Abstract

Conventional intensity imaging through turbid media suffers from rapid loss of image contrast due to light scattering from particles or random variations of refractive index. This paper features the development of an active imaging, snapshot, system design and postprocessing algorithms that differentiate between radiation that scatters or reflects from remote, obscured objects and the radiation from the scattering media itself through a combination of polarization difference imaging, channel blurring, and Fourier spatial filtering. The produced sensor acquires and processes image data in real time, yielding improved image contrasts by factors of 10 or greater for dense water vapor obscurants.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
    [CrossRef]
  2. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [CrossRef]
  3. E. R. Cochran and C. Ai, “Interferometric stress birefringence measurement,” Appl. Opt. 31, 6702–6706 (1992).
    [CrossRef]
  4. S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, “Imaging techniques through discrete scattering media by polarized pulsed waves,” Proc. SPIE 4819, 87–97 (2002).
    [CrossRef]
  5. G. Lewis, D. Jordan, and P. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38, 3937–3944 (1999).
    [CrossRef]
  6. G. Gilbert and J. Pernicka, “Improvement of underwater visibility by reduction of backscatter with a circular polarization technique,” Appl. Opt. 6, 741–746 (1967).
    [CrossRef]
  7. S. G. Demos, H. B. Radousky, and R. R. Alfano, “Deep subsurface imaging in tissues using spectral and polarization filtering,” Opt. Express 7, 23–28 (2000).
    [CrossRef]
  8. M. P. Silverman and W. Strange, “Object delineation within turbid media by backscattering of phase modulated light,” Opt. Commun. 144, 7–11 (1997).
    [CrossRef]
  9. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  10. Q. Gao, X. Jiang, N. Zeng, Y. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
  11. J. S. Tyo, “Enhancement of the point-spread function for imaging in scattering media by use of polarization-difference imaging,” J. Opt. Soc. Am. A 17, 1–10 (2000).
    [CrossRef]
  12. A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40, 5495–5502 (2001).
    [CrossRef]
  13. B. Kaplan, G. Ledanois, and B. Drévillon, “Mueller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation,” Appl. Opt. 40, 2769–2777 (2001).
    [CrossRef]
  14. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Diffusive Media (SPIE, 2010).
  15. S.-M. F. Nee and T.-W. Nee, “Principal Mueller matrix for reflection and scattering measured for a one-dimensional rough surface,” Opt. Eng. 41, 994–1001 (2002).
    [CrossRef]
  16. W. P. Arnott, C. Schmitt, Y. Liu, and J. Hallett, “Droplet size spectra and water-vapor concentration of laboratory water clouds: inversion of Fourier transform infrared (500–5000  cm−1) optical-depth measurement,” Appl. Opt. 36, 5205–5216 (1997).
    [CrossRef]
  17. H. Wechsler and G. L. Zimmerman, “2-D invariant object recognition using distributed associative memory,” IEEE Trans. Patt. Anal. Mach. Intell. 10, 811–821 (1988).
    [CrossRef]
  18. J. Zallat, C. Heinrich, and M. Petremand, “A Bayesian approach for polarimetric data reduction: the Mueller imaging case,” Opt. Express 16, 7119–7133 (2008).
    [CrossRef]

2009 (1)

2008 (2)

J. Zallat, C. Heinrich, and M. Petremand, “A Bayesian approach for polarimetric data reduction: the Mueller imaging case,” Opt. Express 16, 7119–7133 (2008).
[CrossRef]

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[CrossRef]

2006 (1)

2002 (2)

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, “Imaging techniques through discrete scattering media by polarized pulsed waves,” Proc. SPIE 4819, 87–97 (2002).
[CrossRef]

S.-M. F. Nee and T.-W. Nee, “Principal Mueller matrix for reflection and scattering measured for a one-dimensional rough surface,” Opt. Eng. 41, 994–1001 (2002).
[CrossRef]

2001 (2)

2000 (2)

1999 (1)

1997 (2)

1992 (1)

1988 (1)

H. Wechsler and G. L. Zimmerman, “2-D invariant object recognition using distributed associative memory,” IEEE Trans. Patt. Anal. Mach. Intell. 10, 811–821 (1988).
[CrossRef]

1967 (1)

Ai, C.

