Abstract

To address the challenges of the parameterization of ocean color inversion algorithms in optically complex waters, we present an adaptive implementation of the linear matrix inversion method (LMI) [J. Geophys. Res. 101, 16631 (1996) [CrossRef]  ], which iterates over a limited number of model parameter sets to account for naturally occurring spatial or temporal variability in inherent optical properties (IOPs) and concentration specific IOPs (SIOPs). LMI was applied to a simulated reflectance dataset for spectral bands representing measured water properties of a macrotidal embayment characterized by a large variability in the shape and amplitude factors controlling the IOP spectra. We compare the inversion results for the single-model parameter implementation to the adaptive parameterization of LMI for the retrieval of bulk IOPs, the IOPs apportioned to the optically active constituents, and the concentrations of the optically active constituents. We found that ocean color inversion with LMI is significantly sensitive to the a priori selection of the empirical parameters g0 and g1 of the equations relating the above-surface remote-sensing reflectance to the IOPs in the water column [J. Geophys. Res. 93, 10909 (1988) [CrossRef]  ]. When assuming the values proposed for open-ocean applications for g0 and g1 [J. Geophys. Res. 93, 10909 (1988) [CrossRef]  ], the accuracy of the retrieved IOPs, and concentrations was substantially lower than that retrieved with the parameterization developed for coastal waters [Appl. Opt. 38, 3831 (1999) [CrossRef]  ] because the optically complex waters analyzed in this study were dominated by particulate and dissolved matter. The adaptive parameterization of LMI yielded consistently more accurate inversion results than the single fixed SIOP model parameterizations of LMI. The adaptive implementation of LMI led to an improvement in the accuracy of apportioned IOPs and concentrations, particularly for the phytoplankton-related quantities. The adaptive parameterization encompassing wider IOP ranges were more accurate for the retrieval of bulk IOPs, apportioned IOPs, and concentration of optically active constituents.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. IOCCG, “Why ocean colour? The societal benefits of ocean-colour technology,” Reports of the International Ocean-Colour Coordinating Group (IOCCG, 2008).
  2. IOCCG, “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” Reports of the International Ocean-Colour Coordinating Group (IOCCG, 2000).
  3. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdniakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).
  4. C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
    [CrossRef]
  5. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 doi:10.1029/2001JC000882 (2003).
    [CrossRef]
  6. K. Oubelkheir, L. Clementson, I. Webster, P. Ford, A. G. Dekker, L. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
    [CrossRef]
  7. D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
    [CrossRef]
  8. D. A. Aurin, H. M. Dierssen, M. S. Twardowski, and C. S. Roesler, “Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing,” J. Geophys. Res. 115, C07011 (2010).
    [CrossRef]
  9. F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models—an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
    [CrossRef]
  10. H. J. Hoogenboom, A. G. Dekker, and J. F. De Haan, “Retrieval of chlorophyll and suspended matter in inland waters from CASI data by matrix inversion,” Can. J. Remote Sens. 24, 144–152 (1998).
  11. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
    [CrossRef]
  12. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002).
    [CrossRef]
  13. V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378–1387 (2003).
    [CrossRef]
  14. IOCCG, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” Reports of the International Ocean-Colour Coordinating Group (IOCCG, 2006).
  15. F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: method for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999).
    [CrossRef]
  16. P. Wang, E. S. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color,” Appl. Opt. 44, 4074–4085 (2005).
    [CrossRef]
  17. T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, “Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA,” J. Geophys. Res. 112, C07011 (2007).
    [CrossRef]
  18. Z. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49, 369–381 (2010).
    [CrossRef]
  19. A. Magnuson, J. L. W. Harding, M. E. Mallonee, and J. E. Adolf, “Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight,” Estuar. Coast. Shelf Sci. 61, 403–424 (2004).
    [CrossRef]
  20. P. Lyon and F. Hoge, “The Linear Matrix Inversion Algorithm,” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, 2006), pp. 49–56.
  21. H. J. Van Der Woerd and R. Pasterkamp, “HYDROPT: a fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters,” Remote Sens. Environ. 112, 1795–1807 (2008).
    [CrossRef]
  22. Y. Qin, A. G. Dekker, V. E. Brando, and D. Blondeau-Patissier, “Validity of SeaDAS water constituents retrieval algorithms in Australian tropical coastal waters,” Geophys. Res. Lett. 34, L21603 (2007).
    [CrossRef]
  23. E. Boss and C. Roesler, “Over constrained linear matrix inversion with statistical selection,” in IOCCG Report Number 5, Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications, Z. Lee, ed. (IOCCG, 2006), pp. 57–62.
  24. K. L. Carder, F. R. Chen, Z. Lee, S. K. Hawes, and J. P. Cannizzaro, MODIS Algorithm Theoretical Basis Document ATBD 19 (2003).
  25. H. R. Gordon, O. B. Brown, R. Evans, J. Brown, R. C. Smith, K. S. Baker, and D. C. Clark, “A semianalytical model of ocean colour,” J. Geophys. Res. 93, 10909–10924 (1988).
    [CrossRef]
  26. J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100, 13135–13142 (1995).
    [CrossRef]
  27. Y.-J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44, 1236–1249 (2005).
    [CrossRef]
  28. Z. Lee, K. Carder, and K. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43, 4597–4964 (2004).
    [CrossRef]
  29. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. F. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).
    [CrossRef]
  30. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  31. C. D. Mobley, “Hydrolight 3.0 users’ guide—final report—March 1995,” SRI project 5632, contract n00014-94-c-0062 (SRI International, 1995).
  32. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  33. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.
  34. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
    [CrossRef]
  35. M. S. Twardowski and P. L. Donaghay, “Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters,” J. Geophys. Res. 106, 2545–2560 (2001).
    [CrossRef]
  36. M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
    [CrossRef]
  37. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
    [CrossRef]
  38. W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamela, W. J. Rhea, R. H. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666–677 (2008).
    [CrossRef]
  39. A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15, 7019–7031 (2007).
    [CrossRef]
  40. H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
    [CrossRef]
  41. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
    [CrossRef]
  42. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing in Fortran (Cambridge University, 1992).
  43. J. Acker, P. Lyon, F. Hoge, Suhung Shen, M. Roffer, and G. Gawlikowski, “Interaction of Hurricane Katrina with optically complex water in the Gulf of Mexico: interpretation using satellite-derived inherent optical properties and chlorophyll concentration,” IEEE Geosci. Remote Sens. Lett. 6, 209–213 (2009).
    [CrossRef]
  44. C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109, 183–195 (2007).
    [CrossRef]
  45. G. Campbell and S. R. Phinn, “An assessment of the accuracy and precision of water quality parameters retrieved with the matrix inversion method,” Limnol. Oceanogr. 8, 16–29(2010).
    [CrossRef]
  46. I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).
  47. I. T. Webster and P. W. Ford, “Delivery, deposition and redistribution of fine sediments within macrotidal Fitzroy Estuary/Keppel Bay: Southern Great Barrier Reef, Australia,” Cont. Shelf Res. 30, 793–805 (2010).
    [CrossRef]
  48. L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010).
    [CrossRef]
  49. C. D. Mobley, L. K. Sundman, W. P. Bissett, and B. Cahill, “Fast and accurate irradiance calculations for ecosystem models,” Biogeosci. Discuss. 6, 10625–10662 (2009).
    [CrossRef]
  50. W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
    [CrossRef]
  51. C. M. Jarque and A. K. Bera, “A test for normality of observations and regression residuals,” Int. Stat. Rev. 55, 163–172 (1987).
    [CrossRef]
  52. E. Laws, Mathematical Methods for Oceanographers: An Introduction (Wiley, 1997), p. 343.
  53. Z. Lee and K. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 1291–2201 (2002).
    [CrossRef]

2010 (5)

D. A. Aurin, H. M. Dierssen, M. S. Twardowski, and C. S. Roesler, “Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing,” J. Geophys. Res. 115, C07011 (2010).
[CrossRef]

G. Campbell and S. R. Phinn, “An assessment of the accuracy and precision of water quality parameters retrieved with the matrix inversion method,” Limnol. Oceanogr. 8, 16–29(2010).
[CrossRef]

I. T. Webster and P. W. Ford, “Delivery, deposition and redistribution of fine sediments within macrotidal Fitzroy Estuary/Keppel Bay: Southern Great Barrier Reef, Australia,” Cont. Shelf Res. 30, 793–805 (2010).
[CrossRef]

L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010).
[CrossRef]

Z. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49, 369–381 (2010).
[CrossRef]

2009 (3)

C. D. Mobley, L. K. Sundman, W. P. Bissett, and B. Cahill, “Fast and accurate irradiance calculations for ecosystem models,” Biogeosci. Discuss. 6, 10625–10662 (2009).
[CrossRef]

J. Acker, P. Lyon, F. Hoge, Suhung Shen, M. Roffer, and G. Gawlikowski, “Interaction of Hurricane Katrina with optically complex water in the Gulf of Mexico: interpretation using satellite-derived inherent optical properties and chlorophyll concentration,” IEEE Geosci. Remote Sens. Lett. 6, 209–213 (2009).
[CrossRef]

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

2008 (2)

H. J. Van Der Woerd and R. Pasterkamp, “HYDROPT: a fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters,” Remote Sens. Environ. 112, 1795–1807 (2008).
[CrossRef]

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamela, W. J. Rhea, R. H. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666–677 (2008).
[CrossRef]

2007 (4)

A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15, 7019–7031 (2007).
[CrossRef]

Y. Qin, A. G. Dekker, V. E. Brando, and D. Blondeau-Patissier, “Validity of SeaDAS water constituents retrieval algorithms in Australian tropical coastal waters,” Geophys. Res. Lett. 34, L21603 (2007).
[CrossRef]

T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, “Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA,” J. Geophys. Res. 112, C07011 (2007).
[CrossRef]

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109, 183–195 (2007).
[CrossRef]

2006 (1)

K. Oubelkheir, L. Clementson, I. Webster, P. Ford, A. G. Dekker, L. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

2005 (2)

2004 (3)

Z. Lee, K. Carder, and K. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43, 4597–4964 (2004).
[CrossRef]

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

A. Magnuson, J. L. W. Harding, M. E. Mallonee, and J. E. Adolf, “Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight,” Estuar. Coast. Shelf Sci. 61, 403–424 (2004).
[CrossRef]

2003 (3)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 doi:10.1029/2001JC000882 (2003).
[CrossRef]

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378–1387 (2003).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

2002 (4)

2001 (1)

M. S. Twardowski and P. L. Donaghay, “Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters,” J. Geophys. Res. 106, 2545–2560 (2001).
[CrossRef]

1999 (2)

1998 (2)

H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

H. J. Hoogenboom, A. G. Dekker, and J. F. De Haan, “Retrieval of chlorophyll and suspended matter in inland waters from CASI data by matrix inversion,” Can. J. Remote Sens. 24, 144–152 (1998).

1997 (1)

1996 (1)

F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models—an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
[CrossRef]

1995 (2)

J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100, 13135–13142 (1995).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

1990 (1)

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
[CrossRef]

1989 (1)

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

1988 (1)

H. R. Gordon, O. B. Brown, R. Evans, J. Brown, R. C. Smith, K. S. Baker, and D. C. Clark, “A semianalytical model of ocean colour,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

1987 (1)

C. M. Jarque and A. K. Bera, “A test for normality of observations and regression residuals,” Int. Stat. Rev. 55, 163–172 (1987).
[CrossRef]

Hoogenboom, H. J.

H. J. Hoogenboom, A. G. Dekker, and J. F. De Haan, “Retrieval of chlorophyll and suspended matter in inland waters from CASI data by matrix inversion,” Can. J. Remote Sens. 24, 144–152 (1998).

Acker, J.

J. Acker, P. Lyon, F. Hoge, Suhung Shen, M. Roffer, and G. Gawlikowski, “Interaction of Hurricane Katrina with optically complex water in the Gulf of Mexico: interpretation using satellite-derived inherent optical properties and chlorophyll concentration,” IEEE Geosci. Remote Sens. Lett. 6, 209–213 (2009).
[CrossRef]

Adolf, J. E.

A. Magnuson, J. L. W. Harding, M. E. Mallonee, and J. E. Adolf, “Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight,” Estuar. Coast. Shelf Sci. 61, 403–424 (2004).
[CrossRef]

Arnone, R.

Arnone, R. A.

Atkinson, I.

L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010).
[CrossRef]

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Aurin, D. A.

D. A. Aurin, H. M. Dierssen, M. S. Twardowski, and C. S. Roesler, “Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing,” J. Geophys. Res. 115, C07011 (2010).
[CrossRef]

Babin, M.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 doi:10.1029/2001JC000882 (2003).
[CrossRef]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. Evans, J. Brown, R. C. Smith, K. S. Baker, and D. C. Clark, “A semianalytical model of ocean colour,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Balch, W. M.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

Bera, A. K.

C. M. Jarque and A. K. Bera, “A test for normality of observations and regression residuals,” Int. Stat. Rev. 55, 163–172 (1987).
[CrossRef]

Bissett, W. P.

C. D. Mobley, L. K. Sundman, W. P. Bissett, and B. Cahill, “Fast and accurate irradiance calculations for ecosystem models,” Biogeosci. Discuss. 6, 10625–10662 (2009).
[CrossRef]

Blondeau-Patissier, D.

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

Y. Qin, A. G. Dekker, V. E. Brando, and D. Blondeau-Patissier, “Validity of SeaDAS water constituents retrieval algorithms in Australian tropical coastal waters,” Geophys. Res. Lett. 34, L21603 (2007).
[CrossRef]

Boss, E.

A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15, 7019–7031 (2007).
[CrossRef]

E. Boss and C. Roesler, “Over constrained linear matrix inversion with statistical selection,” in IOCCG Report Number 5, Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications, Z. Lee, ed. (IOCCG, 2006), pp. 57–62.

Boss, E. S.

Bostock, H.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Brando, V. E.

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

Y. Qin, A. G. Dekker, V. E. Brando, and D. Blondeau-Patissier, “Validity of SeaDAS water constituents retrieval algorithms in Australian tropical coastal waters,” Geophys. Res. Lett. 34, L21603 (2007).
[CrossRef]

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109, 183–195 (2007).
[CrossRef]

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378–1387 (2003).
[CrossRef]

Bricaud, A.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 doi:10.1029/2001JC000882 (2003).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Brooke, B.

L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010).
[CrossRef]

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Brown, C. W.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

Brown, J.

H. R. Gordon, O. B. Brown, R. Evans, J. Brown, R. C. Smith, K. S. Baker, and D. C. Clark, “A semianalytical model of ocean colour,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. Evans, J. Brown, R. C. Smith, K. S. Baker, and D. C. Clark, “A semianalytical model of ocean colour,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Bukata, R. P.

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdniakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Cahill, B.

C. D. Mobley, L. K. Sundman, W. P. Bissett, and B. Cahill, “Fast and accurate irradiance calculations for ecosystem models,” Biogeosci. Discuss. 6, 10625–10662 (2009).
[CrossRef]

Campbell, G.

G. Campbell and S. R. Phinn, “An assessment of the accuracy and precision of water quality parameters retrieved with the matrix inversion method,” Limnol. Oceanogr. 8, 16–29(2010).
[CrossRef]

Candiani, G.

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109, 183–195 (2007).
[CrossRef]

Cannizzaro, J. P.

K. L. Carder, F. R. Chen, Z. Lee, S. K. Hawes, and J. P. Cannizzaro, MODIS Algorithm Theoretical Basis Document ATBD 19 (2003).

Carder, K.

Z. Lee, K. Carder, and K. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43, 4597–4964 (2004).
[CrossRef]

Z. Lee and K. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 1291–2201 (2002).
[CrossRef]

Carder, K. L.

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[CrossRef]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. F. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).
[CrossRef]

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

K. L. Carder, F. R. Chen, Z. Lee, S. K. Hawes, and J. P. Cannizzaro, MODIS Algorithm Theoretical Basis Document ATBD 19 (2003).

Charlton, F.

H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Chen, F. R.

K. L. Carder, F. R. Chen, Z. Lee, S. K. Hawes, and J. P. Cannizzaro, MODIS Algorithm Theoretical Basis Document ATBD 19 (2003).

Clark, D. C.

H. R. Gordon, O. B. Brown, R. Evans, J. Brown, R. C. Smith, K. S. Baker, and D. C. Clark, “A semianalytical model of ocean colour,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Claustre, H.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 doi:10.1029/2001JC000882 (2003).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Clementson, L.

K. Oubelkheir, L. Clementson, I. Webster, P. Ford, A. G. Dekker, L. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

Clementson, L. A.

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

Cowles, T. J.

Daniel, P.

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

K. Oubelkheir, L. Clementson, I. Webster, P. Ford, A. G. Dekker, L. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

Davis, C. O.

De Haan, J. F.

H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

H. J. Hoogenboom, A. G. Dekker, and J. F. De Haan, “Retrieval of chlorophyll and suspended matter in inland waters from CASI data by matrix inversion,” Can. J. Remote Sens. 24, 144–152 (1998).

Dekker, A. G.

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

Y. Qin, A. G. Dekker, V. E. Brando, and D. Blondeau-Patissier, “Validity of SeaDAS water constituents retrieval algorithms in Australian tropical coastal waters,” Geophys. Res. Lett. 34, L21603 (2007).
[CrossRef]

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109, 183–195 (2007).
[CrossRef]

K. Oubelkheir, L. Clementson, I. Webster, P. Ford, A. G. Dekker, L. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378–1387 (2003).
[CrossRef]

H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

H. J. Hoogenboom, A. G. Dekker, and J. F. De Haan, “Retrieval of chlorophyll and suspended matter in inland waters from CASI data by matrix inversion,” Can. J. Remote Sens. 24, 144–152 (1998).

Dierssen, H. M.

D. A. Aurin, H. M. Dierssen, M. S. Twardowski, and C. S. Roesler, “Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing,” J. Geophys. Res. 115, C07011 (2010).
[CrossRef]

Donaghay, P. L.

M. S. Twardowski and P. L. Donaghay, “Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters,” J. Geophys. Res. 106, 2545–2560 (2001).
[CrossRef]

Douglas, G.

L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010).
[CrossRef]

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Du, K.

Z. Lee, K. Carder, and K. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43, 4597–4964 (2004).
[CrossRef]

Evans, R.

H. R. Gordon, O. B. Brown, R. Evans, J. Brown, R. C. Smith, K. S. Baker, and D. C. Clark, “A semianalytical model of ocean colour,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Fell, F.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 doi:10.1029/2001JC000882 (2003).
[CrossRef]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing in Fortran (Cambridge University, 1992).

Ford, P.

L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010).
[CrossRef]

K. Oubelkheir, L. Clementson, I. Webster, P. Ford, A. G. Dekker, L. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Ford, P. W.

I. T. Webster and P. W. Ford, “Delivery, deposition and redistribution of fine sediments within macrotidal Fitzroy Estuary/Keppel Bay: Southern Great Barrier Reef, Australia,” Cont. Shelf Res. 30, 793–805 (2010).
[CrossRef]

Fournier-Sicre, V.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Fry, E. S.

Gawlikowski, G.

J. Acker, P. Lyon, F. Hoge, Suhung Shen, M. Roffer, and G. Gawlikowski, “Interaction of Hurricane Katrina with optically complex water in the Gulf of Mexico: interpretation using satellite-derived inherent optical properties and chlorophyll concentration,” IEEE Geosci. Remote Sens. Lett. 6, 209–213 (2009).
[CrossRef]

Giardino, C.

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109, 183–195 (2007).
[CrossRef]

Goode, W.

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. Evans, J. Brown, R. C. Smith, K. S. Baker, and D. C. Clark, “A semianalytical model of ocean colour,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Gould, R. W.

Gregg, W. W.

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
[CrossRef]

Guillard, R. R. L.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

Guillocheau, N.

T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, “Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA,” J. Geophys. Res. 112, C07011 (2007).
[CrossRef]

Hancock, G.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Harding, J. L. W.

A. Magnuson, J. L. W. Harding, M. E. Mallonee, and J. E. Adolf, “Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight,” Estuar. Coast. Shelf Sci. 61, 403–424 (2004).
[CrossRef]

Hawes, S. K.

K. L. Carder, F. R. Chen, Z. Lee, S. K. Hawes, and J. P. Cannizzaro, MODIS Algorithm Theoretical Basis Document ATBD 19 (2003).

Herzfeld, M.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 doi:10.1029/2001JC000882 (2003).
[CrossRef]

Hoge, F.

J. Acker, P. Lyon, F. Hoge, Suhung Shen, M. Roffer, and G. Gawlikowski, “Interaction of Hurricane Katrina with optically complex water in the Gulf of Mexico: interpretation using satellite-derived inherent optical properties and chlorophyll concentration,” IEEE Geosci. Remote Sens. Lett. 6, 209–213 (2009).
[CrossRef]

P. Lyon and F. Hoge, “The Linear Matrix Inversion Algorithm,” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, 2006), pp. 49–56.

Hoge, F. E.

F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: method for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999).
[CrossRef]

F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models—an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
[CrossRef]

Hoogenboom, H. J.

H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Hovenier, J. W.

H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Hu, C.

Jarque, C. M.

C. M. Jarque and A. K. Bera, “A test for normality of observations and regression residuals,” Int. Stat. Rev. 55, 163–172 (1987).
[CrossRef]

Jerome, J. H.

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdniakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Kondratyev, K. Y.

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdniakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Kostadinov, T. S.

T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, “Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA,” J. Geophys. Res. 112, C07011 (2007).
[CrossRef]

Ladner, S.

Lamela, G.

Laws, E.

E. Laws, Mathematical Methods for Oceanographers: An Introduction (Wiley, 1997), p. 343.

Lee, Z.

Leeming, R.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Lemckert, C.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Li, J.

L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010).
[CrossRef]

Lubac, B.

Lyon, P.

J. Acker, P. Lyon, F. Hoge, Suhung Shen, M. Roffer, and G. Gawlikowski, “Interaction of Hurricane Katrina with optically complex water in the Gulf of Mexico: interpretation using satellite-derived inherent optical properties and chlorophyll concentration,” IEEE Geosci. Remote Sens. Lett. 6, 209–213 (2009).
[CrossRef]

P. Lyon and F. Hoge, “The Linear Matrix Inversion Algorithm,” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, 2006), pp. 49–56.

Lyon, P. E.

F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: method for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999).
[CrossRef]

F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models—an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
[CrossRef]

Magnuson, A.

A. Magnuson, J. L. W. Harding, M. E. Mallonee, and J. E. Adolf, “Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight,” Estuar. Coast. Shelf Sci. 61, 403–424 (2004).
[CrossRef]

Mallonee, M. E.

A. Magnuson, J. L. W. Harding, M. E. Mallonee, and J. E. Adolf, “Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight,” Estuar. Coast. Shelf Sci. 61, 403–424 (2004).
[CrossRef]

Margvelashvili, N.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Maritorena, S.

T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, “Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA,” J. Geophys. Res. 112, C07011 (2007).
[CrossRef]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002).
[CrossRef]

Mobley, C. D.

C. D. Mobley, L. K. Sundman, W. P. Bissett, and B. Cahill, “Fast and accurate irradiance calculations for ecosystem models,” Biogeosci. Discuss. 6, 10625–10662 (2009).
[CrossRef]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. F. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).
[CrossRef]

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

C. D. Mobley, “Hydrolight 3.0 users’ guide—final report—March 1995,” SRI project 5632, contract n00014-94-c-0062 (SRI International, 1995).

Morel, A.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.

Noble, B.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 doi:10.1029/2001JC000882 (2003).
[CrossRef]

Oubelkheir, K.

L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010).
[CrossRef]

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

K. Oubelkheir, L. Clementson, I. Webster, P. Ford, A. G. Dekker, L. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Park, Y.-J.

Pasterkamp, R.

H. J. Van Der Woerd and R. Pasterkamp, “HYDROPT: a fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters,” Remote Sens. Environ. 112, 1795–1807 (2008).
[CrossRef]

Patch, J. F.

Pegau, W. S.

Perry, M. J.

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Peterson, A. R.

Phinn, S. R.

G. Campbell and S. R. Phinn, “An assessment of the accuracy and precision of water quality parameters retrieved with the matrix inversion method,” Limnol. Oceanogr. 8, 16–29(2010).
[CrossRef]

Pope, R. M.

Pozdniakov, D. V.

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdniakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing in Fortran (Cambridge University, 1992).

Qin, Y.

Y. Qin, A. G. Dekker, V. E. Brando, and D. Blondeau-Patissier, “Validity of SeaDAS water constituents retrieval algorithms in Australian tropical coastal waters,” Geophys. Res. Lett. 34, L21603 (2007).
[CrossRef]

Radke, L.

L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010).
[CrossRef]

K. Oubelkheir, L. Clementson, I. Webster, P. Ford, A. G. Dekker, L. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Revill, A.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Rhea, W. J.

Robson, B.

L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010).
[CrossRef]

Robson, B. J.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Roesler, C.

P. Wang, E. S. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color,” Appl. Opt. 44, 4074–4085 (2005).
[CrossRef]

E. Boss and C. Roesler, “Over constrained linear matrix inversion with statistical selection,” in IOCCG Report Number 5, Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications, Z. Lee, ed. (IOCCG, 2006), pp. 57–62.

Roesler, C. S.

D. A. Aurin, H. M. Dierssen, M. S. Twardowski, and C. S. Roesler, “Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing,” J. Geophys. Res. 115, C07011 (2010).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Roffer, M.

J. Acker, P. Lyon, F. Hoge, Suhung Shen, M. Roffer, and G. Gawlikowski, “Interaction of Hurricane Katrina with optically complex water in the Gulf of Mexico: interpretation using satellite-derived inherent optical properties and chlorophyll concentration,” IEEE Geosci. Remote Sens. Lett. 6, 209–213 (2009).
[CrossRef]

Ruddick, K.

Ryan, D.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Schacht, C.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Schreurs, R.

H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Shen, Suhung

J. Acker, P. Lyon, F. Hoge, Suhung Shen, M. Roffer, and G. Gawlikowski, “Interaction of Hurricane Katrina with optically complex water in the Gulf of Mexico: interpretation using satellite-derived inherent optical properties and chlorophyll concentration,” IEEE Geosci. Remote Sens. Lett. 6, 209–213 (2009).
[CrossRef]

Siegel, D. A.

T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, “Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA,” J. Geophys. Res. 112, C07011 (2007).
[CrossRef]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002).
[CrossRef]

Smith, C.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Smith, J.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Smith, R. C.

H. R. Gordon, O. B. Brown, R. Evans, J. Brown, R. C. Smith, K. S. Baker, and D. C. Clark, “A semianalytical model of ocean colour,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Snyder, W. A.

Stavn, R. H.

Steward, R. G.

Stramski, D.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 doi:10.1029/2001JC000882 (2003).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

Strömbeck, N.

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109, 183–195 (2007).
[CrossRef]

Sundman, L. K.

C. D. Mobley, L. K. Sundman, W. P. Bissett, and B. Cahill, “Fast and accurate irradiance calculations for ecosystem models,” Biogeosci. Discuss. 6, 10625–10662 (2009).
[CrossRef]

Sydor, M.

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing in Fortran (Cambridge University, 1992).

Twardowski, M. S.

D. A. Aurin, H. M. Dierssen, M. S. Twardowski, and C. S. Roesler, “Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing,” J. Geophys. Res. 115, C07011 (2010).
[CrossRef]

M. S. Twardowski and P. L. Donaghay, “Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters,” J. Geophys. Res. 106, 2545–2560 (2001).
[CrossRef]

Vaillancourt, R. D.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

Van Der Woerd, H. J.

H. J. Van Der Woerd and R. Pasterkamp, “HYDROPT: a fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters,” Remote Sens. Environ. 112, 1795–1807 (2008).
[CrossRef]

Vassen, W.

H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing in Fortran (Cambridge University, 1992).

Vicente-Beckett, V.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Volten, H.

H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Wang, P.

Webster, I.

L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010).
[CrossRef]

K. Oubelkheir, L. Clementson, I. Webster, P. Ford, A. G. Dekker, L. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

Webster, I. T.

I. T. Webster and P. W. Ford, “Delivery, deposition and redistribution of fine sediments within macrotidal Fitzroy Estuary/Keppel Bay: Southern Great Barrier Reef, Australia,” Cont. Shelf Res. 30, 793–805 (2010).
[CrossRef]

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Weidemann, A.

Werdell, P. J.

Whitmire, A. L.

Wild-Allen, K.

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

Wouts, R.

H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Zaneveld, J. R. V.

J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100, 13135–13142 (1995).
[CrossRef]

Appl. Opt. (11)

Z. Lee, K. Carder, and K. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43, 4597–4964 (2004).
[CrossRef]

F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: method for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999).
[CrossRef]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. F. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).
[CrossRef]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

Z. Lee and K. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 1291–2201 (2002).
[CrossRef]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002).
[CrossRef]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[CrossRef]

Y.-J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44, 1236–1249 (2005).
[CrossRef]

P. Wang, E. S. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color,” Appl. Opt. 44, 4074–4085 (2005).
[CrossRef]

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamela, W. J. Rhea, R. H. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666–677 (2008).
[CrossRef]

Z. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49, 369–381 (2010).
[CrossRef]

Aquat. Geochem. (1)

L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010).
[CrossRef]

Biogeosci. Discuss. (1)

C. D. Mobley, L. K. Sundman, W. P. Bissett, and B. Cahill, “Fast and accurate irradiance calculations for ecosystem models,” Biogeosci. Discuss. 6, 10625–10662 (2009).
[CrossRef]

Can. J. Remote Sens. (1)

H. J. Hoogenboom, A. G. Dekker, and J. F. De Haan, “Retrieval of chlorophyll and suspended matter in inland waters from CASI data by matrix inversion,” Can. J. Remote Sens. 24, 144–152 (1998).

Cont. Shelf Res. (1)

I. T. Webster and P. W. Ford, “Delivery, deposition and redistribution of fine sediments within macrotidal Fitzroy Estuary/Keppel Bay: Southern Great Barrier Reef, Australia,” Cont. Shelf Res. 30, 793–805 (2010).
[CrossRef]

Estuar. Coast. Shelf Sci. (1)

A. Magnuson, J. L. W. Harding, M. E. Mallonee, and J. E. Adolf, “Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight,” Estuar. Coast. Shelf Sci. 61, 403–424 (2004).
[CrossRef]

Geophys. Res. Lett. (1)

Y. Qin, A. G. Dekker, V. E. Brando, and D. Blondeau-Patissier, “Validity of SeaDAS water constituents retrieval algorithms in Australian tropical coastal waters,” Geophys. Res. Lett. 34, L21603 (2007).
[CrossRef]

IEEE Geosci. Remote Sens. Lett. (1)

J. Acker, P. Lyon, F. Hoge, Suhung Shen, M. Roffer, and G. Gawlikowski, “Interaction of Hurricane Katrina with optically complex water in the Gulf of Mexico: interpretation using satellite-derived inherent optical properties and chlorophyll concentration,” IEEE Geosci. Remote Sens. Lett. 6, 209–213 (2009).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378–1387 (2003).
[CrossRef]

Int. Stat. Rev. (1)

C. M. Jarque and A. K. Bera, “A test for normality of observations and regression residuals,” Int. Stat. Rev. 55, 163–172 (1987).
[CrossRef]

J. Geophys. Res. (10)

H. R. Gordon, O. B. Brown, R. Evans, J. Brown, R. C. Smith, K. S. Baker, and D. C. Clark, “A semianalytical model of ocean colour,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100, 13135–13142 (1995).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 doi:10.1029/2001JC000882 (2003).
[CrossRef]

K. Oubelkheir, L. Clementson, I. Webster, P. Ford, A. G. Dekker, L. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

D. A. Aurin, H. M. Dierssen, M. S. Twardowski, and C. S. Roesler, “Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing,” J. Geophys. Res. 115, C07011 (2010).
[CrossRef]

F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models—an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
[CrossRef]

T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, “Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA,” J. Geophys. Res. 112, C07011 (2007).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

M. S. Twardowski and P. L. Donaghay, “Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters,” J. Geophys. Res. 106, 2545–2560 (2001).
[CrossRef]

J. Plankton Res. (1)

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

Limnol. Oceanogr. (6)

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
[CrossRef]

G. Campbell and S. R. Phinn, “An assessment of the accuracy and precision of water quality parameters retrieved with the matrix inversion method,” Limnol. Oceanogr. 8, 16–29(2010).
[CrossRef]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Opt. Express (1)

Remote Sens. Environ. (2)

H. J. Van Der Woerd and R. Pasterkamp, “HYDROPT: a fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters,” Remote Sens. Environ. 112, 1795–1807 (2008).
[CrossRef]

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109, 183–195 (2007).
[CrossRef]

Other (13)

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing in Fortran (Cambridge University, 1992).

I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

C. D. Mobley, “Hydrolight 3.0 users’ guide—final report—March 1995,” SRI project 5632, contract n00014-94-c-0062 (SRI International, 1995).

E. Boss and C. Roesler, “Over constrained linear matrix inversion with statistical selection,” in IOCCG Report Number 5, Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications, Z. Lee, ed. (IOCCG, 2006), pp. 57–62.

K. L. Carder, F. R. Chen, Z. Lee, S. K. Hawes, and J. P. Cannizzaro, MODIS Algorithm Theoretical Basis Document ATBD 19 (2003).

IOCCG, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” Reports of the International Ocean-Colour Coordinating Group (IOCCG, 2006).

P. Lyon and F. Hoge, “The Linear Matrix Inversion Algorithm,” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, 2006), pp. 49–56.

IOCCG, “Why ocean colour? The societal benefits of ocean-colour technology,” Reports of the International Ocean-Colour Coordinating Group (IOCCG, 2008).

IOCCG, “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” Reports of the International Ocean-Colour Coordinating Group (IOCCG, 2000).

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdniakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

E. Laws, Mathematical Methods for Oceanographers: An Introduction (Wiley, 1997), p. 343.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Outline of the inversion steps and parameterization for the retrieval of IOPs and concentrations from remote sensing reflectance in f-LMI and a-LMI. af-LMI for the retrieval of aphy and aCDOM+NAP, bbp [9]; bf-LMI for the retrieval of CCHL, CCDOM and CNAP and IOPs [13]; and ca-LMI: retrieval of CCHL, CCDOM, and CNAP and IOPs by selecting the optimal model parameter set (this study). In c, L is the number of candidate model parameter sets.

Fig. 2.
Fig. 2.

Outline of the a-LMI for the retrieval of CCHL, CCDOM, and CNAP and IOPs. The resultant concentrations and IOPs are selected from the model parameter set with the best optical closure (i.e., the lowest Δk).

Fig. 3.
Fig. 3.

Distribution of SIOPs shape and amplitude factors for each of the three field campaigns 2003, 2004, 2005, as well as for the whole combined dataset. The values for 2003 are reported in black, for 2004 in dark gray, and 2005 in light gray. The average values for each shape and amplitude factors for each of the three field campaigns as well as the whole combined dataset (FK03avg, FK04avg, FK05avg, and FK345avg) are marked as (3), (4), (5), and (A).

Fig. 4.
Fig. 4.

Absorption budget at 440 nm (in percent). Counterclockwise ternary plot showing the relative contribution of the nonalgal particulate (aNAP), phytoplankton (aphy), and CDOM (aCDOM) to the absorption of particulate and dissolved matter (ap+CDOM) for each of the three field campaigns 2003, 2004, 2005, as well for the simulated dataset. The data points for 2003 are reported with black filled circles, for 2004 in dark-gray filled circles, and 2005 in light-gray filled circles. The simulated dataset (n=1219) is presented with the empty circles.

Fig. 5.
Fig. 5.

Comparison between retrieved and simulated IOPs and concentrations. The spectral inversion of Eq. (12) for each simulated Rrs spectrum was parameterized with the SIOP shape and amplitude parameters used in the forward simulation while Eq. (13) was parameterized with gLEE [29]. The figure is organized in four rows (bulk IOPs, PHY, CDOM, and NAP properties), and in three columns (a, bb, and concentrations). In the scatterplots colors indicate density of points from blue (low density) to dark red (high density), the dotted line is the 11 line and the continuous line presents the linear regression.

Fig. 6.
Fig. 6.

Comparison between retrieved and simulated bulk IOPs. The spectral inversion of Eq. (12) for each simulated Rrs spectrum was parameterized with the SIOP shape and amplitude parameters used in the forward simulation while Eq. (13) was parameterized with gGOR [25] (top row) or gQAA [11] (bottom row). In the scatterplots colors indicate density of points from blue (low density) to dark red (high density), the dotted line is the 11 line, and the continuous line presents the linear regression.

Fig. 7.
Fig. 7.

Comparison of the distributions of retrieved and simulated IOPs and concentrations. The spectral inversion of Eq. (12) for each simulated Rrs spectrum was parameterized with the SIOP shape and amplitude parameters used in the forward simulation while Eq. (13) was parameterized with gGOR [25] and gQAA [11]. The figure is organized in four rows (bulk IOPs, PHY, CDOM, and NAP properties), and in three columns (a, bb, and concentrations) as in Fig. 5. For each plotted variable, the continuous gray line represents the distribution of the whole simulated dataset, the solid gray bars the distribution of the values in the simulated dataset associated to the Rrs spectra that were successfully inverted, and the thick dashed black line is the distribution of the retrievals. In gray are reported the number of spectra, the median, and the interquartile range (IQR) for the whole simulated dataset and in black the number of spectra, the median, and IQR for the retrievals.

Fig. 8.
Fig. 8.

Comparison between retrieved and simulated bulk IOPs: f-LMI. The spectral inversion of Eq. (12) was applied to the simulated reflectance dataset by using four fixed model parameter sets representative of each of the three field campaigns as well as the whole combined dataset (FK03avg, FK04avg, FK05avg, and FK345avg). In all cases Eq. (13) was parameterized with gLEE [29]. The figure is organized in four rows (four model parameter sets), and in two columns (a and bb). The scatterplots colors indicate density of points from blue (low density) to dark red (high density), the dotted line is the 11 line and the continuous line presents the linear regression.

Fig. 9.
Fig. 9.

Distribution of the measure of Δ(rrsinput,rrsmodel) (relRMSE): comparison of f-LMI and a-LMI. For f-LMI, the spectral inversion of Eq. (12) was applied to the simulated reflectance dataset by using four fixed model parameter sets representative of each of the three field campaigns as well as the whole combined dataset (FK03avg, FK04avg, FK05avg, and FK345avg). For a-LMI, the adaptive parameterizations were derived by using all the complete sets of SIOP shape and amplitude parameters [aphy*(λ), SCDOM, aNAP*(440), SNAP, bbphy*(555), Yphy, bbNAP*(555), YNAP] as they were estimated from a suite of in situ measurements and samples collected concurrently during one of the three field campaigns as well as the whole combined dataset (FK03ad, FK04ad, FK05ad, and FK345ad). In all cases Eq. (13) was parameterized with gLEE [29]. The dark gray bars account for solutions discarded because LMI did not yield positive concentrations for all three optically active constituents.

Fig. 10.
Fig. 10.

Comparison between retrieved and simulated concentrations: f-LMI. The spectral inversion of Eq. (12) was applied to the simulated reflectance dataset by using four fixed model parameter sets representative of each of the three field campaigns as well as the whole combined dataset (FK03avg, FK04avg, FK05avg, and FK345avg). In all cases Eq. (13) was parameterized with gLEE [29]. The figure is organized in three rows (CCHL, CCDOM, and CNAP) and four columns (four model parameter sets). In the scatterplot colors indicate density of points from blue (low density) to dark red (high density), the dotted line is the 11 line and the continuous line presents the linear regression.

Fig. 11.
Fig. 11.

Absorption budget at 440 nm (in percent): comparison of f-LMI and a-LMI retrievals. Counterclockwise ternary plot showing the relative contribution of the nonalgal particulate (aNAP), phytoplankton (aphy), and CDOM (aCDOM) to the absorption of particulate and dissolved matter (ap+CDOM). For f-LMI, the spectral inversion of Eq. (12) was applied to the simulated reflectance dataset by using four fixed model parameter sets representative of each of the three field campaigns as well as the whole combined dataset (FK03avg, FK04avg, FK05avg, and FK345avg). For a-LMI, the adaptive parameterizations were derived by using all the complete sets of SIOP shape and amplitude parameters [aphy*(λ), SCDOM, aNAP*(440), SNAP, bbphy*(555), Yphy, bbNAP*(555), YNAP] as they were estimated from a suite of in situ measurements and samples collected concurrently during one of the three field campaigns as well as the whole combined dataset (FK03ad, FK04ad, FK05ad, and FK345ad). In all cases Eq. (13) was parameterized with gLEE [29].

Fig. 12.
Fig. 12.

Comparison between retrieved and simulated bulk IOPs: a-LMI. The adaptive parameterizations were derived by using all the complete sets of SIOP shape and amplitude parameters [aphy*(λ), SCDOM, aNAP*(440), SNAP, bbphy*(555), Yphy, bbNAP*(555), YNAP] as they were estimated from a suite of in situ measurements and samples collected concurrently during one of the three field campaigns as well as the whole combined dataset (FK03ad, FK04ad, FK05ad, and FK05ad). In all cases Eq. (13) was parameterized with gLEE [29]. The figure is organized in four rows (four model parameter sets), and in two columns (a and bb) as in Fig. 8. The scatterplot colors indicate density of points from blue (low density) to dark red (high density), the dotted line is the 11 line and the continuous line presents the linear regression.

Fig. 13.
Fig. 13.

Comparison between retrieved and simulated concentrations: a-LMI. The adaptive parameterizations were derived by using all the complete sets of SIOP shape and amplitude parameters [aphy*(λ), SCDOM, aNAP*(440), SNAP, bbphy*(555), Yphy, bbNAP*(555), YNAP] as they were estimated from a suite of in situ measurements and samples collected concurrently during one of the three field campaigns as well as the whole combined dataset (FK03ad, FK04ad, FK05ad, and FK05ad). In all cases Eq. (13) was parameterized with gLEE [29]. The figure is organized in three rows (CCHL, CCDOM, and CNAP) and four columns (four model parameter sets) as Fig. 10. In the scatterplot colors indicate density of points from blue (low density) to dark red (high density), the dotted line is the 11 line and the continuous line presents the linear regression.

Fig. 14.
Fig. 14.

Accuracy of the retrieval of IOPs and concentrations: comparison of f-LMI and a-LMI. The figure is organized in four rows (bulk IOPs, PHY, CDOM, and NAP properties), and in three columns (a, bb, and concentrations) as Figs. 5 and 7. For f-LMI, the spectral inversion of Eq. (12) was applied to the simulated reflectance dataset by using four fixed model parameter sets representative of each of the three field campaigns as well as the whole combined dataset (FK03avg, FK04avg, FK05avg, and FK345avg). For a-LMI, the adaptive parameterizations were derived by using all the complete sets of SIOP shape and amplitude parameters [aphy*(λ), SCDOM, aNAP*(440), SNAP, bbphy*(555), Yphy, bbNAP*(555), YNAP] as they were estimated from a suite of in situ measurements and samples collected concurrently during one of the three field campaigns as well as the whole combined dataset [FK03ad, FK04ad, FK05ad and FK345ad]. In all cases Eq. (13) was parameterized with gLEE [29].

Fig. 15.
Fig. 15.

Distribution of accuracy of the retrieval of SIOPs shape parameters for a-LMI. The figure is organized in four rows (four model parameter sets: FK03ad, FK04ad, FK05ad, and FK345ad), and in three columns (SCDOM, SNAP, and YNAP). The dark bars represent the number of solutions for which the SIOP shape and amplitude parameter set used in the forward simulation were correctly selected during the a-LMI minimization process. The adaptive parameterizations were derived by using all the complete sets of SIOP shape and amplitude parameters [aphy*(λ), SCDOM, aNAP*(440), SNAP, bbphy*(555), Yphy, bbNAP*(555), YNAP] as they were estimated from a suite of in situ measurements and samples collected concurrently during one of the three field campaigns as well as the whole combined dataset (FK03ad, FK04ad, FK05ad, and FK345ad). In all cases Eq. (13) was parameterized with gLEE [29].

Fig. 16.
Fig. 16.

Distribution of accuracy of the retrieval of SIOPs amplitude parameters for a-LMI. The figure is organized in four rows (four model parameter sets: FK03ad, FK04ad, FK05ad, and FK345ad), and in three columns [aphy*(λ), aNAP*(440) and bbNAP*(555)]. The dark bars represent the number of solutions for which the SIOP shape and amplitude parameter set used in the forward simulation were correctly selected during the a-LMI minimization process. The adaptive parameterizations were derived by using all the complete sets of SIOP shape and amplitude parameters [aphy*(λ), SCDOM, aNAP*(440), SNAP, bbphy*(555), Yphy, bbNAP*(555), YNAP] as they were estimated from a suite of in situ measurements and samples collected concurrently during one of the three field campaigns as well as the whole combined dataset (FK03ad, FK04ad, FK05ad, and FK345ad). In all cases Eq. (13) was parameterized with gLEE [29].

Tables (4)

Tables Icon

Table 1. Symbols and Definitions

Tables Icon

Table 2. Summary of Comparison between Retrieved and Simulated IOPs and Concentrationsa

Tables Icon

Table 3. Summary of Comparison between Retrieved and Simulated IOPs and Concentrations: f-LMIa

Tables Icon

Table 4. Summary of Comparison between Retrieved and Simulated IOPs and Concentrations: a-LMIa

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

rrs(λ)Rrs(λ)0.52+1.7Rrs(λ).
rrs(λ)=g0u(λ)+g1[u(λ)]2,
u(λ)=bb(λ)a(λ)+bb(λ).
a(λ)=aw(λ)+j=1Naj*(λ)Cj;bb(λ)=bbw(λ)+j=1Nbbj*(λ)Cj,
aCDOM*(λ)=aCDOM*(λ0)exp[SCDOM(λλ0)],
aNAP*(λ)=aNAP*(λ0)exp[SNAP(λλ0)],
bbphy*(λ)=bbphy*(λ0)(λ0λ)Yphy,
bbNAP*(λ)=bbNAP*(λ0)(λ0λ)YNAP,
u=aw+j=1Naj*Cjaw+j=1Naj*Cj+bbw+j=1Nbbj*Cj.
aw(λi)u(λi)+bbw(λi)(1u(λi))=j=1N[aj*(λi)u(λi)bbj*(λi)(1u(λi))]Cj.
y=Ax
Aij=aj*(λi)u(λi)bbj*(λi)(1u(λi)),i=1,,Mj=1,,Nyi=aw(λi)u(λi)+bbw(λi)(1u(λi)),xj=Cj,
u=g0+[[g0]2+4g1rrs]1/22g1.
relRMSE=[i=1M(rrsmodel(λi)rrsinput(λi))2M1]1/2[i=1Mrrsinput(λi)M1].
RMSE=(i=1N[log10(qimodel)log10(qiinput)]2N2)1/2,
MAPE=i=1N|(qimodel)(qiinput)qiinput|N,

Metrics