Abstract

For research on inhomogeneous cells, we present a simulation method called the dual-medium quantitative (DMQ) measurement simulation method, which is realized by combining phase-shifting digital holography with DMQ analysis. The reliability of this method is confirmed by comparing the simulated phase map with the experimental one by the Hilbert phase microscope [J. Phys. Chem. A 113, 13327 (2009)], and its ability for studying inhomogeneous cells is demonstrated with measurements of a simulated HeLa cell. The average deviation and the relative deviation of physical thickness and axially averaged refractive index are 0.0339μm, 0.69% and 0.0013, 0.094%, respectively. This approach can provide good guidance for experimental research on inhomogeneous cells.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Dunn, D. Zicha, and P. E. Fraylich, “Rapid, microtubule-dependent fluctuations of the cell margin,” J. Cell. Sci. 110, 3091–3098 (1997).
  2. D. Zicha, E. Genot, G. A. Dunn, and I. M. Kramer, “TGFbeta1 induces a cell-cycle-dependent increase in motility of epithelial cells,” J. Cell. Sci. 112, 447–454 (1999).
    [PubMed]
  3. G. A. Dunn and D. Zicha, “Dynamics of fibroblast spreading,” J. Cell. Sci. 108, 1239–1249 (1995).
    [PubMed]
  4. C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch. Eur. J. Physiol. 448, 462–468 (2004).
    [CrossRef]
  5. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
    [CrossRef]
  6. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [CrossRef] [PubMed]
  7. K. J. Chalut, W. J. Brown, and A. Wax, “Quantitative phase microscopy with asynchronous digital holography,” Opt. Express 15, 3047–3052 (2007).
    [CrossRef] [PubMed]
  8. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
    [CrossRef] [PubMed]
  9. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).
    [CrossRef] [PubMed]
  10. I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochem. Bioenerg. 73, 92–96 (2008).
    [CrossRef]
  11. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9, 294–302 (2001).
    [CrossRef] [PubMed]
  12. F. Palacios, D. Palacios, G. Palacios, E. Goncalves, J. L. Valin, L. Sajo-Bohus, and J. Ricardo, “Methods of Fourier optics in digital holographic microscopy,” Opt. Commun. 281, 550–558(2008).
    [CrossRef]
  13. N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327–13330 (2009).
    [CrossRef] [PubMed]
  14. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45, 2995–3002 (2006).
    [CrossRef] [PubMed]
  15. J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [CrossRef] [PubMed]
  16. I. Yamaguchi, “Phase-shifting digital holography,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Academic, 2006), pp. 145–171.
    [CrossRef]

2009 (2)

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).
[CrossRef] [PubMed]

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327–13330 (2009).
[CrossRef] [PubMed]

2008 (2)

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochem. Bioenerg. 73, 92–96 (2008).
[CrossRef]

F. Palacios, D. Palacios, G. Palacios, E. Goncalves, J. L. Valin, L. Sajo-Bohus, and J. Ricardo, “Methods of Fourier optics in digital holographic microscopy,” Opt. Commun. 281, 550–558(2008).
[CrossRef]

2007 (1)

2006 (2)

2005 (2)

2004 (1)

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch. Eur. J. Physiol. 448, 462–468 (2004).
[CrossRef]

2001 (1)

1999 (1)

D. Zicha, E. Genot, G. A. Dunn, and I. M. Kramer, “TGFbeta1 induces a cell-cycle-dependent increase in motility of epithelial cells,” J. Cell. Sci. 112, 447–454 (1999).
[PubMed]

1998 (1)

1997 (1)

G. A. Dunn, D. Zicha, and P. E. Fraylich, “Rapid, microtubule-dependent fluctuations of the cell margin,” J. Cell. Sci. 110, 3091–3098 (1997).

1995 (1)

G. A. Dunn and D. Zicha, “Dynamics of fibroblast spreading,” J. Cell. Sci. 108, 1239–1249 (1995).
[PubMed]

Allman, B. E.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch. Eur. J. Physiol. 448, 462–468 (2004).
[CrossRef]

Awatsuji, Y.

Badizadegan, K.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327–13330 (2009).
[CrossRef] [PubMed]

Barbul, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).
[CrossRef] [PubMed]

Bellair, C. J.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch. Eur. J. Physiol. 448, 462–468 (2004).
[CrossRef]

Bernhardt, I.

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochem. Bioenerg. 73, 92–96 (2008).
[CrossRef]

Boss, D.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).
[CrossRef] [PubMed]

Brown, W. J.

Chalut, K. J.

Choi, W.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327–13330 (2009).
[CrossRef] [PubMed]

Colomb, T.

Cuche, E.

Curl, C. L.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch. Eur. J. Physiol. 448, 462–468 (2004).
[CrossRef]

Dasari, R. R.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327–13330 (2009).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[CrossRef] [PubMed]

De Nicola, S.

Delbridge, L. M. D.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch. Eur. J. Physiol. 448, 462–468 (2004).
[CrossRef]

Depeursinge, C.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef] [PubMed]

Dunn, G. A.

D. Zicha, E. Genot, G. A. Dunn, and I. M. Kramer, “TGFbeta1 induces a cell-cycle-dependent increase in motility of epithelial cells,” J. Cell. Sci. 112, 447–454 (1999).
[PubMed]

G. A. Dunn, D. Zicha, and P. E. Fraylich, “Rapid, microtubule-dependent fluctuations of the cell margin,” J. Cell. Sci. 110, 3091–3098 (1997).

G. A. Dunn and D. Zicha, “Dynamics of fibroblast spreading,” J. Cell. Sci. 108, 1239–1249 (1995).
[PubMed]

Emery, Y.

Feld, M. S.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327–13330 (2009).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[CrossRef] [PubMed]

Ferraro, P.

Finizio, A.

Fraylich, P. E.

G. A. Dunn, D. Zicha, and P. E. Fraylich, “Rapid, microtubule-dependent fluctuations of the cell margin,” J. Cell. Sci. 110, 3091–3098 (1997).

Fujii, A.

Garcia-Sucerquia, J.

Genot, E.

D. Zicha, E. Genot, G. A. Dunn, and I. M. Kramer, “TGFbeta1 induces a cell-cycle-dependent increase in motility of epithelial cells,” J. Cell. Sci. 112, 447–454 (1999).
[PubMed]

Goncalves, E.

F. Palacios, D. Palacios, G. Palacios, E. Goncalves, J. L. Valin, L. Sajo-Bohus, and J. Ricardo, “Methods of Fourier optics in digital holographic microscopy,” Opt. Commun. 281, 550–558(2008).
[CrossRef]

Grilli, S.

Harris, P. J.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch. Eur. J. Physiol. 448, 462–468 (2004).
[CrossRef]

Harris, T.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch. Eur. J. Physiol. 448, 462–468 (2004).
[CrossRef]

Hoffmann, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).
[CrossRef] [PubMed]

Ikeda, T.

Ivanova, L.

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochem. Bioenerg. 73, 92–96 (2008).
[CrossRef]

Jericho, M. H.

Jericho, S. K.

Kemper, B.

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochem. Bioenerg. 73, 92–96 (2008).
[CrossRef]

Klages, P.

Korenstein, R.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).
[CrossRef] [PubMed]

Kramer, I. M.

D. Zicha, E. Genot, G. A. Dunn, and I. M. Kramer, “TGFbeta1 induces a cell-cycle-dependent increase in motility of epithelial cells,” J. Cell. Sci. 112, 447–454 (1999).
[PubMed]

Kreuzer, H. J.

Kubota, T.

Langehanenberg, P.

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochem. Bioenerg. 73, 92–96 (2008).
[CrossRef]

Lue, N.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327–13330 (2009).
[CrossRef] [PubMed]

Magistretti, P. J.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef] [PubMed]

Marquet, P.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef] [PubMed]

Matoba, O.

Meucci, R.

Palacios, D.

F. Palacios, D. Palacios, G. Palacios, E. Goncalves, J. L. Valin, L. Sajo-Bohus, and J. Ricardo, “Methods of Fourier optics in digital holographic microscopy,” Opt. Commun. 281, 550–558(2008).
[CrossRef]

Palacios, F.

F. Palacios, D. Palacios, G. Palacios, E. Goncalves, J. L. Valin, L. Sajo-Bohus, and J. Ricardo, “Methods of Fourier optics in digital holographic microscopy,” Opt. Commun. 281, 550–558(2008).
[CrossRef]

Palacios, G.

F. Palacios, D. Palacios, G. Palacios, E. Goncalves, J. L. Valin, L. Sajo-Bohus, and J. Ricardo, “Methods of Fourier optics in digital holographic microscopy,” Opt. Commun. 281, 550–558(2008).
[CrossRef]

Pierattini, G.

Popescu, G.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327–13330 (2009).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[CrossRef] [PubMed]

Rappaz, B.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef] [PubMed]

Ricardo, J.

F. Palacios, D. Palacios, G. Palacios, E. Goncalves, J. L. Valin, L. Sajo-Bohus, and J. Ricardo, “Methods of Fourier optics in digital holographic microscopy,” Opt. Commun. 281, 550–558(2008).
[CrossRef]

Sajo-Bohus, L.

F. Palacios, D. Palacios, G. Palacios, E. Goncalves, J. L. Valin, L. Sajo-Bohus, and J. Ricardo, “Methods of Fourier optics in digital holographic microscopy,” Opt. Commun. 281, 550–558(2008).
[CrossRef]

Stewart, A. G.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch. Eur. J. Physiol. 448, 462–468 (2004).
[CrossRef]

Valin, J. L.

F. Palacios, D. Palacios, G. Palacios, E. Goncalves, J. L. Valin, L. Sajo-Bohus, and J. Ricardo, “Methods of Fourier optics in digital holographic microscopy,” Opt. Commun. 281, 550–558(2008).
[CrossRef]

von Bally, G.

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochem. Bioenerg. 73, 92–96 (2008).
[CrossRef]

Wax, A.

Xu, W. B.

Yamaguchi, I.

T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
[CrossRef]

I. Yamaguchi, “Phase-shifting digital holography,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Academic, 2006), pp. 145–171.
[CrossRef]

Yaqoob, Z.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327–13330 (2009).
[CrossRef] [PubMed]

Zhang, T.

Zicha, D.

D. Zicha, E. Genot, G. A. Dunn, and I. M. Kramer, “TGFbeta1 induces a cell-cycle-dependent increase in motility of epithelial cells,” J. Cell. Sci. 112, 447–454 (1999).
[PubMed]

G. A. Dunn, D. Zicha, and P. E. Fraylich, “Rapid, microtubule-dependent fluctuations of the cell margin,” J. Cell. Sci. 110, 3091–3098 (1997).

G. A. Dunn and D. Zicha, “Dynamics of fibroblast spreading,” J. Cell. Sci. 108, 1239–1249 (1995).
[PubMed]

Appl. Opt. (2)

Bioelectrochem. Bioenerg. (1)

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochem. Bioenerg. 73, 92–96 (2008).
[CrossRef]

Blood Cells Mol. Dis. (1)

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).
[CrossRef] [PubMed]

J. Cell. Sci. (3)

G. A. Dunn, D. Zicha, and P. E. Fraylich, “Rapid, microtubule-dependent fluctuations of the cell margin,” J. Cell. Sci. 110, 3091–3098 (1997).

D. Zicha, E. Genot, G. A. Dunn, and I. M. Kramer, “TGFbeta1 induces a cell-cycle-dependent increase in motility of epithelial cells,” J. Cell. Sci. 112, 447–454 (1999).
[PubMed]

G. A. Dunn and D. Zicha, “Dynamics of fibroblast spreading,” J. Cell. Sci. 108, 1239–1249 (1995).
[PubMed]

J. Phys. Chem. A (1)

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327–13330 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

F. Palacios, D. Palacios, G. Palacios, E. Goncalves, J. L. Valin, L. Sajo-Bohus, and J. Ricardo, “Methods of Fourier optics in digital holographic microscopy,” Opt. Commun. 281, 550–558(2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Pflugers Arch. Eur. J. Physiol. (1)

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch. Eur. J. Physiol. 448, 462–468 (2004).
[CrossRef]

Other (1)

I. Yamaguchi, “Phase-shifting digital holography,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Academic, 2006), pp. 145–171.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of recording holograms in on-axis digital holography.

