Abstract

We describe a multispectral continuous-wave diffuse optical tomography (DOT) system that can be used for in vivo three-dimensional (3-D) imaging of seizure dynamics. Fast 3-D data acquisition is realized through a time multiplexing approach based on a parallel lighting configuration—our system can achieve 0.12 ms per source per wavelength and up to a 14 Hz sampling rate for a full set of data for 3-D DOT image reconstruction. The system is validated using both static and dynamic tissue-like phantoms. An initial in vivo experiment using a rat model of seizure is also demonstrated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).
    [CrossRef]
  2. J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78, 083706 (2007).
    [CrossRef]
  3. E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, and M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
    [CrossRef]
  4. H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
    [CrossRef]
  5. S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15, 016006 (2010).
    [CrossRef]
  6. A. Gibson, T. Austin, N. Everdell, M. Schweiger, S. Arridge, J. Meek, J. Wyatt, D. Delpy, and J. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage 30, 521–528 (2006).
    [CrossRef]
  7. B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” NeuroImage 49, 568–577 (2010).
    [CrossRef]
  8. C. Habermehl, C. H. Schmitz, and J. Steinbrink, “Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG,” Opt. Express 19, 18636–18644 (2011).
    [CrossRef]
  9. C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14, 1125–1144 (2006).
    [CrossRef]
  10. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1, 324–336 (2010).
    [CrossRef]
  11. B. R. White, S. M. Liao, S. L. Ferradal, T. E. Inder, and J. P. Culver, “Bedside optical imaging of occipital resting-state functional connectivity in neonates,” NeuroImage 59, 2529–2538 (2011).
  12. E. Watanabe, Y. Nagahori, and Y. Mayanagi, “Focus diagnosis of epilepsy using near‐infrared spectroscopy,” Epilepsia 43, 50–55 (2002).
    [CrossRef]
  13. N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS‐measured oxy‐and deoxyhemoglobin changes associated with EEG spike‐and‐wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
    [CrossRef]
  14. D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
    [CrossRef]
  15. Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
    [CrossRef]
  16. D. Piao and B. W. Pogue, “Rapid near-infrared diffuse tomography for hemodynamic imaging using a low-coherence wideband light source,” J. Biomed. Opt. 12, 014016 (2007).
    [CrossRef]
  17. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).
    [CrossRef]
  18. C. J. Soraghan, “Development of a versatile multichannel CWNIRS instrument for optical brain-computer interface applications,” Ph.D thesis (National University of Ireland, 2010).
  19. C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Optics A: Pure Appl. Opt. 6, 844–852 (2004).
    [CrossRef]
  20. N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000).
    [CrossRef]
  21. H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000).
    [CrossRef]
  22. H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC Press, 2010).
  23. A. Custo, W. M. Wells Iii, A. H. Barnett, E. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Appl. Opt. 45, 4747–4755 (2006).
    [CrossRef]
  24. A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, Part 1: Gypercapnia,” J. Biomed. Opt. 9, 1046–1062(2004).
    [CrossRef]

2011 (5)

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, and M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).
[CrossRef]

C. Habermehl, C. H. Schmitz, and J. Steinbrink, “Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG,” Opt. Express 19, 18636–18644 (2011).
[CrossRef]

B. R. White, S. M. Liao, S. L. Ferradal, T. E. Inder, and J. P. Culver, “Bedside optical imaging of occipital resting-state functional connectivity in neonates,” NeuroImage 59, 2529–2538 (2011).

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
[CrossRef]

2010 (4)

B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” NeuroImage 49, 568–577 (2010).
[CrossRef]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1, 324–336 (2010).
[CrossRef]

H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
[CrossRef]

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15, 016006 (2010).
[CrossRef]

2008 (2)

Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS‐measured oxy‐and deoxyhemoglobin changes associated with EEG spike‐and‐wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

2007 (3)

D. Piao and B. W. Pogue, “Rapid near-infrared diffuse tomography for hemodynamic imaging using a low-coherence wideband light source,” J. Biomed. Opt. 12, 014016 (2007).
[CrossRef]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).
[CrossRef]

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78, 083706 (2007).
[CrossRef]

2006 (3)

2004 (2)

A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, Part 1: Gypercapnia,” J. Biomed. Opt. 9, 1046–1062(2004).
[CrossRef]

C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Optics A: Pure Appl. Opt. 6, 844–852 (2004).
[CrossRef]

2002 (1)

E. Watanabe, Y. Nagahori, and Y. Mayanagi, “Focus diagnosis of epilepsy using near‐infrared spectroscopy,” Epilepsia 43, 50–55 (2002).
[CrossRef]

2000 (2)

Abdoulaev, G. S.

A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, Part 1: Gypercapnia,” J. Biomed. Opt. 9, 1046–1062(2004).
[CrossRef]

Abran, M.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15, 016006 (2010).
[CrossRef]

Arridge, S.

A. Gibson, T. Austin, N. Everdell, M. Schweiger, S. Arridge, J. Meek, J. Wyatt, D. Delpy, and J. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage 30, 521–528 (2006).
[CrossRef]

Atsumori, H.

H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
[CrossRef]

Austin, T.

A. Gibson, T. Austin, N. Everdell, M. Schweiger, S. Arridge, J. Meek, J. Wyatt, D. Delpy, and J. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage 30, 521–528 (2006).
[CrossRef]

Barnett, A. H.

Bélanger, S.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15, 016006 (2010).
[CrossRef]

Berquin, P.

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS‐measured oxy‐and deoxyhemoglobin changes associated with EEG spike‐and‐wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

Bluestone, A. Y.

A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, Part 1: Gypercapnia,” J. Biomed. Opt. 9, 1046–1062(2004).
[CrossRef]

Boas, D. A.

Carmant, L.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
[CrossRef]

Carney, P.

Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

Casanova, C.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15, 016006 (2010).
[CrossRef]

Culver, J. P.

B. R. White, S. M. Liao, S. L. Ferradal, T. E. Inder, and J. P. Culver, “Bedside optical imaging of occipital resting-state functional connectivity in neonates,” NeuroImage 59, 2529–2538 (2011).

B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” NeuroImage 49, 568–577 (2010).
[CrossRef]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).
[CrossRef]

Custo, A.

Dehghani, H.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).
[CrossRef]

Delpy, D.

A. Gibson, T. Austin, N. Everdell, M. Schweiger, S. Arridge, J. Meek, J. Wyatt, D. Delpy, and J. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage 30, 521–528 (2006).
[CrossRef]

Durduran, T.

Everdell, N.

A. Gibson, T. Austin, N. Everdell, M. Schweiger, S. Arridge, J. Meek, J. Wyatt, D. Delpy, and J. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage 30, 521–528 (2006).
[CrossRef]

Ferradal, S. L.

B. R. White, S. M. Liao, S. L. Ferradal, T. E. Inder, and J. P. Culver, “Bedside optical imaging of occipital resting-state functional connectivity in neonates,” NeuroImage 59, 2529–2538 (2011).

Florea, O.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
[CrossRef]

Franceschini, M. A.

Funane, T.

H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
[CrossRef]

Furuya, D.

Gibson, A.

A. Gibson, T. Austin, N. Everdell, M. Schweiger, S. Arridge, J. Meek, J. Wyatt, D. Delpy, and J. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage 30, 521–528 (2006).
[CrossRef]

Grebe, R.

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS‐measured oxy‐and deoxyhemoglobin changes associated with EEG spike‐and‐wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

Greenberg, J.

Habermehl, C.

C. Habermehl, C. H. Schmitz, and J. Steinbrink, “Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG,” Opt. Express 19, 18636–18644 (2011).
[CrossRef]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).
[CrossRef]

Hebden, J.

A. Gibson, T. Austin, N. Everdell, M. Schweiger, S. Arridge, J. Meek, J. Wyatt, D. Delpy, and J. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage 30, 521–528 (2006).
[CrossRef]

Hielscher, A. H.

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78, 083706 (2007).
[CrossRef]

A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, Part 1: Gypercapnia,” J. Biomed. Opt. 9, 1046–1062(2004).
[CrossRef]

Hillman, E.

Holtze, S.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).
[CrossRef]

Iftimia, N.

Inder, T. E.

B. R. White, S. M. Liao, S. L. Ferradal, T. E. Inder, and J. P. Culver, “Bedside optical imaging of occipital resting-state functional connectivity in neonates,” NeuroImage 59, 2529–2538 (2011).

Intes, X.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15, 016006 (2010).
[CrossRef]

Iwamoto, M.

H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
[CrossRef]

Jiang, H.

Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Optics A: Pure Appl. Opt. 6, 844–852 (2004).
[CrossRef]

N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000).
[CrossRef]

H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000).
[CrossRef]

H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC Press, 2010).

Katura, T.

H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
[CrossRef]

Kiguchi, M.

H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
[CrossRef]

Koch, S. P.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).
[CrossRef]

Koizumi, H.

H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
[CrossRef]

Lareau, E.

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, and M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

Lasker, J.

A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, Part 1: Gypercapnia,” J. Biomed. Opt. 9, 1046–1062(2004).
[CrossRef]

Lasker, J. M.

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78, 083706 (2007).
[CrossRef]

Lassonde, M.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
[CrossRef]

Le Lan, J.

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, and M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

Lepore, F.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
[CrossRef]

Lesage, F.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
[CrossRef]

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, and M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15, 016006 (2010).
[CrossRef]

Li, C.

C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Optics A: Pure Appl. Opt. 6, 844–852 (2004).
[CrossRef]

Liang, X.

Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

Liao, S. M.

B. R. White, S. M. Liao, S. L. Ferradal, T. E. Inder, and J. P. Culver, “Bedside optical imaging of occipital resting-state functional connectivity in neonates,” NeuroImage 59, 2529–2538 (2011).

Liu, Z.

Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

Maki, A.

H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
[CrossRef]

Manaka, T.

H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
[CrossRef]

Masciotti, J. M.

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78, 083706 (2007).
[CrossRef]

Mayanagi, Y.

E. Watanabe, Y. Nagahori, and Y. Mayanagi, “Focus diagnosis of epilepsy using near‐infrared spectroscopy,” Epilepsia 43, 50–55 (2002).
[CrossRef]

Meek, J.

A. Gibson, T. Austin, N. Everdell, M. Schweiger, S. Arridge, J. Meek, J. Wyatt, D. Delpy, and J. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage 30, 521–528 (2006).
[CrossRef]

Mehnert, J.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).
[CrossRef]

Mesquita, R. C.

Nagahori, Y.

E. Watanabe, Y. Nagahori, and Y. Mayanagi, “Focus diagnosis of epilepsy using near‐infrared spectroscopy,” Epilepsia 43, 50–55 (2002).
[CrossRef]

Nehlig, A.

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS‐measured oxy‐and deoxyhemoglobin changes associated with EEG spike‐and‐wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

Nguyen, D.

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, and M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

Nguyen, D. K.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
[CrossRef]

Obata, A.

H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
[CrossRef]

Obrig, H.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).
[CrossRef]

Piao, D.

D. Piao and B. W. Pogue, “Rapid near-infrared diffuse tomography for hemodynamic imaging using a low-coherence wideband light source,” J. Biomed. Opt. 12, 014016 (2007).
[CrossRef]

Pogue, B. W.

D. Piao and B. W. Pogue, “Rapid near-infrared diffuse tomography for hemodynamic imaging using a low-coherence wideband light source,” J. Biomed. Opt. 12, 014016 (2007).
[CrossRef]

Pouliot, P.

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, and M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
[CrossRef]

Roche-Labarbe, N.

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS‐measured oxy‐and deoxyhemoglobin changes associated with EEG spike‐and‐wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

Sato, H.

H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
[CrossRef]

Sawan, M.

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, and M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
[CrossRef]

Schlaggar, B. L.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).
[CrossRef]

Schmitz, C. H.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).
[CrossRef]

C. Habermehl, C. H. Schmitz, and J. Steinbrink, “Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG,” Opt. Express 19, 18636–18644 (2011).
[CrossRef]

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78, 083706 (2007).
[CrossRef]

Schoenecker, M.

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78, 083706 (2007).
[CrossRef]

Schweiger, M.

A. Gibson, T. Austin, N. Everdell, M. Schweiger, S. Arridge, J. Meek, J. Wyatt, D. Delpy, and J. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage 30, 521–528 (2006).
[CrossRef]

Soraghan, C. J.

C. J. Soraghan, “Development of a versatile multichannel CWNIRS instrument for optical brain-computer interface applications,” Ph.D thesis (National University of Ireland, 2010).

Steinbrink, J.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).
[CrossRef]

C. Habermehl, C. H. Schmitz, and J. Steinbrink, “Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG,” Opt. Express 19, 18636–18644 (2011).
[CrossRef]

Stewart, M.

A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, Part 1: Gypercapnia,” J. Biomed. Opt. 9, 1046–1062(2004).
[CrossRef]

Tremblay, J.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
[CrossRef]

Vannasing, P.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
[CrossRef]

Wallois, F.

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS‐measured oxy‐and deoxyhemoglobin changes associated with EEG spike‐and‐wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

Wang, Q.

Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

Watanabe, E.

E. Watanabe, Y. Nagahori, and Y. Mayanagi, “Focus diagnosis of epilepsy using near‐infrared spectroscopy,” Epilepsia 43, 50–55 (2002).
[CrossRef]

Wells Iii, W. M.

White, B. R.

B. R. White, S. M. Liao, S. L. Ferradal, T. E. Inder, and J. P. Culver, “Bedside optical imaging of occipital resting-state functional connectivity in neonates,” NeuroImage 59, 2529–2538 (2011).

B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” NeuroImage 49, 568–577 (2010).
[CrossRef]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).
[CrossRef]

Wyatt, J.

A. Gibson, T. Austin, N. Everdell, M. Schweiger, S. Arridge, J. Meek, J. Wyatt, D. Delpy, and J. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage 30, 521–528 (2006).
[CrossRef]

Xu, Y.

Yodh, A.

Yu, G.

Zaaimi, B.

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS‐measured oxy‐and deoxyhemoglobin changes associated with EEG spike‐and‐wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

Zeff, B. W.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).
[CrossRef]

Zhang, Q.

Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

Zhou, C.

Appl. Opt. (2)

Biomed. Opt. Express (1)

Epilepsia (2)

E. Watanabe, Y. Nagahori, and Y. Mayanagi, “Focus diagnosis of epilepsy using near‐infrared spectroscopy,” Epilepsia 43, 50–55 (2002).
[CrossRef]

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS‐measured oxy‐and deoxyhemoglobin changes associated with EEG spike‐and‐wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

Epilepsy Res. (1)

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011).
[CrossRef]

J. Biomed. Opt. (5)

D. Piao and B. W. Pogue, “Rapid near-infrared diffuse tomography for hemodynamic imaging using a low-coherence wideband light source,” J. Biomed. Opt. 12, 014016 (2007).
[CrossRef]

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, and M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010).
[CrossRef]

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15, 016006 (2010).
[CrossRef]

A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, Part 1: Gypercapnia,” J. Biomed. Opt. 9, 1046–1062(2004).
[CrossRef]

J. Optics A: Pure Appl. Opt. (1)

C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Optics A: Pure Appl. Opt. 6, 844–852 (2004).
[CrossRef]

Med. Phys. (1)

Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

NeuroImage (4)

A. Gibson, T. Austin, N. Everdell, M. Schweiger, S. Arridge, J. Meek, J. Wyatt, D. Delpy, and J. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage 30, 521–528 (2006).
[CrossRef]

B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” NeuroImage 49, 568–577 (2010).
[CrossRef]

B. R. White, S. M. Liao, S. L. Ferradal, T. E. Inder, and J. P. Culver, “Bedside optical imaging of occipital resting-state functional connectivity in neonates,” NeuroImage 59, 2529–2538 (2011).

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).
[CrossRef]

Opt. Express (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78, 083706 (2007).
[CrossRef]

Other (2)

C. J. Soraghan, “Development of a versatile multichannel CWNIRS instrument for optical brain-computer interface applications,” Ph.D thesis (National University of Ireland, 2010).

H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC Press, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic of the fast DOT system.

Fig. 2.
Fig. 2.

Photograph of the fast DOT system.

Fig. 3.
Fig. 3.

Diagram of the LED driving circuit.

Fig. 4.
Fig. 4.

Schematic of FPGA controller.

Fig. 5.
Fig. 5.

Schematic of the optical fiber bundle. Right end: Five fiber bundles (1.65 mm) in diameter, FC connectors (used for fiber bundles connected to detectors). Left end: 3.10 mm diameter fiber bundle.

Fig. 6.
Fig. 6.

Phantom/fiber optic array interface.

Fig. 7.
Fig. 7.

Detection schematic.

Fig. 8.
Fig. 8.

Geometry of the phantoms. (a) Two targets with the 40 mm diameter interface; the first target is centered at (x,y)=(3,10) and the second is centered at (x,y)=(10,3), (b) Single target with the 30 mm diameter interface centered at (9,0). (c) Phantom with fluid flowing through the phantom from the top to the bottom.

Fig. 9.
Fig. 9.

Reconstructed three-dimensional absorption images at Z and Y cut planes for the two targets phantom experiment at wavelengths of 660 nm, 780 nm and 850 nm. The color bar shows the absorption coefficient value (mm1), while the axes indicate the spatial dimension (mm).

Fig. 10.
Fig. 10.

Reconstructed three-dimensional absorption images (a) and (c) and scattering images (b) and (d) at Z and Y cut planes for the single target phantom experiment at wavelength 780 nm. The color bar shows the absorption coefficient (mm1) or reduced scattering coefficient value (mm1), while the axes indicate the spatial dimension (mm).

Fig. 11.
Fig. 11.

Reconstructed three-dimensional absorption images from wavelength 780 nm at different time points/frames when the fluids flow through a small tube. The images are shown at cut plane x=10mm. The fluids flow from the top to the bottom at a speed of 6mm/s, and the imaging sampling rate is 14Hz. The color bar shows the absorption coefficient value (mm1), while the axes indicate the spatial dimension (mm).

Fig. 12.
Fig. 12.

(a) Photograph of the rat/tissue interface. (b) Photograph of the rat with a dashed rectangle indicating the transverse or cross section at the cortex surface for the images shown in Figs. 13 and 14.

Fig. 13.
Fig. 13.

Cross-sectional images of absorption coefficient (mm1) at 780 nm for the in vivo experiment. Top: the baseline images at three time points before BMI injection. Bottom: the images at three time points after BMI injection.

Fig. 14.
Fig. 14.

Cross-sectional images of (a) [HbO2] and (b) [HbR], in µM, and (c) change of averaged [HbO2] and [HbR] within the area of seizure focus as indicated in each of the top left images in (a) and (b).

Tables (1)

Tables Icon

Table 1. Three Wavelength LEDs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Eij*=fijEij/cii=148,j=148,
(JTJ+λI)Δq=JT(Φ(m)Φ(c)),

Metrics