin, D. Jacquemart, F. Kwabia Tchana, and N. Lacome, “Absolute line intensities measurements and calculations for the 5.7 and 3.6 μm bands of formaldehyde,” J. Quant. Spectrosc. Radiat. Transfer 110, 700–716 (2009).
[CrossRef]

Lackner, M.

M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007).
[CrossRef]

Lacome, N.

A. Perrin, D. Jacquemart, F. Kwabia Tchana, and N. Lacome, “Absolute line intensities measurements and calculations for the 5.7 and 3.6 μm bands of formaldehyde,” J. Quant. Spectrosc. Radiat. Transfer 110, 700–716 (2009).
[CrossRef]

Lancaster, D. G.

Langer, F.

A. Bauer, M. Dallner, F. Langer, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for sensing applications,” Opt. Eng. 49, 111117 (2010).

Lindle, J. R.

M. Kim, W. W. Bewley, J. R. Lindle, C. Kim, C. L. Canedy, J. A. Bell, I. Vurgaftman, and J. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4  μm spectral band,” presented at Laser Applications to Chemical Security and Environmental Analysis, San Diego, California, 31 January–3 February 2010, paper LMA2.

Lundqvist, S.

P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Naehle, P. Fuchs, M. Fischer, and J. Koeth, “Detection of propane using tunable diode laser spectroscopy at 3.37 mm,” Appl. Phys. B 108, 183–188 (2012).
[CrossRef]

P. Kluczynski, S. Lundqvist, S. Belahsene, and Y. Rouillard, “Tunable-diode-laser spectroscopy of C2H2 using a 3.03 μm GaInAsSb/AlGaInAsSb distributed-feedback laser,” Opt. Lett. 34, 3767–3769 (2009).
[CrossRef]

Meyer, J.

M. Kim, W. W. Bewley, J. R. Lindle, C. Kim, C. L. Canedy, J. A. Bell, I. Vurgaftman, and J. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4  μm spectral band,” presented at Laser Applications to Chemical Security and Environmental Analysis, San Diego, California, 31 January–3 February 2010, paper LMA2.

Naehle, L.

P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Naehle, P. Fuchs, M. Fischer, and J. Koeth, “Detection of propane using tunable diode laser spectroscopy at 3.37 mm,” Appl. Phys. B 108, 183–188 (2012).
[CrossRef]

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

Narcy, G.

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

Perrin, A.

A. Perrin, D. Jacquemart, F. Kwabia Tchana, and N. Lacome, “Absolute line intensities measurements and calculations for the 5.7 and 3.6 μm bands of formaldehyde,” J. Quant. Spectrosc. Radiat. Transfer 110, 700–716 (2009).
[CrossRef]

Persijn, S.

S. Persijn, F. Harren, and A. van der Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100, 383–390 (2010).
[CrossRef]

Rhoderick, G. C.

Rouillard, Y.

P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Naehle, P. Fuchs, M. Fischer, and J. Koeth, “Detection of propane using tunable diode laser spectroscopy at 3.37 mm,” Appl. Phys. B 108, 183–188 (2012).
[CrossRef]

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

P. Kluczynski, S. Lundqvist, S. Belahsene, and Y. Rouillard, “Tunable-diode-laser spectroscopy of C2H2 using a 3.03 μm GaInAsSb/AlGaInAsSb distributed-feedback laser,” Opt. Lett. 34, 3767–3769 (2009).
[CrossRef]

Sams, R. L.

Sharpe, S. W.

Tittel, F. K.

van der Veen, A.

S. Persijn, F. Harren, and A. van der Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100, 383–390 (2010).
[CrossRef]

Vicet, A.

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

von Edlinger, M.

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

Vurgaftman, I.

M. Kim, W. W. Bewley, J. R. Lindle, C. Kim, C. L. Canedy, J. A. Bell, I. Vurgaftman, and J. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4  μm spectral band,” presented at Laser Applications to Chemical Security and Environmental Analysis, San Diego, California, 31 January–3 February 2010, paper LMA2.

Wert, B.

Worschech, L.

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

A. Bauer, M. Dallner, F. Langer, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for sensing applications,” Opt. Eng. 49, 111117 (2010).

Appl. Opt.

Appl. Phys. B

P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Naehle, P. Fuchs, M. Fischer, and J. Koeth, “Detection of propane using tunable diode laser spectroscopy at 3.37 mm,” Appl. Phys. B 108, 183–188 (2012).
[CrossRef]

S. Persijn, F. Harren, and A. van der Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100, 383–390 (2010).
[CrossRef]

Appl. Spectrosc.

Electron. Lett.

L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, and L. Worschech, “Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 μm wavelength range around room temperature,” Electron. Lett. 47, 46–47 (2011).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

A. Perrin, D. Jacquemart, F. Kwabia Tchana, and N. Lacome, “Absolute line intensities measurements and calculations for the 5.7 and 3.6 μm bands of formaldehyde,” J. Quant. Spectrosc. Radiat. Transfer 110, 700–716 (2009).
[CrossRef]

Opt. Eng.

A. Bauer, M. Dallner, F. Langer, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for sensing applications,” Opt. Eng. 49, 111117 (2010).

Opt. Lett.

Rev. Chem. Eng.

M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007).
[CrossRef]

Other

M. Kim, W. W. Bewley, J. R. Lindle, C. Kim, C. L. Canedy, J. A. Bell, I. Vurgaftman, and J. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4  μm spectral band,” presented at Laser Applications to Chemical Security and Environmental Analysis, San Diego, California, 31 January–3 February 2010, paper LMA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

FTIR spectrum of 1ppm×m H2CO with 0.125 cm resolution from the PNNL spectroscopic database.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

CW characteristics for the DFB ICL laser emitting at 3492 nm.

Fig. 4.
Fig. 4.

Tuning characteristics for the DFB ICL laser measured using a Ge Fabry–Perot etalon.

Fig. 5.
Fig. 5.

Tunable laser direct absorption signals of formaldehyde compared with calculated formaldehyde FTIR spectra from the PNNL database.

Metrics