Abstract

Optical tweezers and their various modifications offer a sophisticated way to perform noncontact cell manipulation. In this paper, we quantify forces existing in an elliptical trap formed by two cylindrical lenses and compare the results with a point optical trap case. The trapping efficiency of point and elliptical traps was analyzed by measuring the Q values of both traps. Polystyrene microspheres and red blood cells (RBCs) were used as samples. Stretching of the RBC was taken into account in the Q value measurements. Although the Q value of a point optical trap is larger than that of an elliptical trap when measured for a single RBC, we can manipulate the orientation of an RBC in a point trap with the elliptical trap and can also trap several RBCs simultaneously in the elliptical trap far from the cuvette surfaces by using a long-working-distance water immersion objective. This opens new possibilities for studying light–matter interactions at the cellular level.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Aberration compensation for optical trapping of cells within living mice

Min-Cheng Zhong, Zi-Qiang Wang, and Yin-Mei Li
Appl. Opt. 56(7) 1972-1976 (2017)

Optical trapping of red blood cells in living animals with a water immersion objective

Min-Cheng Zhong, Lei Gong, Jin-Hua Zhou, Zi-Qiang Wang, and Yin-Mei Li
Opt. Lett. 38(23) 5134-5137 (2013)

Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level

Matti Kinnunen, Antti Kauppila, Artashes Karmenyan, and Risto Myllylä
Biomed. Opt. Express 2(7) 1803-1814 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription