Abstract

In this study, the use and advantages of balanced detection (BD) in spectral domain optical coherence tomography (SD-OCT) are demonstrated. A-scans are calculated as a combination of two phase-opposed interferometric spectra acquired simultaneously by using a multiline single camera spectrometer. Not only does this system suppress artifacts due to autocorrelation, but also the signal of interest is increased by a factor of 2 as experimentally verified. Our BD-based SD-OCT gives a signal-to-noise ratio improvement of 8–14 dB for the peak within 1 mm compared to standard SD-OCT using a single detection scheme. This method is validated by experimental measurement of a glass plate.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  2. C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Investig. Ophthalmol. Vis. Sci. 32, 616–624 (1991).
  3. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
    [CrossRef]
  4. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
  5. U. Haberland, P. Jansen, V. Blazek, and H. J. Schmitt, “Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser,” Proc. SPIE 2981, 20–28 (1997).
    [CrossRef]
  6. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [CrossRef]
  7. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  8. G. Häusler and M. W. Lindner, “Coherence radar and spectral radar–new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  9. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [CrossRef]
  10. A. B. Vakhtin, K. A. Peterson, W. R. Wood, and D. J. Kane, “Differential spectral interferometry: an imaging technique for biomedical applications,” Opt. Lett. 28, 1332–1334 (2003).
    [CrossRef]
  11. E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583–594 (2005).
    [CrossRef]
  12. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147–149 (2005).
    [CrossRef]
  13. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28, 2201–2203 (2003).
    [CrossRef]
  14. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef]
  15. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
    [CrossRef]
  16. J. Ai and L. V. Wang, “Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography,” Opt. Express 30, 2939–2941 (2005).
    [CrossRef]
  17. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32, 2049–2051 (2007).
    [CrossRef]
  18. K. Lizuka, Elements of Photonics (Wiley Interscience, 2002).
  19. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M mode scanning method for real-time full range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
    [CrossRef]

2007 (1)

2006 (1)

2005 (3)

2003 (5)

1998 (1)

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar–new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

1997 (2)

U. Haberland, P. Jansen, V. Blazek, and H. J. Schmitt, “Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser,” Proc. SPIE 2981, 20–28 (1997).
[CrossRef]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

1993 (2)

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Investig. Ophthalmol. Vis. Sci. 32, 616–624 (1991).

Adler, D. C.

Ai, J.

J. Ai and L. V. Wang, “Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography,” Opt. Express 30, 2939–2941 (2005).
[CrossRef]

Aoki, G.

Bajraszewski, T.

Blazek, V.

U. Haberland, P. Jansen, V. Blazek, and H. J. Schmitt, “Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser,” Proc. SPIE 2981, 20–28 (1997).
[CrossRef]

Bouma, B. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chen, Z.

Chinn, S. R.

Choma, M. A.

de Boer, J. F.

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Endo, T.

Fercher, A. F.

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28, 2201–2203 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fujimoto, J. G.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Haberland, U.

U. Haberland, P. Jansen, V. Blazek, and H. J. Schmitt, “Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser,” Proc. SPIE 2981, 20–28 (1997).
[CrossRef]

Häusler, G.

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar–new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Hee, M. R.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hitzenberger, C. K.

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583–594 (2005).
[CrossRef]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28, 2201–2203 (2003).
[CrossRef]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).

C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Investig. Ophthalmol. Vis. Sci. 32, 616–624 (1991).

Huang, D.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Huber, R.

Iftimia, N.

Itoh, M.

Izatt, J. A.

Jansen, P.

U. Haberland, P. Jansen, V. Blazek, and H. J. Schmitt, “Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser,” Proc. SPIE 2981, 20–28 (1997).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).

Kane, D. J.

Leitgeb, R. A.

Lin, C. P.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Lindner, M. W.

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar–new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Lizuka, K.

K. Lizuka, Elements of Photonics (Wiley Interscience, 2002).

Makita, S.

Nelson, J. S.

Peterson, K. A.

Pircher, M.

Pufialito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Puliafito, C. A.

Sarunic, M. V.

Sattmann, H.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).

Schmitt, H. J.

U. Haberland, P. Jansen, V. Blazek, and H. J. Schmitt, “Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser,” Proc. SPIE 2981, 20–28 (1997).
[CrossRef]

Schuman, J. S.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Swanson, E. A.

Tearney, G. J.

Vakhtin, A. B.

Wang, L. V.

J. Ai and L. V. Wang, “Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography,” Opt. Express 30, 2939–2941 (2005).
[CrossRef]

Wood, W. R.

Yang, C. H.

Yasuno, Y.

Yatagai, T.

Yun, S. H.

Zhang, J.

Am. J. Ophthalmol. (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).

Appl. Opt. (1)

Investig. Ophthalmol. Vis. Sci. (1)

C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Investig. Ophthalmol. Vis. Sci. 32, 616–624 (1991).

J. Biomed. Opt. (1)

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar–new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Proc. SPIE (1)

U. Haberland, P. Jansen, V. Blazek, and H. J. Schmitt, “Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser,” Proc. SPIE 2981, 20–28 (1997).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Other (1)

K. Lizuka, Elements of Photonics (Wiley Interscience, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the BD-based SD-OCT system. BS1, BS2, beam splitter; C1, C2, collimator; SLD, superluminescence diode; OBJ, objectives; PC, personal computer.

Fig. 2.
Fig. 2.

Two spectral interferograms each recorded on different lines of a 2D CCD camera.

Fig. 3.
Fig. 3.

(a) 1D interference signals generated from channel 1 of BD-based SD-OCT after pixel binning. (b) 1D interference signals generated from channel 2 of BD-based SD-OCT after pixel binning. (c) The zoomed-in signals in the narrow spectral interval show a π phase difference between the two signals. (d) The result after I2 is subtracted from I1.

Fig. 4.
Fig. 4.

(a) Depth-dependent decay in BD-based SD-OCT (solid curve), standard single detection SD-OCT (dashed curve), and single detection SD-OCT with background subtraction (dotted curve). (b) The zoomed-in signals for the peak at 0.2 mm in log scale.

Fig. 5.
Fig. 5.

(a) Schematic diagram of the sample arm and object, 2D image of two cover glass plates acquired with (b) single detection SD-OCT, (c) reference subtraction processing, and (d) BD dual-detection SD-OCT. (e) A-scan profiles in (b)–(d). The front surface and back surface of the first and second glass slide are indicated by numbers 1–4, respectively; the autocorrelation term of the sample is indicated by AC.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I1(k)=|Er(k)+a(z)ei(2knz+π2)dz|2=Er2(k)+a(z)a(z)cos[2kn(zz)]dzdz+2Era(z)cos(2knz+π2)dz,
I2(k)=|Er(k)eiπ2+a(z)ei2knzdz|2=Er2(k)+a(z)a(z)cos[2kn(zz)]dzdz+2Era(z)cos(2knzπ2)dz=Er2(k)+a(z)a(z)cos[2kn(zz)]dzdz2Era(z)cos(2knz+π2)dz.
Idiff(k)=4Era(z)cos(2knz+π2)dz.

Metrics