Abstract

A factor significantly affecting the ultraviolet (UV) radiation’s interactions with the aquatic environ ment is the concentration of suspended sediment. We utilize data on UV penetration, absorption, and scattering in Lake Biwa, Japan, reported by Belzile et al. [Limnol. Oceanogr. 47, 95 (2002)], to drive Monte Carlo simulations of UV penetration. We generated Monte Carlo models (2 billion photons per simulation) of four stations reported by Belzile et al.: two low sediment stations and two high sediment stations. New modes are proposed for analyzing UV penetration and dosage factors for aquatic organisms in sediment dominated aquatic environments.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.Calkins, ed., The Role of Solar Ultraviolet Radiation in Marine Ecosystems, NATO Conference Series (Springer, 1982).
  2. P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Blackwell Science, 1997).
  3. J. J. Cullen, P. J. Neale, and M. P. Lesser, “Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation,” Science 258, 646–650 (1992).
    [CrossRef] [PubMed]
  4. M. Llabres and S. Agusti, “Picophytoplankton cell death induced by UV radiation: evidence for oceanic Atlantic communities,” Limnol. Oceanogr. 51, 21–29 (2006).
    [CrossRef]
  5. R. G. Zepp, T. V. Callaghan, and D. J. Erickson, “Effects of increased solar ultraviolet radiation on biogeochemical cycles,” Ambio 24, 181–187 (1995).
  6. R. G. Wetzel, Limnology: Lake and River Ecosystems(Academic, 2001).
  7. P. A. Boelen, A. F. Post, M. J. W. Veldhuis, and A. G. J. Buma, “Diel patterns of UVBR-induced DNA damage in picophytoplankton size fractions from the Gulf of Aqaba, Red Sea,” Microb. Ecol. 44, 164–174 (2002).
    [CrossRef] [PubMed]
  8. C. W. Hawryghyn and W. N. McFarland, “Cone photoreception mechanisms and the detection of polarized light in fish,” J. Comp. Physiol. A 60, 459–465 (1987).
    [CrossRef]
  9. J. K. Bowmaker and Y. W. Kuntz, “Ultraviolet receptors. tetrachromatic colour vision, and retinal mosaics in the brown trout (Salmo trutta) age-dependent change,” Vision Res. 27, 2102–2108 (1987).
    [CrossRef]
  10. W. F. Vincent, “Solar UV-B and aquatic primary production: damage, protection, and recovery,” Environ. Rev. 1, 1–12(1993).
    [CrossRef]
  11. R. Smith and K. Baker, “Penetration of UV-B and biologically effective dose-rates in natural waters,” Photochem. Photobiol. 32, 367–374 (1979).
  12. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge, 1994).
    [CrossRef]
  13. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7505 (1993).
    [CrossRef] [PubMed]
  14. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
    [CrossRef]
  15. J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467(1991).
    [CrossRef]
  16. J. T. O. Kirk, “Characteristics of the light field in highly turbid waters: a Monte Carlo study,” Limnol. Oceanogr. 39, 702–706(1994).
    [CrossRef]
  17. T. L. Petzold, “Volume scattering functions for selected ocean waters,” Scripps Inst. Oceanogr Ref. 72-28 (Scripps Institute of Oceanography, 1972).
  18. C. Belzile, W. F. Vincent, and M. Kumagai, “Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa,” Limnol. Oceanogr. 47, 95–107 (2002).
    [CrossRef]
  19. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  20. M. Iqbal, An Introduction to Solar Radiation (Academic, 1983).
  21. W. E. Mulberry, “Particulate scattering and the penetration and effects of ultraviolet light in coastal and inland waters,” M.S. thesis (University of North Carolina at Greensboro, 2007).
  22. O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Environ. Geol. 34, 257–269 (1998).
    [CrossRef]
  23. D. Stramski and S. B. Wozniak, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
    [CrossRef]
  24. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
    [CrossRef] [PubMed]
  25. W. F. Vincent, M. Kumagai, C. Belzile, K. Ishikawa, and K. Hayakawa, “Effects of seston on ultraviolet attenuation in Lake Biwa,” Limnol. Oceanogr. 2, 179–184 (2001).
  26. R. E. H. Smith, J. A. Furgal, M. N. Charlton, B. M. Greenberg, V. Hiriart, and C. Marwood, “Attenuation of ultraviolet radiation in a large lake with low dissolved organic matter concentrations,” Can. J. Fish. Aquat. Sci. 56, 1351–1361(1999).
    [CrossRef]
  27. G. C. Miller and R. G. Zepp, “Effects of suspended sediments on photolysis rates of dissolved pollutants,” Water Res. 13, 453–459 (1979).
    [CrossRef]
  28. R. H. Stavn, “The three-parameter model of the submarine light field: radiant energy absorption and trapping in nepheloid layers recalculated,” J. Geophys. Res. 92, 1934–1936(1987).
    [CrossRef]
  29. H. I. Browman, I. Navales-Flamaridue, and C. W. Hawryghyn, “Ultraviolet photoreception contributes to prey search behavior in two species of zooplanktivorous fishes,” J. Exp. Biol. 186, 187–198 (1994).
  30. G. H. Jacobs, “Ultraviolet vision in vertebrates,” Am. Zool. 32, 544–554 (1992).
  31. W. L. Chiang, R. S. Wu, P. K. Yu, and D. W. Au, “Are barnacle larvae able to escape from the threat of UV?,” Mar. Biol. 151, 703–711 (2007).
    [CrossRef]
  32. W. L. Chiang, D. W. T. Au, P. K. N. Yu, and R. S. S. Wu, “UV-B damages eyes of barnacle larvae and impairs their photo-responses and settlement success,” Environ. Sci. Technol. 37, 1089–1092 (2003).
    [CrossRef] [PubMed]
  33. N. G. Jerlov, Marine Optics (Elsevier, 1976).
  34. K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, 1988).
  35. C. L. Gallegos and R. G. Menzel, “Submicron size distributions of inorganic suspended solids in turbid waters by photon correlation spectroscopy,” Water Resour. Res. 23, 596–602(1987).
    [CrossRef]