Alfano, R. R.

Arnott, W. P.

Chenault, D. B.

Cochran, E. R.

Del Bianco, S.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Diffusive Media (SPIE, 2010).

Demos, S. G.

Drévillon, B.

Gao, Q.

Gilbert, G.

Goldstein, D. L.

Hallett, J.

He, Y.

Heinrich, C.

Isenhath, S.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[CrossRef]

Ishimaru, A.

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, “Imaging techniques through discrete scattering media by polarized pulsed waves,” Proc. SPIE 4819, 87–97 (2002).
[CrossRef]

A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40, 5495–5502 (2001).
[CrossRef]

Ismaelli, A.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Diffusive Media (SPIE, 2010).

Jacques, S. L.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[CrossRef]

Jaruwatanadilok, S.

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, “Imaging techniques through discrete scattering media by polarized pulsed waves,” Proc. SPIE 4819, 87–97 (2002).
[CrossRef]

A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40, 5495–5502 (2001).
[CrossRef]

Jiang, X.

Jordan, D.

Kaplan, B.

Kuga, Y.

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, “Imaging techniques through discrete scattering media by polarized pulsed waves,” Proc. SPIE 4819, 87–97 (2002).
[CrossRef]

A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40, 5495–5502 (2001).
[CrossRef]

Ledanois, G.

Lee, K.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[CrossRef]

Lewis, G.

Liu, Y.

Ma, H.

Martelli, F.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Diffusive Media (SPIE, 2010).

Nee, S.-M. F.

S.-M. F. Nee and T.-W. Nee, “Principal Mueller matrix for reflection and scattering measured for a one-dimensional rough surface,” Opt. Eng. 41, 994–1001 (2002).
[CrossRef]

Nee, T.-W.

S.-M. F. Nee and T.-W. Nee, “Principal Mueller matrix for reflection and scattering measured for a one-dimensional rough surface,” Opt. Eng. 41, 994–1001 (2002).
[CrossRef]

Pernicka, J.

Petremand, M.

Radousky, H. B.

Roberts, P.

Samatham, R.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[CrossRef]

Schmitt, C.

Shaw, J. A.

Silverman, M. P.

M. P. Silverman and W. Strange, “Object delineation within turbid media by backscattering of phase modulated light,” Opt. Commun. 144, 7–11 (1997).
[CrossRef]

Strange, W.

M. P. Silverman and W. Strange, “Object delineation within turbid media by backscattering of phase modulated light,” Opt. Commun. 144, 7–11 (1997).
[CrossRef]

Tyo, J. S.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

Wechsler, H.

H. Wechsler and G. L. Zimmerman, “2-D invariant object recognition using distributed associative memory,” IEEE Trans. Patt. Anal. Mach. Intell. 10, 811–821 (1988).
[CrossRef]

Zaccanti, G.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Diffusive Media (SPIE, 2010).

Zallat, J.

Zeng, N.

Zimmerman, G. L.

H. Wechsler and G. L. Zimmerman, “2-D invariant object recognition using distributed associative memory,” IEEE Trans. Patt. Anal. Mach. Intell. 10, 811–821 (1988).
[CrossRef]

Appl. Opt. (8)

IEEE Trans. Patt. Anal. Mach. Intell. (1)

H. Wechsler and G. L. Zimmerman, “2-D invariant object recognition using distributed associative memory,” IEEE Trans. Patt. Anal. Mach. Intell. 10, 811–821 (1988).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

M. P. Silverman and W. Strange, “Object delineation within turbid media by backscattering of phase modulated light,” Opt. Commun. 144, 7–11 (1997).
[CrossRef]

Opt. Eng. (1)

S.-M. F. Nee and T.-W. Nee, “Principal Mueller matrix for reflection and scattering measured for a one-dimensional rough surface,” Opt. Eng. 41, 994–1001 (2002).
[CrossRef]

Opt. Express (2)

Proc. SPIE (2)

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[CrossRef]

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, “Imaging techniques through discrete scattering media by polarized pulsed waves,” Proc. SPIE 4819, 87–97 (2002).
[CrossRef]

Other (2)

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Diffusive Media (SPIE, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics