Abstract

The visible/infrared imaging radiometer suite (VIIRS) is now onboard the first satellite platform managed by the Joint Polar Satellite System of the National Oceanic and Atmospheric Administration and NASA. It collects scientific data from an altitude of approximately 830 km in 22 narrow bands located in the 0.4–12.5 μm range. The seven visible and near-infrared (VisNIR) bands in the wavelength interval between 0.4–0.9 μm are known to suffer from the out-of-band (OOB) responses—a small amount of radiances far away from the center of a given band that can pass through the filter and reach detectors in the focal plane. A proper treatment of the OOB effects is necessary in order to obtain calibrated at-sensor radiance data [referred to as the Sensor Data Records (SDRs)] from measurements with these bands and subsequently to derive higher-level data products [referred to as the Environmental Data Records (EDRs)]. We have recently developed a new technique, called multispectral decomposition transform (MDT), which can be used to correct/remove the OOB effects of VIIRS VisNIR bands and to recover the true narrow band radiances from the measured radiances containing OOB effects. An MDT matrix is derived from the laboratory-measured filter transmittance functions. The recovery of the narrow band signals is performed through a matrix multiplication—the production between the MDT matrix and a multispectral vector. Hyperspectral imaging data measured from high altitude aircraft and satellite platforms, the complete VIIRS filter functions, and the truncated VIIRS filter functions to narrower spectral intervals, are used to simulate the VIIRS data with and without OOB effects. Our experimental results using the proposed MDT method have demonstrated that the average errors after decomposition are reduced by more than one order of magnitude.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Murphy, B. Guenther, J. Ip, J. Jackson, D. Olenijczak, B. Iisager, and K. Hutchison, “Update on the algorithmic basis and predicted performance of selected VIIRS environmental data records,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006 (IEEE, 2006), pp. 266–269.
  2. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Electron. 27, 145–153 (1989).
    [CrossRef]
  3. M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
    [CrossRef]
  4. C. Moeller, J. McIntire, T. Schwarting, and D. Moyer, “VIIRS F1 ‘best’ relative spectral response characterization by the government team,” Proc. SPIE 8153, 81530K (2011).
    [CrossRef]
  5. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Technical Memorandum 104566, Vol. 1 (NASA Goddard Space Flight Center, 1992).
  6. H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34, 8363–8374 (1995).
    [CrossRef]
  7. M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40, 343–348 (2001).
    [CrossRef]
  8. R. A. Barnes, and J. J. Butler, “Modeling spectral effects in Earth-observing satellite instruments,” Proc. SPIE 6744, 67441K (2007).
    [CrossRef]
  9. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
    [CrossRef]
  10. R. L. Lucke, M. Corson, N. R. McGlothlin, S. D. Butcher, D. L. Wood, D. R. Korwan, R. R. Li, W. A. Snyder, C. O. Davis, and D. T. Chen, “The hyperspectral imager for the coastal ocean:instrument description and first images,” Appl. Opt. 50, 1501–1516 (2011).
    [CrossRef]

2011 (2)

2007 (1)

R. A. Barnes, and J. J. Butler, “Modeling spectral effects in Earth-observing satellite instruments,” Proc. SPIE 6744, 67441K (2007).
[CrossRef]

2003 (1)

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

2001 (1)

1998 (1)

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

1995 (1)

1989 (1)

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Electron. 27, 145–153 (1989).
[CrossRef]

Ackerman, S. A.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Aronsson, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Barnes, R. A.

Barnes, W. L.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Electron. 27, 145–153 (1989).
[CrossRef]

Butcher, S. D.

Butler, J. J.

R. A. Barnes, and J. J. Butler, “Modeling spectral effects in Earth-observing satellite instruments,” Proc. SPIE 6744, 67441K (2007).
[CrossRef]

Chen, D. T.

Chippendale, B. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Chovit, C. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Chrien, T. G.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Corson, M.

Davis, C. O.

Eastwood, M. L.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Esaias, W. E.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Technical Memorandum 104566, Vol. 1 (NASA Goddard Space Flight Center, 1992).

Faust, J. A.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Feldman, G. C.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Technical Memorandum 104566, Vol. 1 (NASA Goddard Space Flight Center, 1992).

Franz, B. A.

Gao, B.-C.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Gordon, H. R.

Green, R. O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Gregg, W. W.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Technical Memorandum 104566, Vol. 1 (NASA Goddard Space Flight Center, 1992).

Guenther, B.

R. E. Murphy, B. Guenther, J. Ip, J. Jackson, D. Olenijczak, B. Iisager, and K. Hutchison, “Update on the algorithmic basis and predicted performance of selected VIIRS environmental data records,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006 (IEEE, 2006), pp. 266–269.

Hooker, S. B.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Technical Memorandum 104566, Vol. 1 (NASA Goddard Space Flight Center, 1992).

Hubanks, P. A.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Hutchison, K.