Fig. 2
Fig. 2

Formation of the object wave field.

Fig. 3
Fig. 3

Flow chart of the numerical simulation.

Fig. 4
Fig. 4

Original information of the HeLa cell obtained from [13]: (a) physical thickness map and (b) axially averaged refractive index map.

Fig. 5
Fig. 5

Simulated results of the object wave in the object plane with n m 1 = 1. 3 4 : (a) reconstructed intensity image, (b) reconstructed wrapped phase image, and (c) unwrapped phase image.

Fig. 6
Fig. 6

Quantitative phase image of the cell with n m 1 = 1. 3 4 : (a) simulated phase image, (b) experimental phase image in [13], and (c) pseudocolor 3D rendering of (a).

Fig. 7
Fig. 7

Simulated results: (a) calculated physical thickness map and (b) calculated axially averaged refractive index map.

Fig. 8
Fig. 8

Horizontal sections of the original and calculated (a) physical thickness maps and (b) axially averaged refractive index maps.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I i ( x , y ) = | O ( x , y ) + R i ( x , y ) | 2 = | O | 2 + | R | 2 + 2 | O | | R | cos [ ϕ O ϕ R π 2 ( i 1 ) ] ,
R i ( x , y ) = | R | exp ( j ϕ R ) exp [ j π 2 ( i 1 ) ] ,
O ( x , y ) = ( I 1 I 3 ) + j ( I 2 I 4 ) 4 | R | exp ( j ϕ R ) .
I ( x 0 , y 0 ) = Re [ O 0 ( x 0 , y 0 ) ] 2 + Im [ O 0 ( x 0 , y 0 ) ] 2 ,
δ ( x 0 , y 0 ) = arctan Im [ O 0 ( x 0 , y 0 ) ] Re [ O 0 ( x 0 , y 0 ) ] .
δ = 2 π λ [ ( n m 1 ) h 0 + ( n c ¯ n m ) h ] .
n c ¯ = ϕ 1 n m 2 ϕ 2 n m 1 ϕ 1 ϕ 2 ,
h = λ / 2 π ( ϕ 1 ϕ 2 ) n m 2 n m 1 ,
O 0 ( x 0 , y 0 ) = τ 0 ( x 0 , y 0 ) E ( x 0 , y 0 ) ,
τ 0 ( x 0 , y 0 ) = | τ 0 | exp ( j δ ) ,
O 0 ( x 0 , y 0 ) = A | τ 0 | exp { j 2 π λ ( n m 1 ) h 0 } exp { j 2 π λ [ n c ¯ ( x 0 , y 0 ) n m ] h ( x 0 , y 0 ) } ,
O ( x , y ) = F 1 { F [ O 0 ( x 0 , y 0 ) ] H ( f x 0 , f y 0 ) } = F 1 { F [ O 0 ( x 0 , y 0 ) ] exp [ j 2 π d λ 1 ( λ f x 0 ) 2 ( λ f y 0 ) 2 ] } ,
O ( p Δ x , q Δ y ) = F 1 { F [ O 0 ( p Δ x 0 , q Δ y 0 ) ] exp [ j 2 π d λ 1 ( λ p Δ f x 0 ) 2 ( λ q Δ f y 0 ) 2 ] } ,
R i ( p Δ x , q Δ y ) = | R | exp ( j ϕ R ) exp [ j π 2 ( i 1 ) ] .
O 0 ( p Δ x 0 , q Δ y 0 ) = F 1 { F [ O ( p Δ x , q Δ y ) ] × exp [ j 2 π ( d ) λ 1 ( λ p Δ f x ) 2 ( λ q Δ f y ) 2 ] } ,

Metrics