Abstract

Raman spectroscopy of tissues has been widely studied for the diagnosis of various cancers, but biofluids were seldom chosen as the analyte because of the low concentration. Herein, serum of 30 normal people, 46 colon cancer, and 44 rectum cancer patients were measured using Raman spectra and analyzed. The information of Raman peaks (intensity and width) and that of the fluorescence background (baseline function coefficients) were selected as parameters for statistical analysis. Principal component regression (PCR) and partial least square regression (PLSR) were used on the selected parameters separately to see the diagnosing performance of the parameters. PCR performed better than PLSR in our spectral data. Then linear discriminant analysis (LDA) was used on the principal components (PCs) of the two regression methods on the selected parameters, and the diagnostic accuracy were 88% and 83%. The conclusion is that the selected parameters can maintain the information of the original spectra well and Raman spectroscopy of serum has the potential for the diagnosis of colorectal cancer.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55, 74–108 (2005).
    [CrossRef]
  2. S. J. Winawer, “Colorectal cancer screening,” Best Pract. Res., Clin. Gastroenterol. 21, 1031–1048 (2007).
    [CrossRef]
  3. Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectros. Rev. 42, 493–541 (2007).
    [CrossRef]
  4. H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B: Lasers Opt. 94, 667–672 (2009).
    [CrossRef]
  5. K. Virkler and I. K. Lednev, “Raman spectroscopic signature of blood and its potential application to forensic body fluid identification,” Anal. Bioanal. Chem. 396, 525–534 (2010).
    [CrossRef]
  6. A. M. K. Enejder, T. W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, “Blood analysis by Raman spectroscopy,” Opt. Lett. 27, 2004–2006 (2002).
    [CrossRef]
  7. R. Kalaivani, V. Masilamani, K. Sivaji, M. Elangovan, V. Selvaraj, S. G. Balamurugan, and M. S. Al-Salhi, “Fluorescence spectra of blood components for breast cancer diagnosis,” Photomed. Laser Surg. 26, 251–256 (2008).
    [CrossRef]
  8. J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22, 229–236 (2007).
    [CrossRef]
  9. C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777–783 (1995).
    [CrossRef]
  10. W. L. Peticolas, “Application of Raman spectroscopy to biological macromolecules,” Biochimie. 57, 417–428 (1975).
    [CrossRef]
  11. C. Krafft, D. Codrich, G. Pelizzo, and V. Sergo, “Raman mapping and FTIR imaging of lung tissue: congenital cystic adenomatoid malformation,” Analyst 133, 361–371 (2008).
    [CrossRef]
  12. S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
    [CrossRef]
  13. Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
    [CrossRef]
  14. C. Mello, D. Ribeiro, F. Novaes, and R. J. Poppi, “Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis,” Anal. Bioanal. Chem. 383, 701–706 (2005).
    [CrossRef]
  15. M. Lualdi, A. Colombo, E. Leo, D. Morelli, A. Vannelli, L. Battaglia, E. Poiasina, and R. Marchesini, “Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results,” Tumori 93, 567–571 (2007).
  16. Council for International Organizations of Medical Sciences, International Ethical Guidelines for Biomedical Research Involving Human Subjects (World Health Organization, 2002).
  17. V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst. 76, 121–133 (2005).
    [CrossRef]
  18. B. Hemmateenejad, M. Akhond, and F. Samari, “A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: effect of wavelength selection,” Spectrochim. Acta, Part A 67, 958–965 (2007).
    [CrossRef]
  19. G. J. Thomas, “Raman spectroscopy of protein and nucleic acid assemblies,” Annu. Rev. Biophys. Biomol. Struct. 28, 1–27 (1999).
    [CrossRef]
  20. J. Guicheteau, L. Argue, A. Hyre, M. Jacobson, and S. D. Christesen, “Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification,” Proc. SPIE 6218, 62180O (2006).
    [CrossRef]

2010 (3)

K. Virkler and I. K. Lednev, “Raman spectroscopic signature of blood and its potential application to forensic body fluid identification,” Anal. Bioanal. Chem. 396, 525–534 (2010).
[CrossRef]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
[CrossRef]

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[CrossRef]

2009 (1)

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B: Lasers Opt. 94, 667–672 (2009).
[CrossRef]

2008 (2)

R. Kalaivani, V. Masilamani, K. Sivaji, M. Elangovan, V. Selvaraj, S. G. Balamurugan, and M. S. Al-Salhi, “Fluorescence spectra of blood components for breast cancer diagnosis,” Photomed. Laser Surg. 26, 251–256 (2008).
[CrossRef]

C. Krafft, D. Codrich, G. Pelizzo, and V. Sergo, “Raman mapping and FTIR imaging of lung tissue: congenital cystic adenomatoid malformation,” Analyst 133, 361–371 (2008).
[CrossRef]

2007 (5)

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22, 229–236 (2007).
[CrossRef]

S. J. Winawer, “Colorectal cancer screening,” Best Pract. Res., Clin. Gastroenterol. 21, 1031–1048 (2007).
[CrossRef]

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectros. Rev. 42, 493–541 (2007).
[CrossRef]

M. Lualdi, A. Colombo, E. Leo, D. Morelli, A. Vannelli, L. Battaglia, E. Poiasina, and R. Marchesini, “Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results,” Tumori 93, 567–571 (2007).

B. Hemmateenejad, M. Akhond, and F. Samari, “A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: effect of wavelength selection,” Spectrochim. Acta, Part A 67, 958–965 (2007).
[CrossRef]

2006 (1)

J. Guicheteau, L. Argue, A. Hyre, M. Jacobson, and S. D. Christesen, “Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification,” Proc. SPIE 6218, 62180O (2006).
[CrossRef]

2005 (3)

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst. 76, 121–133 (2005).
[CrossRef]

C. Mello, D. Ribeiro, F. Novaes, and R. J. Poppi, “Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis,” Anal. Bioanal. Chem. 383, 701–706 (2005).
[CrossRef]

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55, 74–108 (2005).
[CrossRef]

2002 (1)

1999 (1)

G. J. Thomas, “Raman spectroscopy of protein and nucleic acid assemblies,” Annu. Rev. Biophys. Biomol. Struct. 28, 1–27 (1999).
[CrossRef]

1995 (1)

C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777–783 (1995).
[CrossRef]

1975 (1)

W. L. Peticolas, “Application of Raman spectroscopy to biological macromolecules,” Biochimie. 57, 417–428 (1975).
[CrossRef]

Akhond, M.

B. Hemmateenejad, M. Akhond, and F. Samari, “A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: effect of wavelength selection,” Spectrochim. Acta, Part A 67, 958–965 (2007).
[CrossRef]

Al-Salhi, M. S.

R. Kalaivani, V. Masilamani, K. Sivaji, M. Elangovan, V. Selvaraj, S. G. Balamurugan, and M. S. Al-Salhi, “Fluorescence spectra of blood components for breast cancer diagnosis,” Photomed. Laser Surg. 26, 251–256 (2008).
[CrossRef]

Argue, L.

J. Guicheteau, L. Argue, A. Hyre, M. Jacobson, and S. D. Christesen, “Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification,” Proc. SPIE 6218, 62180O (2006).
[CrossRef]

Balamurugan, S. G.

R. Kalaivani, V. Masilamani, K. Sivaji, M. Elangovan, V. Selvaraj, S. G. Balamurugan, and M. S. Al-Salhi, “Fluorescence spectra of blood components for breast cancer diagnosis,” Photomed. Laser Surg. 26, 251–256 (2008).
[CrossRef]

Ban, G.

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B: Lasers Opt. 94, 667–672 (2009).
[CrossRef]

Barbosa-García, O.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22, 229–236 (2007).
[CrossRef]

Battaglia, L.

M. Lualdi, A. Colombo, E. Leo, D. Morelli, A. Vannelli, L. Battaglia, E. Poiasina, and R. Marchesini, “Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results,” Tumori 93, 567–571 (2007).

Bray, F.

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55, 74–108 (2005).
[CrossRef]

Brie, D.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst. 76, 121–133 (2005).
[CrossRef]

Carteret, C.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst. 76, 121–133 (2005).
[CrossRef]

Chen, G.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
[CrossRef]

Chen, J.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
[CrossRef]

Chen, R.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
[CrossRef]

Cheng, M.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
[CrossRef]

Christesen, S. D.

J. Guicheteau, L. Argue, A. Hyre, M. Jacobson, and S. D. Christesen, “Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification,” Proc. SPIE 6218, 62180O (2006).
[CrossRef]

Codrich, D.

C. Krafft, D. Codrich, G. Pelizzo, and V. Sergo, “Raman mapping and FTIR imaging of lung tissue: congenital cystic adenomatoid malformation,” Analyst 133, 361–371 (2008).
[CrossRef]

Colombo, A.

M. Lualdi, A. Colombo, E. Leo, D. Morelli, A. Vannelli, L. Battaglia, E. Poiasina, and R. Marchesini, “Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results,” Tumori 93, 567–571 (2007).

Dong, R.

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B: Lasers Opt. 94, 667–672 (2009).
[CrossRef]

Elangovan, M.

R. Kalaivani, V. Masilamani, K. Sivaji, M. Elangovan, V. Selvaraj, S. G. Balamurugan, and M. S. Al-Salhi, “Fluorescence spectra of blood components for breast cancer diagnosis,” Photomed. Laser Surg. 26, 251–256 (2008).
[CrossRef]

Enejder, A. M. K.

Feld, M. S.

Feng, S.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
[CrossRef]

Ferlay, J.

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55, 74–108 (2005).
[CrossRef]

Frank, C. J.

C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777–783 (1995).
[CrossRef]

Frausto-Reyes, C.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22, 229–236 (2007).
[CrossRef]

Furihata, C.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[CrossRef]

González-Trujillo, J. L.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22, 229–236 (2007).
[CrossRef]

Guicheteau, J.

J. Guicheteau, L. Argue, A. Hyre, M. Jacobson, and S. D. Christesen, “Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification,” Proc. SPIE 6218, 62180O (2006).
[CrossRef]

Gutiérrez-Juárez, G.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22, 229–236 (2007).
[CrossRef]

Han, H.

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B: Lasers Opt. 94, 667–672 (2009).
[CrossRef]

Hemmateenejad, B.

B. Hemmateenejad, M. Akhond, and F. Samari, “A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: effect of wavelength selection,” Spectrochim. Acta, Part A 67, 958–965 (2007).
[CrossRef]

Horowitz, G. L.

Huang, Z.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
[CrossRef]

Huerta-Franco, R.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22, 229–236 (2007).
[CrossRef]

Humbert, B.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst. 76, 121–133 (2005).
[CrossRef]

Hunter, M.

Hyre, A.

J. Guicheteau, L. Argue, A. Hyre, M. Jacobson, and S. D. Christesen, “Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification,” Proc. SPIE 6218, 62180O (2006).
[CrossRef]

Idier, J.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst. 76, 121–133 (2005).
[CrossRef]

Jacobson, M.

J. Guicheteau, L. Argue, A. Hyre, M. Jacobson, and S. D. Christesen, “Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification,” Proc. SPIE 6218, 62180O (2006).
[CrossRef]

Kalaivani, R.

R. Kalaivani, V. Masilamani, K. Sivaji, M. Elangovan, V. Selvaraj, S. G. Balamurugan, and M. S. Al-Salhi, “Fluorescence spectra of blood components for breast cancer diagnosis,” Photomed. Laser Surg. 26, 251–256 (2008).
[CrossRef]

Koo, T. W.

Krafft, C.

C. Krafft, D. Codrich, G. Pelizzo, and V. Sergo, “Raman mapping and FTIR imaging of lung tissue: congenital cystic adenomatoid malformation,” Analyst 133, 361–371 (2008).
[CrossRef]

Lednev, I. K.