R. E. Murphy, B. Guenther, J. Ip, J. Jackson, D. Olenijczak, B. Iisager, and K. Hutchison, “Update on the algorithmic basis and predicted performance of selected VIIRS environmental data records,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006 (IEEE, 2006), pp. 266–269.

Iisager, B.

R. E. Murphy, B. Guenther, J. Ip, J. Jackson, D. Olenijczak, B. Iisager, and K. Hutchison, “Update on the algorithmic basis and predicted performance of selected VIIRS environmental data records,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006 (IEEE, 2006), pp. 266–269.

Ip, J.

R. E. Murphy, B. Guenther, J. Ip, J. Jackson, D. Olenijczak, B. Iisager, and K. Hutchison, “Update on the algorithmic basis and predicted performance of selected VIIRS environmental data records,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006 (IEEE, 2006), pp. 266–269.

Jackson, J.

R. E. Murphy, B. Guenther, J. Ip, J. Jackson, D. Olenijczak, B. Iisager, and K. Hutchison, “Update on the algorithmic basis and predicted performance of selected VIIRS environmental data records,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006 (IEEE, 2006), pp. 266–269.

Kaufman, Y. J.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

King, M. D.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Korwan, D. R.

Li, R. R.

Lucke, R. L.

Maymon, P. W.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Electron. 27, 145–153 (1989).
[CrossRef]

McClain, C. R.

M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40, 343–348 (2001).
[CrossRef]

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Technical Memorandum 104566, Vol. 1 (NASA Goddard Space Flight Center, 1992).

McGlothlin, N. R.

McIntire, J.

C. Moeller, J. McIntire, T. Schwarting, and D. Moyer, “VIIRS F1 ‘best’ relative spectral response characterization by the government team,” Proc. SPIE 8153, 81530K (2011).
[CrossRef]

Menzel, W. P.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Moeller, C.

C. Moeller, J. McIntire, T. Schwarting, and D. Moyer, “VIIRS F1 ‘best’ relative spectral response characterization by the government team,” Proc. SPIE 8153, 81530K (2011).
[CrossRef]

Montgomery, H. E.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Electron. 27, 145–153 (1989).
[CrossRef]

Moyer, D.

C. Moeller, J. McIntire, T. Schwarting, and D. Moyer, “VIIRS F1 ‘best’ relative spectral response characterization by the government team,” Proc. SPIE 8153, 81530K (2011).
[CrossRef]

Murphy, R. E.

R. E. Murphy, B. Guenther, J. Ip, J. Jackson, D. Olenijczak, B. Iisager, and K. Hutchison, “Update on the algorithmic basis and predicted performance of selected VIIRS environmental data records,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006 (IEEE, 2006), pp. 266–269.

Olah, M. R.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Olenijczak, D.

R. E. Murphy, B. Guenther, J. Ip, J. Jackson, D. Olenijczak, B. Iisager, and K. Hutchison, “Update on the algorithmic basis and predicted performance of selected VIIRS environmental data records,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006 (IEEE, 2006), pp. 266–269.

Ostrow, H.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Electron. 27, 145–153 (1989).
[CrossRef]

Pavri, B. E.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Pincus, R.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Platnick, S.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Remer, L. A.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Salomonson, V. V.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Electron. 27, 145–153 (1989).
[CrossRef]

Sarture, C. M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Schwarting, T.

C. Moeller, J. McIntire, T. Schwarting, and D. Moyer, “VIIRS F1 ‘best’ relative spectral response characterization by the government team,” Proc. SPIE 8153, 81530K (2011).
[CrossRef]

Snyder, W. A.

Solis, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Tanre, D.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Wang, M.

Wood, D. L.

Appl. Opt. (3)

IEEE Trans. Geosci. Electron. (1)

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Electron. 27, 145–153 (1989).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Proc. SPIE (2)

C. Moeller, J. McIntire, T. Schwarting, and D. Moyer, “VIIRS F1 ‘best’ relative spectral response characterization by the government team,” Proc. SPIE 8153, 81530K (2011).
[CrossRef]

R. A. Barnes, and J. J. Butler, “Modeling spectral effects in Earth-observing satellite instruments,” Proc. SPIE 6744, 67441K (2007).
[CrossRef]

Remote Sens. Environ. (1)

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Other (2)

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Technical Memorandum 104566, Vol. 1 (NASA Goddard Space Flight Center, 1992).

R. E. Murphy, B. Guenther, J. Ip, J. Jackson, D. Olenijczak, B. Iisager, and K. Hutchison, “Update on the algorithmic basis and predicted performance of selected VIIRS environmental data records,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006 (IEEE, 2006), pp. 266–269.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

VIIRS Version 3 M1–M7 filter transmittance curves normalized at the peaks.

Fig. 2.
Fig. 2.

Image of (a) a true color AVIRIS acquired over the coastal area of New Jersey on 12 July 1998 and (b) examples of radiance spectra of pixels covered by clear water, turbid water, and green vegetation.

Fig. 3.
Fig. 3.

VIIRS image simulated with an AVIRIS hyperspectral data set acquired over the coastal area of New Jersey on 31 July 2001, two sample VIIRS multiband radiance data over turbid ocean waters and clear deep ocean waters, and errors before (uncorrected errors) and after decompositions (corrected errors) relative to the simulated corresponding VIIRS data without OOB effects.

Fig. 4.
Fig. 4.

Similar to Fig. 3, except that the multiband data points are extracted from pixels covered by green vegetation and land as marked in the image.

Fig. 5.
Fig. 5.

VIIRS image simulated with a HICO hyperspectral data set acquired over the Gulf of California on 1 December 2009, two sample VIIRS multiband radiance data over turbid waters and clear waters, and errors before (uncorrected errors) and after decompositions (corrected errors) relative to the simulated corresponding VIIRS data without OOB effects.

Fig. 6.
Fig. 6.

Similar to Fig. 5, except that the multiband data points are extracted from pixels covered by green vegetation and desert as marked in the image.

Tables (3)

Tables Icon

Table 1. VIIRS VisNIR Band Names, Center Wavelengths, and Full Widths at Half Maximum (FWHM)

Tables Icon

Table 2. Wavelength Ranges of Subbands for the VIIRS Instrument Filters as Measured from the Filter Transmittance Curves in Fig. 1

Tables Icon

Table 3. Average Relative Errors of the Uncorrected and OOB-Corrected Simulated Multispectral Images of the VIIRS Instrument Using AVIRIS and HICO Hyperspectral Imaging Data

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

s ^ k = λ min λ max h k ( λ ) s ( λ ) d λ ,
s ^ k = l = 1 n λ min ( l ) λ max ( l ) h k ( λ ) s ( λ ) d λ ,
{ λ max ( l 1 ) = λ min ( l ) λ min ( 1 ) = λ min λ max ( n ) = λ max .
λ min ( l ) λ max ( l ) h k ( λ ) s ( λ ) d λ h ¯ kl λ min ( l ) λ max ( l ) s ( λ ) d λ = h ¯ kl Δ λ l s ¯ l ,
h ¯ k l = 1 Δ λ l λ min ( l ) λ max ( l ) h k ( λ ) d λ ,
s ¯ l = 1 Δ λ l λ min ( l ) λ max ( l ) s ( λ ) d λ .
s ^ k = l = 1 n h ¯ k l Δ λ l s ¯ l .
s = ( s 1 s 2 s n ) .
s ^ = ( l = 1 n a 1 l s ¯ l l = 1 n a 2 l s ¯ l l = 1 n a n l s ¯ l ) = A s ¯ ,
s ¯ = A 1 s ^ .
h k ( λ ) = 1 Δ λ l { 1 λ min ( l ) λ λ max ( l ) 0 otherwise ,
h k ( λ ) = H k ( λ ) H ¯ k ,
( 1 . 0283 1 . 32656 × 10 3 9 . 64811 × 10 5 6 . 26276 × 10 4 5 . 26322 × 10 3 4 . 13883 × 10 3 1 . 68423 × 10 2 1 . 86106 × 10 3 1 . 00977 4 . 52782 × 10 4 1 . 48041 × 10 3 2 . 13087 × 10 3 1 . 01843 × 10 3 2 . 82691 × 10 3 9 . 56242 × 10 4 5 . 95628 × 10 4 1 . 01368 1 . 48632 × 10 3 3 . 24938 × 10 3 2 . 04484 × 10 3 5 . 34673 × 10 3 1 . 1785 × 10 3 4 . 7093 × 10 3 1 . 20242 × 10 2 1 . 0327 7 . 46696 × 10 3 3 . 84353 × 10 3 3 . 47807 × 10 3 5 . 78424 × 10 4 1 . 04277 × 10 3 2 . 35638 × 10 3 5 . 14373 × 10 3 1 . 01684 3 . 31716 × 10 3 4 . 40333 × 10 3 4 . 38729 × 10 4 4 . 00096 × 10 4 6 . 33179 × 10 4 1 . 00671 × 10 3 3 . 99606 × 10 3 1 . 01061 4 . 13453 × 10 3 2 . 23718 × 10 4 1 . 35422 × 10 4 1 . 89362 × 10 4 2 . 13841 × 10 4 3 . 02904 × 10 4 2 . 41025 × 10 4 1 . 00131 ) .
l = 1 n ( A 1 ) k l = 1 .
s k = Δ λ h k ( λ ) s ( λ ) d λ Δ λ h k ( λ ) d λ ,
{ e ^ i j k , e ¯ i j k } = { s ^ k ( i , j ) , s ¯ k ( i , j ) } s k ( i , j ) s k ( i , j ) ,

Metrics