Abstract

This study clarifies the ablation differences in air and in water for hard biological tissues, which are irradiated by fiber-guided long-pulsed holmium lasers. High-speed photography is used to record the dynamic characteristics of ablation plumes and vaporization bubbles induced by pulsed holmium lasers. The ablation morphologies and depth of hard tissues are quantitatively measured by optical coherence microscopy. Explosive vaporization effects in water play a positive role in the contact ablation process and are directly responsible for significant ablation enhancement. Furthermore, water layer depth can also contribute to ablation performance. Under the same laser parameters for fiber-tissue contact ablation in air and water, ablation performances are comparable for a single-laser pulse, but for more laser pulses the ablation performances in water are better than those in air. Comprehensive knowledge of ablation differences under various environments is important, especially in medical procedures that are performed in a liquid environment.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Asshauer, K. Rink, and G. Delacretaz, “Acoustic transient generation by holmium-laser-induced cavitation bubbles,” Jpn. J. Appl. Phys. 76, 5007–5013 (1994).
    [CrossRef]
  2. O. Fohn, H. S. Pratisto, F. Konz, M. Ith, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side-firing fiber device for underwater tissue ablation with Ho:YAG and Er:YAG laser radiation,” J. Biomed. Opt. 3, 112–122 (1998).
    [CrossRef]
  3. V. Alfred and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
    [CrossRef]
  4. G. S. Fanton and M. F. Dillingham, “The use of the holmium:YAG-laser in arthroscopic surgery,” Sem. Orthop. 7, 102–116 (1992).
  5. M. Ith, H. Pratisto, H. U. Staubli, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side effects of laser therapy on cartilage,” Sports Exerc. Inj. 2, 207–209 (1996).
  6. H. W. Kang, I. Rizoiu, and A. J. Welch, “Hard tissue ablation with a spray-assisted mid-IR laser,” Phys. Med. Biol. 52, 7243–7259 (2007).
    [CrossRef]
  7. H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53, 3381–3390 (2008).
    [CrossRef]
  8. F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2201 (1988).
    [CrossRef]
  9. H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38, 39–51 (2006).
    [CrossRef]
  10. L. Tao, X. Qing, Q. X. Dan, R. Kai, and J. L. Zheng, “Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater,” J. Biomed. Opt. 15, 048002 (2010).
    [CrossRef]
  11. P. E. Dyer, M. E. Khosroshahi, and S. J. Tuft, “Studies of laser-induced cavitation and tissue ablation in saline using a fibre-delivered pulsed HF laser,” Appl. Phys. B 56, 84–93 (1993).
    [CrossRef]
  12. J. Ren, M. Kelly, and L. Hesselink, “Laser ablation of silicon in water with nanosecond and femtosecond pulses,” Opt. Lett. 30, 1740–1742 (2005).
    [CrossRef]
  13. G. Daminelli, J. Krűger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004).
    [CrossRef]
  14. S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79, 1396–1398 (2001).
    [CrossRef]
  15. H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid-confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008).
    [CrossRef]
  16. D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186–193 (2002).
    [CrossRef]
  17. H. W. Kang, H. Lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
    [CrossRef]
  18. M. Mir, N. Gutknecht, R. Poprawe, L. Vanweersch, and F. Lampert, “Visualising the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium-aluminium-garnet and erbium, chromium:yttrium-scandium-gallium-garnet laser pulses,” Lasers Med. Sci. 24, 365–374 (2009).
    [CrossRef]
  19. I. Turovets, D. Palanker, Y. Kokotov, I. Hemo, and A. Lewis, “Dynamics of cavitation bubble induced by 193 nm ArF excimer laser in concentrated sodium chloride solutions,” J. Appl. Phys. 79, 2689–2693 (1996).
    [CrossRef]
  20. A. D. Zweig, “A thermo-mechanical model for laser ablation,” J. Appl. Phys. 70, 1684–1691 (1991).
    [CrossRef]
  21. D. Albagli, M. Dark, L. T. Perelman, G. von Rosenberg, I. Itzkan, and M. S. Feld, “Photomechanical basis of laser ablation of biological tissue,” Opt. Lett. 19, 1684–1686 (1994).
    [CrossRef]
  22. M. Frenz, V. Romano, A. D. Zweig, and H. P. Weber, “Instabilities in laser cutting of soft tissue,” J. Appl. Phys. 66, 4496–4503 (1989).
    [CrossRef]
  23. B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B 66, 479–487 (1998).
    [CrossRef]
  24. J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced pressure waves in water,” Appl. Opt. 37, 4092–4099 (1998).
    [CrossRef]
  25. A. Vogel, I. Apitz, S. Freidank, and R. Dijkink, “Sensitive high-resolution white-light Schlieren technique with a large dynamic range for the investigation of ablation dynamics,” Opt. Lett. 31, 1812–1814 (2006).
    [CrossRef]
  26. M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6–7 μm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8, 583–593 (2003).
    [CrossRef]
  27. R. Brinkmann, A. Knipper, G. Dröge, F. Schröer, B. Gromoll, and R. Birngruber, “Fundamental studies of fiber-guided soft tissue cutting by means of pulsed midinfrared lasers and their application in ureterotomy,” J. Biomed. Opt. 3, 85–95 (1998).
    [CrossRef]
  28. R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, “Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring,” IEEE J. Quantum Electron. 2, 826–835 (1996).
    [CrossRef]
  29. E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacretaz, and A. J. Welch, “Effect of pulse duration on bubble formation and laser-induced pressure waves during Holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
    [CrossRef]
  30. K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25, 22–37 (1999).
    [CrossRef]
  31. H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy,” Lasers Surg. Med. 38, 762–772 (2006).
    [CrossRef]
  32. K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7, 165–178 (2002).
    [CrossRef]
  33. M. Mrochen, P. Riedel, C. Donitzky, and T. Seiler, “Erbium:yttrium-aluminum-garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry,” J. Biomed. Opt. 6, 344–350 (2001).
    [CrossRef]
  34. M. Frenz, F. Konz, H. Pratisto, and H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:YAG aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
    [CrossRef]
  35. M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 µm and 2.79 µm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2035 (1996).
    [CrossRef]
  36. S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89, 2400–2403 (2001).
    [CrossRef]
  37. G. B. Altshuler, A. V. Belikov, and Y. A. Sinelnik, “A laser-abrasive method for the cutting of enamel and dentin,” Lasers Surg. Med. 28, 435–444 (2001).
    [CrossRef]
  38. M. Staninec, J. Xie, C. Q. Le, and D. Fried, “Influence of an optically thick water layer on the bond-strength of composite resin to dental enamel after IR laser ablation,” Lasers Surg. Med. 33, 264–269 (2003).
    [CrossRef]
  39. A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, M. Graessel, J. M. Dawes, R. M. Lowe, and P. Hannaford, “Precision ablation of dental enamel using a subpicosecond pulsed laser,” Aust. Dent. J. 48, 233–239 (2003).
    [CrossRef]
  40. Y. Kim, E. S. Choi, W. Kwak, Y. Shin, W. Jung, Y. Ahn, and Z. Chen, “Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography,” Opt. Laser Technol. 40, 625–631 (2008).
    [CrossRef]

2010

L. Tao, X. Qing, Q. X. Dan, R. Kai, and J. L. Zheng, “Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater,” J. Biomed. Opt. 15, 048002 (2010).
[CrossRef]

2009

M. Mir, N. Gutknecht, R. Poprawe, L. Vanweersch, and F. Lampert, “Visualising the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium-aluminium-garnet and erbium, chromium:yttrium-scandium-gallium-garnet laser pulses,” Lasers Med. Sci. 24, 365–374 (2009).
[CrossRef]

2008

Y. Kim, E. S. Choi, W. Kwak, Y. Shin, W. Jung, Y. Ahn, and Z. Chen, “Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography,” Opt. Laser Technol. 40, 625–631 (2008).
[CrossRef]

H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid-confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008).
[CrossRef]

H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53, 3381–3390 (2008).
[CrossRef]

2007

H. W. Kang, I. Rizoiu, and A. J. Welch, “Hard tissue ablation with a spray-assisted mid-IR laser,” Phys. Med. Biol. 52, 7243–7259 (2007).
[CrossRef]

2006

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38, 39–51 (2006).
[CrossRef]

H. W. Kang, H. Lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
[CrossRef]

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy,” Lasers Surg. Med. 38, 762–772 (2006).
[CrossRef]

A. Vogel, I. Apitz, S. Freidank, and R. Dijkink, “Sensitive high-resolution white-light Schlieren technique with a large dynamic range for the investigation of ablation dynamics,” Opt. Lett. 31, 1812–1814 (2006).
[CrossRef]

2005

2004

G. Daminelli, J. Krűger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004).
[CrossRef]

2003

V. Alfred and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[CrossRef]

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6–7 μm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8, 583–593 (2003).
[CrossRef]

M. Staninec, J. Xie, C. Q. Le, and D. Fried, “Influence of an optically thick water layer on the bond-strength of composite resin to dental enamel after IR laser ablation,” Lasers Surg. Med. 33, 264–269 (2003).
[CrossRef]

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, M. Graessel, J. M. Dawes, R. M. Lowe, and P. Hannaford, “Precision ablation of dental enamel using a subpicosecond pulsed laser,” Aust. Dent. J. 48, 233–239 (2003).
[CrossRef]

2002

K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7, 165–178 (2002).
[CrossRef]

D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186–193 (2002).
[CrossRef]

2001

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79, 1396–1398 (2001).
[CrossRef]

M. Mrochen, P. Riedel, C. Donitzky, and T. Seiler, “Erbium:yttrium-aluminum-garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry,” J. Biomed. Opt. 6, 344–350 (2001).
[CrossRef]

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89, 2400–2403 (2001).
[CrossRef]

G. B. Altshuler, A. V. Belikov, and Y. A. Sinelnik, “A laser-abrasive method for the cutting of enamel and dentin,” Lasers Surg. Med. 28, 435–444 (2001).
[CrossRef]

1999

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25, 22–37 (1999).
[CrossRef]

1998

J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced pressure waves in water,” Appl. Opt. 37, 4092–4099 (1998).
[CrossRef]

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B 66, 479–487 (1998).
[CrossRef]

M. Frenz, F. Konz, H. Pratisto, and H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:YAG aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
[CrossRef]

R. Brinkmann, A. Knipper, G. Dröge, F. Schröer, B. Gromoll, and R. Birngruber, “Fundamental studies of fiber-guided soft tissue cutting by means of pulsed midinfrared lasers and their application in ureterotomy,” J. Biomed. Opt. 3, 85–95 (1998).
[CrossRef]

O. Fohn, H. S. Pratisto, F. Konz, M. Ith, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side-firing fiber device for underwater tissue ablation with Ho:YAG and Er:YAG laser radiation,” J. Biomed. Opt. 3, 112–122 (1998).
[CrossRef]

1996

M. Ith, H. Pratisto, H. U. Staubli, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side effects of laser therapy on cartilage,” Sports Exerc. Inj. 2, 207–209 (1996).

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, “Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring,” IEEE J. Quantum Electron. 2, 826–835 (1996).
[CrossRef]

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacretaz, and A. J. Welch, “Effect of pulse duration on bubble formation and laser-induced pressure waves during Holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 µm and 2.79 µm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2035 (1996).
[CrossRef]

I. Turovets, D. Palanker, Y. Kokotov, I. Hemo, and A. Lewis, “Dynamics of cavitation bubble induced by 193 nm ArF excimer laser in concentrated sodium chloride solutions,” J. Appl. Phys. 79, 2689–2693 (1996).
[CrossRef]

1994

T. Asshauer, K. Rink, and G. Delacretaz, “Acoustic transient generation by holmium-laser-induced cavitation bubbles,” Jpn. J. Appl. Phys. 76, 5007–5013 (1994).
[CrossRef]

D. Albagli, M. Dark, L. T. Perelman, G. von Rosenberg, I. Itzkan, and M. S. Feld, “Photomechanical basis of laser ablation of biological tissue,” Opt. Lett. 19, 1684–1686 (1994).
[CrossRef]

1993

P. E. Dyer, M. E. Khosroshahi, and S. J. Tuft, “Studies of laser-induced cavitation and tissue ablation in saline using a fibre-delivered pulsed HF laser,” Appl. Phys. B 56, 84–93 (1993).
[CrossRef]

1992

G. S. Fanton and M. F. Dillingham, “The use of the holmium:YAG-laser in arthroscopic surgery,” Sem. Orthop. 7, 102–116 (1992).

1991

A. D. Zweig, “A thermo-mechanical model for laser ablation,” J. Appl. Phys. 70, 1684–1691 (1991).
[CrossRef]

1989

M. Frenz, V. Romano, A. D. Zweig, and H. P. Weber, “Instabilities in laser cutting of soft tissue,” J. Appl. Phys. 66, 4496–4503 (1989).
[CrossRef]

1988

F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2201 (1988).
[CrossRef]

Aggarwal, I.

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6–7 μm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8, 583–593 (2003).
[CrossRef]

Ahn, Y.

Y. Kim, E. S. Choi, W. Kwak, Y. Shin, W. Jung, Y. Ahn, and Z. Chen, “Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography,” Opt. Laser Technol. 40, 625–631 (2008).
[CrossRef]

Albagli, D.

Al-Dhahir, R. K.

F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2201 (1988).
[CrossRef]

Alfred, V.

V. Alfred and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[CrossRef]

Altermatt, H. J.

O. Fohn, H. S. Pratisto, F. Konz, M. Ith, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side-firing fiber device for underwater tissue ablation with Ho:YAG and Er:YAG laser radiation,” J. Biomed. Opt. 3, 112–122 (1998).
[CrossRef]

M. Ith, H. Pratisto, H. U. Staubli, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side effects of laser therapy on cartilage,” Sports Exerc. Inj. 2, 207–209 (1996).

Altshuler, G. B.

G. B. Altshuler, A. V. Belikov, and Y. A. Sinelnik, “A laser-abrasive method for the cutting of enamel and dentin,” Lasers Surg. Med. 28, 435–444 (2001).
[CrossRef]

Apitz, I.

Ashouri, N.

D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186–193 (2002).
[CrossRef]

Asshauer, T.

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacretaz, and A. J. Welch, “Effect of pulse duration on bubble formation and laser-induced pressure waves during Holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

T. Asshauer, K. Rink, and G. Delacretaz, “Acoustic transient generation by holmium-laser-induced cavitation bubbles,” Jpn. J. Appl. Phys. 76, 5007–5013 (1994).
[CrossRef]

Belikov, A. V.

G. B. Altshuler, A. V. Belikov, and Y. A. Sinelnik, “A laser-abrasive method for the cutting of enamel and dentin,” Lasers Surg. Med. 28, 435–444 (2001).
[CrossRef]

Birngruber, R.

R. Brinkmann, A. Knipper, G. Dröge, F. Schröer, B. Gromoll, and R. Birngruber, “Fundamental studies of fiber-guided soft tissue cutting by means of pulsed midinfrared lasers and their application in ureterotomy,” J. Biomed. Opt. 3, 85–95 (1998).
[CrossRef]

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, “Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring,” IEEE J. Quantum Electron. 2, 826–835 (1996).
[CrossRef]

Breunig, T.

D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186–193 (2002).
[CrossRef]

Brinkmann, R.

R. Brinkmann, A. Knipper, G. Dröge, F. Schröer, B. Gromoll, and R. Birngruber, “Fundamental studies of fiber-guided soft tissue cutting by means of pulsed midinfrared lasers and their application in ureterotomy,” J. Biomed. Opt. 3, 85–95 (1998).
[CrossRef]

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, “Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring,” IEEE J. Quantum Electron. 2, 826–835 (1996).
[CrossRef]

Chan, K. F.

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25, 22–37 (1999).
[CrossRef]

Chen, S.

H. W. Kang, H. Lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
[CrossRef]

Chen, X. Y.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89, 2400–2403 (2001).
[CrossRef]

Chen, Z.

Y. Kim, E. S. Choi, W. Kwak, Y. Shin, W. Jung, Y. Ahn, and Z. Chen, “Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography,” Opt. Laser Technol. 40, 625–631 (2008).
[CrossRef]

Choi, E. S.

Y. Kim, E. S. Choi, W. Kwak, Y. Shin, W. Jung, Y. Ahn, and Z. Chen, “Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography,” Opt. Laser Technol. 40, 625–631 (2008).
[CrossRef]

Cross, F. W.

F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2201 (1988).
[CrossRef]

Daminelli, G.

G. Daminelli, J. Krűger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004).
[CrossRef]

Dan, Q. X.

L. Tao, X. Qing, Q. X. Dan, R. Kai, and J. L. Zheng, “Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater,” J. Biomed. Opt. 15, 048002 (2010).
[CrossRef]

Dark, M.

Dawes, J. M.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, M. Graessel, J. M. Dawes, R. M. Lowe, and P. Hannaford, “Precision ablation of dental enamel using a subpicosecond pulsed laser,” Aust. Dent. J. 48, 233–239 (2003).
[CrossRef]

Delacretaz, G.

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacretaz, and A. J. Welch, “Effect of pulse duration on bubble formation and laser-induced pressure waves during Holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

T. Asshauer, K. Rink, and G. Delacretaz, “Acoustic transient generation by holmium-laser-induced cavitation bubbles,” Jpn. J. Appl. Phys. 76, 5007–5013 (1994).
[CrossRef]

Dijkink, R.

Dillingham, M. F.

G. S. Fanton and M. F. Dillingham, “The use of the holmium:YAG-laser in arthroscopic surgery,” Sem. Orthop. 7, 102–116 (1992).

Donitzky, C.

M. Mrochen, P. Riedel, C. Donitzky, and T. Seiler, “Erbium:yttrium-aluminum-garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry,” J. Biomed. Opt. 6, 344–350 (2001).
[CrossRef]

Dröge, G.

R. Brinkmann, A. Knipper, G. Dröge, F. Schröer, B. Gromoll, and R. Birngruber, “Fundamental studies of fiber-guided soft tissue cutting by means of pulsed midinfrared lasers and their application in ureterotomy,” J. Biomed. Opt. 3, 85–95 (1998).
[CrossRef]

Dyer, P. E.

P. E. Dyer, M. E. Khosroshahi, and S. J. Tuft, “Studies of laser-induced cavitation and tissue ablation in saline using a fibre-delivered pulsed HF laser,” Appl. Phys. B 56, 84–93 (1993).
[CrossRef]

F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2201 (1988).
[CrossRef]

Fanton, G. S.

G. S. Fanton and M. F. Dillingham, “The use of the holmium:YAG-laser in arthroscopic surgery,” Sem. Orthop. 7, 102–116 (1992).

Feld, M. S.

Fohn, O.

O. Fohn, H. S. Pratisto, F. Konz, M. Ith, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side-firing fiber device for underwater tissue ablation with Ho:YAG and Er:YAG laser radiation,” J. Biomed. Opt. 3, 112–122 (1998).
[CrossRef]

Freidank, S.

Frenz, M.

O. Fohn, H. S. Pratisto, F. Konz, M. Ith, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side-firing fiber device for underwater tissue ablation with Ho:YAG and Er:YAG laser radiation,” J. Biomed. Opt. 3, 112–122 (1998).
[CrossRef]

M. Frenz, F. Konz, H. Pratisto, and H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:YAG aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
[CrossRef]

M. Ith, H. Pratisto, H. U. Staubli, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side effects of laser therapy on cartilage,” Sports Exerc. Inj. 2, 207–209 (1996).

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacretaz, and A. J. Welch, “Effect of pulse duration on bubble formation and laser-induced pressure waves during Holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 µm and 2.79 µm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2035 (1996).
[CrossRef]

M. Frenz, V. Romano, A. D. Zweig, and H. P. Weber, “Instabilities in laser cutting of soft tissue,” J. Appl. Phys. 66, 4496–4503 (1989).
[CrossRef]

Fried, D.

M. Staninec, J. Xie, C. Q. Le, and D. Fried, “Influence of an optically thick water layer on the bond-strength of composite resin to dental enamel after IR laser ablation,” Lasers Surg. Med. 33, 264–269 (2003).
[CrossRef]

D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186–193 (2002).
[CrossRef]

Funduk, N.

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B 66, 479–487 (1998).
[CrossRef]

Gamaly, E. G.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, M. Graessel, J. M. Dawes, R. M. Lowe, and P. Hannaford, “Precision ablation of dental enamel using a subpicosecond pulsed laser,” Aust. Dent. J. 48, 233–239 (2003).
[CrossRef]

Glickman, R. D.

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25, 22–37 (1999).
[CrossRef]

Graessel, M.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, M. Graessel, J. M. Dawes, R. M. Lowe, and P. Hannaford, “Precision ablation of dental enamel using a subpicosecond pulsed laser,” Aust. Dent. J. 48, 233–239 (2003).
[CrossRef]

Gromoll, B.

R. Brinkmann, A. Knipper, G. Dröge, F. Schröer, B. Gromoll, and R. Birngruber, “Fundamental studies of fiber-guided soft tissue cutting by means of pulsed midinfrared lasers and their application in ureterotomy,” J. Biomed. Opt. 3, 85–95 (1998).
[CrossRef]

Gutknecht, N.

M. Mir, N. Gutknecht, R. Poprawe, L. Vanweersch, and F. Lampert, “Visualising the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium-aluminium-garnet and erbium, chromium:yttrium-scandium-gallium-garnet laser pulses,” Lasers Med. Sci. 24, 365–374 (2009).
[CrossRef]

Hannaford, P.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, M. Graessel, J. M. Dawes, R. M. Lowe, and P. Hannaford, “Precision ablation of dental enamel using a subpicosecond pulsed laser,” Aust. Dent. J. 48, 233–239 (2003).
[CrossRef]

Hansen, C.

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, “Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring,” IEEE J. Quantum Electron. 2, 826–835 (1996).
[CrossRef]

Hemo, I.

I. Turovets, D. Palanker, Y. Kokotov, I. Hemo, and A. Lewis, “Dynamics of cavitation bubble induced by 193 nm ArF excimer laser in concentrated sodium chloride solutions,” J. Appl. Phys. 79, 2689–2693 (1996).
[CrossRef]

Hesselink, L.

Hong, M. H.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89, 2400–2403 (2001).
[CrossRef]

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79, 1396–1398 (2001).
[CrossRef]

Ith, M.

O. Fohn, H. S. Pratisto, F. Konz, M. Ith, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side-firing fiber device for underwater tissue ablation with Ho:YAG and Er:YAG laser radiation,” J. Biomed. Opt. 3, 112–122 (1998).
[CrossRef]

M. Ith, H. Pratisto, H. U. Staubli, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side effects of laser therapy on cartilage,” Sports Exerc. Inj. 2, 207–209 (1996).

Itzkan, I.

Jansen, E. D.

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6–7 μm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8, 583–593 (2003).
[CrossRef]

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 µm and 2.79 µm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2035 (1996).
[CrossRef]

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacretaz, and A. J. Welch, “Effect of pulse duration on bubble formation and laser-induced pressure waves during Holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

Jung, W.

Y. Kim, E. S. Choi, W. Kwak, Y. Shin, W. Jung, Y. Ahn, and Z. Chen, “Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography,” Opt. Laser Technol. 40, 625–631 (2008).
[CrossRef]

Kai, R.

L. Tao, X. Qing, Q. X. Dan, R. Kai, and J. L. Zheng, “Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater,” J. Biomed. Opt. 15, 048002 (2010).
[CrossRef]

Kang, H. W.

H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53, 3381–3390 (2008).
[CrossRef]

H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid-confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008).
[CrossRef]

H. W. Kang, I. Rizoiu, and A. J. Welch, “Hard tissue ablation with a spray-assisted mid-IR laser,” Phys. Med. Biol. 52, 7243–7259 (2007).
[CrossRef]

H. W. Kang, H. Lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
[CrossRef]

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38, 39–51 (2006).
[CrossRef]

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy,” Lasers Surg. Med. 38, 762–772 (2006).
[CrossRef]

Katzir, A.

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6–7 μm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8, 583–593 (2003).
[CrossRef]

Kautek, W.

G. Daminelli, J. Krűger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004).
[CrossRef]

Kelly, M.

Khosroshahi, M. E.

P. E. Dyer, M. E. Khosroshahi, and S. J. Tuft, “Studies of laser-induced cavitation and tissue ablation in saline using a fibre-delivered pulsed HF laser,” Appl. Phys. B 56, 84–93 (1993).
[CrossRef]

Kim, J.

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy,” Lasers Surg. Med. 38, 762–772 (2006).
[CrossRef]

Kim, Y.

Y. Kim, E. S. Choi, W. Kwak, Y. Shin, W. Jung, Y. Ahn, and Z. Chen, “Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography,” Opt. Laser Technol. 40, 625–631 (2008).
[CrossRef]

Knipper, A.

R. Brinkmann, A. Knipper, G. Dröge, F. Schröer, B. Gromoll, and R. Birngruber, “Fundamental studies of fiber-guided soft tissue cutting by means of pulsed midinfrared lasers and their application in ureterotomy,” J. Biomed. Opt. 3, 85–95 (1998).
[CrossRef]

Kokotov, Y.

I. Turovets, D. Palanker, Y. Kokotov, I. Hemo, and A. Lewis, “Dynamics of cavitation bubble induced by 193 nm ArF excimer laser in concentrated sodium chloride solutions,” J. Appl. Phys. 79, 2689–2693 (1996).
[CrossRef]

Konz, F.

O. Fohn, H. S. Pratisto, F. Konz, M. Ith, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side-firing fiber device for underwater tissue ablation with Ho:YAG and Er:YAG laser radiation,” J. Biomed. Opt. 3, 112–122 (1998).
[CrossRef]

M. Frenz, F. Konz, H. Pratisto, and H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:YAG aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
[CrossRef]

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 µm and 2.79 µm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2035 (1996).
[CrossRef]

Kruger, J.

G. Daminelli, J. Krűger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004).
[CrossRef]

Kwak, W.

Y. Kim, E. S. Choi, W. Kwak, Y. Shin, W. Jung, Y. Ahn, and Z. Chen, “Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography,” Opt. Laser Technol. 40, 625–631 (2008).
[CrossRef]

Lampert, F.

M. Mir, N. Gutknecht, R. Poprawe, L. Vanweersch, and F. Lampert, “Visualising the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium-aluminium-garnet and erbium, chromium:yttrium-scandium-gallium-garnet laser pulses,” Lasers Med. Sci. 24, 365–374 (2009).
[CrossRef]

Le, C. Q.

M. Staninec, J. Xie, C. Q. Le, and D. Fried, “Influence of an optically thick water layer on the bond-strength of composite resin to dental enamel after IR laser ablation,” Lasers Surg. Med. 33, 264–269 (2003).
[CrossRef]

Lee, H.

H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid-confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008).
[CrossRef]

H. W. Kang, H. Lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
[CrossRef]

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38, 39–51 (2006).
[CrossRef]

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy,” Lasers Surg. Med. 38, 762–772 (2006).
[CrossRef]

Lewis, A.

I. Turovets, D. Palanker, Y. Kokotov, I. Hemo, and A. Lewis, “Dynamics of cavitation bubble induced by 193 nm ArF excimer laser in concentrated sodium chloride solutions,” J. Appl. Phys. 79, 2689–2693 (1996).
[CrossRef]

Lowe, R. M.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, M. Graessel, J. M. Dawes, R. M. Lowe, and P. Hannaford, “Precision ablation of dental enamel using a subpicosecond pulsed laser,” Aust. Dent. J. 48, 233–239 (2003).
[CrossRef]

Lu, Y. F.

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79, 1396–1398 (2001).
[CrossRef]

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89, 2400–2403 (2001).
[CrossRef]

Lukac, M.

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B 66, 479–487 (1998).
[CrossRef]

Luther-Davies, B.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, M. Graessel, J. M. Dawes, R. M. Lowe, and P. Hannaford, “Precision ablation of dental enamel using a subpicosecond pulsed laser,” Aust. Dent. J. 48, 233–239 (2003).
[CrossRef]

Mackanos, M. A.

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6–7 μm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8, 583–593 (2003).
[CrossRef]

Majaron, B.

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B 66, 479–487 (1998).
[CrossRef]

Mir, M.

M. Mir, N. Gutknecht, R. Poprawe, L. Vanweersch, and F. Lampert, “Visualising the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium-aluminium-garnet and erbium, chromium:yttrium-scandium-gallium-garnet laser pulses,” Lasers Med. Sci. 24, 365–374 (2009).
[CrossRef]

Mohrenstecher, D.

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, “Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring,” IEEE J. Quantum Electron. 2, 826–835 (1996).
[CrossRef]

Motamedi, M.

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacretaz, and A. J. Welch, “Effect of pulse duration on bubble formation and laser-induced pressure waves during Holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

Mrochen, M.

M. Mrochen, P. Riedel, C. Donitzky, and T. Seiler, “Erbium:yttrium-aluminum-garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry,” J. Biomed. Opt. 6, 344–350 (2001).
[CrossRef]

Nahen, K.

K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7, 165–178 (2002).
[CrossRef]

Noack, J.

Oh, J.

H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53, 3381–3390 (2008).
[CrossRef]

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy,” Lasers Surg. Med. 38, 762–772 (2006).
[CrossRef]

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38, 39–51 (2006).
[CrossRef]

Palanker, D.

I. Turovets, D. Palanker, Y. Kokotov, I. Hemo, and A. Lewis, “Dynamics of cavitation bubble induced by 193 nm ArF excimer laser in concentrated sodium chloride solutions,” J. Appl. Phys. 79, 2689–2693 (1996).
[CrossRef]

Perelman, L. T.

Pfefer, T. J.

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25, 22–37 (1999).
[CrossRef]

Poprawe, R.

M. Mir, N. Gutknecht, R. Poprawe, L. Vanweersch, and F. Lampert, “Visualising the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium-aluminium-garnet and erbium, chromium:yttrium-scandium-gallium-garnet laser pulses,” Lasers Med. Sci. 24, 365–374 (2009).
[CrossRef]

Pratisto, H.

M. Frenz, F. Konz, H. Pratisto, and H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:YAG aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
[CrossRef]

M. Ith, H. Pratisto, H. U. Staubli, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side effects of laser therapy on cartilage,” Sports Exerc. Inj. 2, 207–209 (1996).

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 µm and 2.79 µm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2035 (1996).
[CrossRef]

Pratisto, H. S.

O. Fohn, H. S. Pratisto, F. Konz, M. Ith, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side-firing fiber device for underwater tissue ablation with Ho:YAG and Er:YAG laser radiation,” J. Biomed. Opt. 3, 112–122 (1998).
[CrossRef]

Qing, X.

L. Tao, X. Qing, Q. X. Dan, R. Kai, and J. L. Zheng, “Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater,” J. Biomed. Opt. 15, 048002 (2010).
[CrossRef]

Ren, J.

Riedel, P.

M. Mrochen, P. Riedel, C. Donitzky, and T. Seiler, “Erbium:yttrium-aluminum-garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry,” J. Biomed. Opt. 6, 344–350 (2001).
[CrossRef]

Rink, K.

T. Asshauer, K. Rink, and G. Delacretaz, “Acoustic transient generation by holmium-laser-induced cavitation bubbles,” Jpn. J. Appl. Phys. 76, 5007–5013 (1994).
[CrossRef]

Rizoiu, I.

H. W. Kang, I. Rizoiu, and A. J. Welch, “Hard tissue ablation with a spray-assisted mid-IR laser,” Phys. Med. Biol. 52, 7243–7259 (2007).
[CrossRef]

Rode, A. V.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, M. Graessel, J. M. Dawes, R. M. Lowe, and P. Hannaford, “Precision ablation of dental enamel using a subpicosecond pulsed laser,” Aust. Dent. J. 48, 233–239 (2003).
[CrossRef]

Romano, V.

M. Frenz, V. Romano, A. D. Zweig, and H. P. Weber, “Instabilities in laser cutting of soft tissue,” J. Appl. Phys. 66, 4496–4503 (1989).
[CrossRef]

Sanghera, J. S.

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6–7 μm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8, 583–593 (2003).
[CrossRef]

Scheu, M.

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, “Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring,” IEEE J. Quantum Electron. 2, 826–835 (1996).
[CrossRef]

Schröer, F.

R. Brinkmann, A. Knipper, G. Dröge, F. Schröer, B. Gromoll, and R. Birngruber, “Fundamental studies of fiber-guided soft tissue cutting by means of pulsed midinfrared lasers and their application in ureterotomy,” J. Biomed. Opt. 3, 85–95 (1998).
[CrossRef]

Seiler, T.

M. Mrochen, P. Riedel, C. Donitzky, and T. Seiler, “Erbium:yttrium-aluminum-garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry,” J. Biomed. Opt. 6, 344–350 (2001).
[CrossRef]

Shaw, B. L.

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6–7 μm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8, 583–593 (2003).
[CrossRef]

Shin, Y.

Y. Kim, E. S. Choi, W. Kwak, Y. Shin, W. Jung, Y. Ahn, and Z. Chen, “Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography,” Opt. Laser Technol. 40, 625–631 (2008).
[CrossRef]

Shori, R.

D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186–193 (2002).
[CrossRef]

Sinelnik, Y. A.

G. B. Altshuler, A. V. Belikov, and Y. A. Sinelnik, “A laser-abrasive method for the cutting of enamel and dentin,” Lasers Surg. Med. 28, 435–444 (2001).
[CrossRef]

Skaleric, U.

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B 66, 479–487 (1998).
[CrossRef]

Staninec, M.

M. Staninec, J. Xie, C. Q. Le, and D. Fried, “Influence of an optically thick water layer on the bond-strength of composite resin to dental enamel after IR laser ablation,” Lasers Surg. Med. 33, 264–269 (2003).
[CrossRef]

Staubli, H. U.

M. Ith, H. Pratisto, H. U. Staubli, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side effects of laser therapy on cartilage,” Sports Exerc. Inj. 2, 207–209 (1996).

Šuštercic, D.

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B 66, 479–487 (1998).
[CrossRef]

Tao, L.

L. Tao, X. Qing, Q. X. Dan, R. Kai, and J. L. Zheng, “Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater,” J. Biomed. Opt. 15, 048002 (2010).
[CrossRef]

Taylor, B. T.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, M. Graessel, J. M. Dawes, R. M. Lowe, and P. Hannaford, “Precision ablation of dental enamel using a subpicosecond pulsed laser,” Aust. Dent. J. 48, 233–239 (2003).
[CrossRef]

Teichman, J. M. H.

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy,” Lasers Surg. Med. 38, 762–772 (2006).
[CrossRef]

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38, 39–51 (2006).
[CrossRef]

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25, 22–37 (1999).
[CrossRef]

Tuft, S. J.

P. E. Dyer, M. E. Khosroshahi, and S. J. Tuft, “Studies of laser-induced cavitation and tissue ablation in saline using a fibre-delivered pulsed HF laser,” Appl. Phys. B 56, 84–93 (1993).
[CrossRef]

Turovets, I.

I. Turovets, D. Palanker, Y. Kokotov, I. Hemo, and A. Lewis, “Dynamics of cavitation bubble induced by 193 nm ArF excimer laser in concentrated sodium chloride solutions,” J. Appl. Phys. 79, 2689–2693 (1996).
[CrossRef]

Vanweersch, L.

M. Mir, N. Gutknecht, R. Poprawe, L. Vanweersch, and F. Lampert, “Visualising the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium-aluminium-garnet and erbium, chromium:yttrium-scandium-gallium-garnet laser pulses,” Lasers Med. Sci. 24, 365–374 (2009).
[CrossRef]

Vassar, G. J.

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25, 22–37 (1999).
[CrossRef]

Venugopalan, V.

V. Alfred and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[CrossRef]

Vogel, A.

von Rosenberg, G.

Weber, H. P.

M. Frenz, F. Konz, H. Pratisto, and H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:YAG aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
[CrossRef]

O. Fohn, H. S. Pratisto, F. Konz, M. Ith, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side-firing fiber device for underwater tissue ablation with Ho:YAG and Er:YAG laser radiation,” J. Biomed. Opt. 3, 112–122 (1998).
[CrossRef]

M. Ith, H. Pratisto, H. U. Staubli, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side effects of laser therapy on cartilage,” Sports Exerc. Inj. 2, 207–209 (1996).

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 µm and 2.79 µm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2035 (1996).
[CrossRef]

M. Frenz, V. Romano, A. D. Zweig, and H. P. Weber, “Instabilities in laser cutting of soft tissue,” J. Appl. Phys. 66, 4496–4503 (1989).
[CrossRef]

Weintraub, S. T.

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25, 22–37 (1999).
[CrossRef]

Welch, A. J.

H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid-confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008).
[CrossRef]

H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53, 3381–3390 (2008).
[CrossRef]

H. W. Kang, I. Rizoiu, and A. J. Welch, “Hard tissue ablation with a spray-assisted mid-IR laser,” Phys. Med. Biol. 52, 7243–7259 (2007).
[CrossRef]

H. W. Kang, H. Lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
[CrossRef]

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38, 39–51 (2006).
[CrossRef]

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy,” Lasers Surg. Med. 38, 762–772 (2006).
[CrossRef]

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25, 22–37 (1999).
[CrossRef]

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacretaz, and A. J. Welch, “Effect of pulse duration on bubble formation and laser-induced pressure waves during Holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 µm and 2.79 µm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2035 (1996).
[CrossRef]

Xie, J.

M. Staninec, J. Xie, C. Q. Le, and D. Fried, “Influence of an optically thick water layer on the bond-strength of composite resin to dental enamel after IR laser ablation,” Lasers Surg. Med. 33, 264–269 (2003).
[CrossRef]

Zheng, J. L.

L. Tao, X. Qing, Q. X. Dan, R. Kai, and J. L. Zheng, “Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater,” J. Biomed. Opt. 15, 048002 (2010).
[CrossRef]

Zhu, S.

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79, 1396–1398 (2001).
[CrossRef]

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89, 2400–2403 (2001).
[CrossRef]

Zweig, A. D.

A. D. Zweig, “A thermo-mechanical model for laser ablation,” J. Appl. Phys. 70, 1684–1691 (1991).
[CrossRef]

M. Frenz, V. Romano, A. D. Zweig, and H. P. Weber, “Instabilities in laser cutting of soft tissue,” J. Appl. Phys. 66, 4496–4503 (1989).
[CrossRef]

Appl. Opt.

Appl. Phys. B

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B 66, 479–487 (1998).
[CrossRef]

P. E. Dyer, M. E. Khosroshahi, and S. J. Tuft, “Studies of laser-induced cavitation and tissue ablation in saline using a fibre-delivered pulsed HF laser,” Appl. Phys. B 56, 84–93 (1993).
[CrossRef]

Appl. Phys. Lett.

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79, 1396–1398 (2001).
[CrossRef]

Aust. Dent. J.

A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, M. Graessel, J. M. Dawes, R. M. Lowe, and P. Hannaford, “Precision ablation of dental enamel using a subpicosecond pulsed laser,” Aust. Dent. J. 48, 233–239 (2003).
[CrossRef]

Chem. Rev.

V. Alfred and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[CrossRef]

IEEE J. Quantum Electron.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 µm and 2.79 µm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2035 (1996).
[CrossRef]

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, “Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring,” IEEE J. Quantum Electron. 2, 826–835 (1996).
[CrossRef]

H. W. Kang, H. Lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006).
[CrossRef]

J. Appl. Phys.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89, 2400–2403 (2001).
[CrossRef]

M. Frenz, F. Konz, H. Pratisto, and H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:YAG aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
[CrossRef]

F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2201 (1988).
[CrossRef]

H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid-confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008).
[CrossRef]

I. Turovets, D. Palanker, Y. Kokotov, I. Hemo, and A. Lewis, “Dynamics of cavitation bubble induced by 193 nm ArF excimer laser in concentrated sodium chloride solutions,” J. Appl. Phys. 79, 2689–2693 (1996).
[CrossRef]

A. D. Zweig, “A thermo-mechanical model for laser ablation,” J. Appl. Phys. 70, 1684–1691 (1991).
[CrossRef]

M. Frenz, V. Romano, A. D. Zweig, and H. P. Weber, “Instabilities in laser cutting of soft tissue,” J. Appl. Phys. 66, 4496–4503 (1989).
[CrossRef]

J. Biomed. Opt.

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6–7 μm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8, 583–593 (2003).
[CrossRef]

R. Brinkmann, A. Knipper, G. Dröge, F. Schröer, B. Gromoll, and R. Birngruber, “Fundamental studies of fiber-guided soft tissue cutting by means of pulsed midinfrared lasers and their application in ureterotomy,” J. Biomed. Opt. 3, 85–95 (1998).
[CrossRef]

O. Fohn, H. S. Pratisto, F. Konz, M. Ith, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side-firing fiber device for underwater tissue ablation with Ho:YAG and Er:YAG laser radiation,” J. Biomed. Opt. 3, 112–122 (1998).
[CrossRef]

L. Tao, X. Qing, Q. X. Dan, R. Kai, and J. L. Zheng, “Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater,” J. Biomed. Opt. 15, 048002 (2010).
[CrossRef]

K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7, 165–178 (2002).
[CrossRef]

M. Mrochen, P. Riedel, C. Donitzky, and T. Seiler, “Erbium:yttrium-aluminum-garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry,” J. Biomed. Opt. 6, 344–350 (2001).
[CrossRef]

Jpn. J. Appl. Phys.

T. Asshauer, K. Rink, and G. Delacretaz, “Acoustic transient generation by holmium-laser-induced cavitation bubbles,” Jpn. J. Appl. Phys. 76, 5007–5013 (1994).
[CrossRef]

Lasers Med. Sci.

M. Mir, N. Gutknecht, R. Poprawe, L. Vanweersch, and F. Lampert, “Visualising the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium-aluminium-garnet and erbium, chromium:yttrium-scandium-gallium-garnet laser pulses,” Lasers Med. Sci. 24, 365–374 (2009).
[CrossRef]

Lasers Surg. Med.

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacretaz, and A. J. Welch, “Effect of pulse duration on bubble formation and laser-induced pressure waves during Holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25, 22–37 (1999).
[CrossRef]

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy,” Lasers Surg. Med. 38, 762–772 (2006).
[CrossRef]

G. B. Altshuler, A. V. Belikov, and Y. A. Sinelnik, “A laser-abrasive method for the cutting of enamel and dentin,” Lasers Surg. Med. 28, 435–444 (2001).
[CrossRef]

M. Staninec, J. Xie, C. Q. Le, and D. Fried, “Influence of an optically thick water layer on the bond-strength of composite resin to dental enamel after IR laser ablation,” Lasers Surg. Med. 33, 264–269 (2003).
[CrossRef]

H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38, 39–51 (2006).
[CrossRef]

D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186–193 (2002).
[CrossRef]

Opt. Laser Technol.

Y. Kim, E. S. Choi, W. Kwak, Y. Shin, W. Jung, Y. Ahn, and Z. Chen, “Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography,” Opt. Laser Technol. 40, 625–631 (2008).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

H. W. Kang, I. Rizoiu, and A. J. Welch, “Hard tissue ablation with a spray-assisted mid-IR laser,” Phys. Med. Biol. 52, 7243–7259 (2007).
[CrossRef]

H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53, 3381–3390 (2008).
[CrossRef]

Sem. Orthop.

G. S. Fanton and M. F. Dillingham, “The use of the holmium:YAG-laser in arthroscopic surgery,” Sem. Orthop. 7, 102–116 (1992).

Sports Exerc. Inj.

M. Ith, H. Pratisto, H. U. Staubli, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side effects of laser therapy on cartilage,” Sports Exerc. Inj. 2, 207–209 (1996).

Thin Solid Films

G. Daminelli, J. Krűger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup.

Fig. 2.
Fig. 2.

Schematic diagram of the full-field OCM system.

Fig. 3.
Fig. 3.

Sequent images of VB formation at the fiber tips with different cord diameters and different radiant intensities induced by holmium laser pulses (300/450μs [FWHM]): (a) 800 µm, 220 mJ; (b) 600 µm, 300 mJ; (c) 400 µm, 240 mJ; (d) 200 µm, 22 mJ. Times given are relative to the start of the laser pulse. A needle hydrophone is beside the 600 µm fiber in (b) and (c). Note that only for (a), the values are a laser pulse repletion rate of 5 Hz, a pulse duration of 450 µs, and a framing rate of 250,000 per second. For the others, they are 1 Hz, 300 µs, and 500,000 frames per second, respectively.

Fig. 4.
Fig. 4.

Oscilloscope traces of the pressure transients induced by a single holmium laser pulse (Ep=300mJ, 300 µs [FWHM]) at the submerged distal fiber tip (600 μm diameter). The slight amplitude of pressure (blue arrow) indicates the starting expansion of the generated bubble. The four pronounced pressure spikes after the end of a single holmium pulse are induced by the collapse of bubble (1) and their rebounds (2, 3, and 4). Insets I–IV indicate the magnified pictures from the first to the fourth pressure transients. The FWHMs of the positive pressure pulse are signed.

Fig. 5.
Fig. 5.

Sequent images of ablation plumes with different cord diameter fibers and pulse energies. (a) 600 μm, 300 mJ; (b) 400 μm, 240 mJ; (c) 200 μm, 22 mJ. Urinary calculi as hard tissues are ablated underwater. Times given are relative to start of laser pulses.

Fig. 6.
Fig. 6.

Dynamic characteristics of ablation of gall stones induced by five consecutive holmium laser pulses (5 Hz, 450 µs [FWHM], Ep=220mJ) transmitting in 800 μm core diameter fiber. (a)–(e) Irradiation results of No. 1–No. 5 holmium laser pulses.

Fig. 7.
Fig. 7.

Cross-sectional topography of holmium laser-induced (300 μs, 300 mJ, 1 Hz) craters acquired with OCM system in air and in water. The 600 μm fiber is vertically in contact with the urinary calculi surface. w=width; h=height.

Fig. 8.
Fig. 8.

Cross-sectional topography of fiber-guided holmium laser (450 μs, 252 mJ, 5 Hz) pulses; induced craters acquired with OCM system under water height of 1 mm and 10 mm. The 800 μm fiber is vertically in contact with porcine rib surfaces. w=width; h=height.

Metrics