K. Virkler and I. K. Lednev, “Raman spectroscopic signature of blood and its potential application to forensic body fluid identification,” Anal. Bioanal. Chem. 396, 525–534 (2010).
[CrossRef]

Leo, E.

M. Lualdi, A. Colombo, E. Leo, D. Morelli, A. Vannelli, L. Battaglia, E. Poiasina, and R. Marchesini, “Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results,” Tumori 93, 567–571 (2007).

Li, K.

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B: Lasers Opt. 94, 667–672 (2009).
[CrossRef]

Li, Y.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
[CrossRef]

Lin, J.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
[CrossRef]

Lualdi, M.

M. Lualdi, A. Colombo, E. Leo, D. Morelli, A. Vannelli, L. Battaglia, E. Poiasina, and R. Marchesini, “Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results,” Tumori 93, 567–571 (2007).

Marchesini, R.

M. Lualdi, A. Colombo, E. Leo, D. Morelli, A. Vannelli, L. Battaglia, E. Poiasina, and R. Marchesini, “Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results,” Tumori 93, 567–571 (2007).

Masilamani, V.

R. Kalaivani, V. Masilamani, K. Sivaji, M. Elangovan, V. Selvaraj, S. G. Balamurugan, and M. S. Al-Salhi, “Fluorescence spectra of blood components for breast cancer diagnosis,” Photomed. Laser Surg. 26, 251–256 (2008).
[CrossRef]

Mazet, V.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst. 76, 121–133 (2005).
[CrossRef]

McCreery, R. L.

C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777–783 (1995).
[CrossRef]

Medina-Gutiérrez, C.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22, 229–236 (2007).
[CrossRef]

Mello, C.

C. Mello, D. Ribeiro, F. Novaes, and R. J. Poppi, “Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis,” Anal. Bioanal. Chem. 383, 701–706 (2005).
[CrossRef]

Morelli, D.

M. Lualdi, A. Colombo, E. Leo, D. Morelli, A. Vannelli, L. Battaglia, E. Poiasina, and R. Marchesini, “Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results,” Tumori 93, 567–571 (2007).

Movasaghi, Z.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectros. Rev. 42, 493–541 (2007).
[CrossRef]

Novaes, F.

C. Mello, D. Ribeiro, F. Novaes, and R. J. Poppi, “Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis,” Anal. Bioanal. Chem. 383, 701–706 (2005).
[CrossRef]

Oh, J.

Oshima, Y.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[CrossRef]

Pan, J.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
[CrossRef]

Parkin, D. M.

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55, 74–108 (2005).
[CrossRef]

Pelizzo, G.

C. Krafft, D. Codrich, G. Pelizzo, and V. Sergo, “Raman mapping and FTIR imaging of lung tissue: congenital cystic adenomatoid malformation,” Analyst 133, 361–371 (2008).
[CrossRef]

Peticolas, W. L.

W. L. Peticolas, “Application of Raman spectroscopy to biological macromolecules,” Biochimie. 57, 417–428 (1975).
[CrossRef]

Pichardo-Molina, J. L.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22, 229–236 (2007).
[CrossRef]

Pisani, P.

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55, 74–108 (2005).
[CrossRef]

Poiasina, E.

M. Lualdi, A. Colombo, E. Leo, D. Morelli, A. Vannelli, L. Battaglia, E. Poiasina, and R. Marchesini, “Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results,” Tumori 93, 567–571 (2007).

Poppi, R. J.

C. Mello, D. Ribeiro, F. Novaes, and R. J. Poppi, “Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis,” Anal. Bioanal. Chem. 383, 701–706 (2005).
[CrossRef]

Ramírez-Alvarado, C. A.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22, 229–236 (2007).
[CrossRef]

Redd, D. C.

C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777–783 (1995).
[CrossRef]

Rehman, I. U.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectros. Rev. 42, 493–541 (2007).
[CrossRef]

Rehman, S.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectros. Rev. 42, 493–541 (2007).
[CrossRef]

Ribeiro, D.

C. Mello, D. Ribeiro, F. Novaes, and R. J. Poppi, “Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis,” Anal. Bioanal. Chem. 383, 701–706 (2005).
[CrossRef]

Samari, F.

B. Hemmateenejad, M. Akhond, and F. Samari, “A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: effect of wavelength selection,” Spectrochim. Acta, Part A 67, 958–965 (2007).
[CrossRef]

Sasic, S.

Sato, H.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[CrossRef]

Selvaraj, V.

R. Kalaivani, V. Masilamani, K. Sivaji, M. Elangovan, V. Selvaraj, S. G. Balamurugan, and M. S. Al-Salhi, “Fluorescence spectra of blood components for breast cancer diagnosis,” Photomed. Laser Surg. 26, 251–256 (2008).
[CrossRef]

Sergo, V.

C. Krafft, D. Codrich, G. Pelizzo, and V. Sergo, “Raman mapping and FTIR imaging of lung tissue: congenital cystic adenomatoid malformation,” Analyst 133, 361–371 (2008).
[CrossRef]

Shinzawa, H.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[CrossRef]

Sivaji, K.

R. Kalaivani, V. Masilamani, K. Sivaji, M. Elangovan, V. Selvaraj, S. G. Balamurugan, and M. S. Al-Salhi, “Fluorescence spectra of blood components for breast cancer diagnosis,” Photomed. Laser Surg. 26, 251–256 (2008).
[CrossRef]

Takenaka, T.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[CrossRef]

Thomas, G. J.

G. J. Thomas, “Raman spectroscopy of protein and nucleic acid assemblies,” Annu. Rev. Biophys. Biomol. Struct. 28, 1–27 (1999).
[CrossRef]

Vannelli, A.

M. Lualdi, A. Colombo, E. Leo, D. Morelli, A. Vannelli, L. Battaglia, E. Poiasina, and R. Marchesini, “Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results,” Tumori 93, 567–571 (2007).

Virkler, K.

K. Virkler and I. K. Lednev, “Raman spectroscopic signature of blood and its potential application to forensic body fluid identification,” Anal. Bioanal. Chem. 396, 525–534 (2010).
[CrossRef]

Winawer, S. J.

S. J. Winawer, “Colorectal cancer screening,” Best Pract. Res., Clin. Gastroenterol. 21, 1031–1048 (2007).
[CrossRef]

Yan, X.

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B: Lasers Opt. 94, 667–672 (2009).
[CrossRef]

Zeng, H.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
[CrossRef]

Anal. Bioanal. Chem. (2)

K. Virkler and I. K. Lednev, “Raman spectroscopic signature of blood and its potential application to forensic body fluid identification,” Anal. Bioanal. Chem. 396, 525–534 (2010).
[CrossRef]

C. Mello, D. Ribeiro, F. Novaes, and R. J. Poppi, “Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis,” Anal. Bioanal. Chem. 383, 701–706 (2005).
[CrossRef]

Anal. Chem. (1)

C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777–783 (1995).
[CrossRef]

Analyst (1)

C. Krafft, D. Codrich, G. Pelizzo, and V. Sergo, “Raman mapping and FTIR imaging of lung tissue: congenital cystic adenomatoid malformation,” Analyst 133, 361–371 (2008).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (1)

G. J. Thomas, “Raman spectroscopy of protein and nucleic acid assemblies,” Annu. Rev. Biophys. Biomol. Struct. 28, 1–27 (1999).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B: Lasers Opt. 94, 667–672 (2009).
[CrossRef]

Appl. Spectros. Rev. (1)

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectros. Rev. 42, 493–541 (2007).
[CrossRef]

Best Pract. Res., Clin. Gastroenterol. (1)

S. J. Winawer, “Colorectal cancer screening,” Best Pract. Res., Clin. Gastroenterol. 21, 1031–1048 (2007).
[CrossRef]

Biochimie. (1)

W. L. Peticolas, “Application of Raman spectroscopy to biological macromolecules,” Biochimie. 57, 417–428 (1975).
[CrossRef]

Biosens. Bioelectron. (1)

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25, 2414–2419 (2010).
[CrossRef]

CA Cancer J. Clin. (1)

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55, 74–108 (2005).
[CrossRef]

Chemom. Intell. Lab. Syst. (1)

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst. 76, 121–133 (2005).
[CrossRef]

J. Biomed. Opt. (1)

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15, 017009 (2010).
[CrossRef]

Lasers Med. Sci. (1)

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22, 229–236 (2007).
[CrossRef]

Opt. Lett. (1)

Photomed. Laser Surg. (1)

R. Kalaivani, V. Masilamani, K. Sivaji, M. Elangovan, V. Selvaraj, S. G. Balamurugan, and M. S. Al-Salhi, “Fluorescence spectra of blood components for breast cancer diagnosis,” Photomed. Laser Surg. 26, 251–256 (2008).
[CrossRef]

Proc. SPIE (1)

J. Guicheteau, L. Argue, A. Hyre, M. Jacobson, and S. D. Christesen, “Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification,” Proc. SPIE 6218, 62180O (2006).
[CrossRef]

Spectrochim. Acta, Part A (1)

B. Hemmateenejad, M. Akhond, and F. Samari, “A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: effect of wavelength selection,” Spectrochim. Acta, Part A 67, 958–965 (2007).
[CrossRef]

Tumori (1)

M. Lualdi, A. Colombo, E. Leo, D. Morelli, A. Vannelli, L. Battaglia, E. Poiasina, and R. Marchesini, “Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results,” Tumori 93, 567–571 (2007).

Other (1)

Council for International Organizations of Medical Sciences, International Ethical Guidelines for Biomedical Research Involving Human Subjects (World Health Organization, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic drawing of the Raman spectroscopy system for the serum detection.

Fig. 2.
Fig. 2.

All Raman spectra from the three groups: normal (sample number 1–30), rectum cancer (31–74) and colon cancer (75–120). Three major Raman peaks exist in each spectrum; the shape and trend of the fluorescence background of different groups are similar.

Fig. 3.
Fig. 3.

Averaged spectrum of each group. Three Raman peaks at the wavelength of about 1029 cm 1 , 1170 cm 1 , and 1538 cm 1 existed in all three groups.

Fig. 4.
Fig. 4.

Percent variance explained of the first 10 principal components by the methods of PCR and PLSR on the 11 remaining selected parameters.

Fig. 5.
Fig. 5.

Scatter plot of the first two PCs of (a) PCR and (b) PLSR on the 11 selected parameters. The spots of different groups were distributed separately, which means they can be well discriminated, and the two PCs were used for further LDA. The lines are based on the Fisher’s linear discriminant function of LDA. For (a)  0.18 × PC 1 1.36 × PC 2 = 1.77 (between normal and rectum cancer), 0.32 × PC 1 12.12 × PC 2 = 1.44 (between rectum cancer and colon cancer). For (b)  20.77 × PC 1 + 13.14 × PC 2 = 1.50 (between normal and rectum cancer), 34.95 × PC 1 + 19.10 × PC 2 = 1.23 (between rectum cancer & colon cancer).

Tables (2)

Tables Icon

Table 1. Mean and Standard Deviation of the 14 Selected Spectroscopy Parametersa

Tables Icon

Table 2. Diagnostic Evaluation of the PCR-LDA and PLSR-LDA Technique Using 10-Fold Cross Evaluation Method (with 95% Confidence Interval)a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

0.18 × PC 1 1.36 × PC 2 = 1.77 ( between normal and rectum cancer ) ,
0.32 × PC 1 12.12 × PC 2 = 1.44 ( between rectum cancer and colon cancer ) ,
20.77 × PC 1 + 13.14 × PC 2 = 1.50 ( between normal and rectum cancer ) ,
34.95 × PC 1 + 19.10 × PC 2 = 1.23 ( between rectum cancer & colon cancer ) .

Metrics