2007

W. L. Chiang, R. S. Wu, P. K. Yu, and D. W. Au, “Are barnacle larvae able to escape from the threat of UV?,” Mar. Biol. 151, 703–711 (2007).
[CrossRef]

2006

M. Llabres and S. Agusti, “Picophytoplankton cell death induced by UV radiation: evidence for oceanic Atlantic communities,” Limnol. Oceanogr. 51, 21–29 (2006).
[CrossRef]

2004

D. Stramski and S. B. Wozniak, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

2003

W. L. Chiang, D. W. T. Au, P. K. N. Yu, and R. S. S. Wu, “UV-B damages eyes of barnacle larvae and impairs their photo-responses and settlement success,” Environ. Sci. Technol. 37, 1089–1092 (2003).
[CrossRef] [PubMed]

2002

P. A. Boelen, A. F. Post, M. J. W. Veldhuis, and A. G. J. Buma, “Diel patterns of UVBR-induced DNA damage in picophytoplankton size fractions from the Gulf of Aqaba, Red Sea,” Microb. Ecol. 44, 164–174 (2002).
[CrossRef] [PubMed]

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[CrossRef] [PubMed]

C. Belzile, W. F. Vincent, and M. Kumagai, “Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa,” Limnol. Oceanogr. 47, 95–107 (2002).
[CrossRef]

2001

W. F. Vincent, M. Kumagai, C. Belzile, K. Ishikawa, and K. Hayakawa, “Effects of seston on ultraviolet attenuation in Lake Biwa,” Limnol. Oceanogr. 2, 179–184 (2001).

1999

R. E. H. Smith, J. A. Furgal, M. N. Charlton, B. M. Greenberg, V. Hiriart, and C. Marwood, “Attenuation of ultraviolet radiation in a large lake with low dissolved organic matter concentrations,” Can. J. Fish. Aquat. Sci. 56, 1351–1361(1999).
[CrossRef]

1998

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Environ. Geol. 34, 257–269 (1998).
[CrossRef]

1995

R. G. Zepp, T. V. Callaghan, and D. J. Erickson, “Effects of increased solar ultraviolet radiation on biogeochemical cycles,” Ambio 24, 181–187 (1995).

1994

H. I. Browman, I. Navales-Flamaridue, and C. W. Hawryghyn, “Ultraviolet photoreception contributes to prey search behavior in two species of zooplanktivorous fishes,” J. Exp. Biol. 186, 187–198 (1994).

J. T. O. Kirk, “Characteristics of the light field in highly turbid waters: a Monte Carlo study,” Limnol. Oceanogr. 39, 702–706(1994).
[CrossRef]

1993

1992

G. H. Jacobs, “Ultraviolet vision in vertebrates,” Am. Zool. 32, 544–554 (1992).

J. J. Cullen, P. J. Neale, and M. P. Lesser, “Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation,” Science 258, 646–650 (1992).
[CrossRef] [PubMed]

1991

J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467(1991).
[CrossRef]

1987

R. H. Stavn, “The three-parameter model of the submarine light field: radiant energy absorption and trapping in nepheloid layers recalculated,” J. Geophys. Res. 92, 1934–1936(1987).
[CrossRef]

C. L. Gallegos and R. G. Menzel, “Submicron size distributions of inorganic suspended solids in turbid waters by photon correlation spectroscopy,” Water Resour. Res. 23, 596–602(1987).
[CrossRef]

C. W. Hawryghyn and W. N. McFarland, “Cone photoreception mechanisms and the detection of polarized light in fish,” J. Comp. Physiol. A 60, 459–465 (1987).
[CrossRef]

J. K. Bowmaker and Y. W. Kuntz, “Ultraviolet receptors. tetrachromatic colour vision, and retinal mosaics in the brown trout (Salmo trutta) age-dependent change,” Vision Res. 27, 2102–2108 (1987).
[CrossRef]

1984

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
[CrossRef]

1979

R. Smith and K. Baker, “Penetration of UV-B and biologically effective dose-rates in natural waters,” Photochem. Photobiol. 32, 367–374 (1979).

G. C. Miller and R. G. Zepp, “Effects of suspended sediments on photolysis rates of dissolved pollutants,” Water Res. 13, 453–459 (1979).
[CrossRef]

Adatte, T.

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Environ. Geol. 34, 257–269 (1998).
[CrossRef]

Agusti, S.

M. Llabres and S. Agusti, “Picophytoplankton cell death induced by UV radiation: evidence for oceanic Atlantic communities,” Limnol. Oceanogr. 51, 21–29 (2006).
[CrossRef]

Atteia, O.

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Environ. Geol. 34, 257–269 (1998).
[CrossRef]

Au, D. W.

W. L. Chiang, R. S. Wu, P. K. Yu, and D. W. Au, “Are barnacle larvae able to escape from the threat of UV?,” Mar. Biol. 151, 703–711 (2007).
[CrossRef]

Au, D. W. T.

W. L. Chiang, D. W. T. Au, P. K. N. Yu, and R. S. S. Wu, “UV-B damages eyes of barnacle larvae and impairs their photo-responses and settlement success,” Environ. Sci. Technol. 37, 1089–1092 (2003).
[CrossRef] [PubMed]

Baker, K.

R. Smith and K. Baker, “Penetration of UV-B and biologically effective dose-rates in natural waters,” Photochem. Photobiol. 32, 367–374 (1979).

Belzile, C.

C. Belzile, W. F. Vincent, and M. Kumagai, “Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa,” Limnol. Oceanogr. 47, 95–107 (2002).
[CrossRef]

W. F. Vincent, M. Kumagai, C. Belzile, K. Ishikawa, and K. Hayakawa, “Effects of seston on ultraviolet attenuation in Lake Biwa,” Limnol. Oceanogr. 2, 179–184 (2001).

Boelen, P. A.

P. A. Boelen, A. F. Post, M. J. W. Veldhuis, and A. G. J. Buma, “Diel patterns of UVBR-induced DNA damage in picophytoplankton size fractions from the Gulf of Aqaba, Red Sea,” Microb. Ecol. 44, 164–174 (2002).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Boss, E.

Bowmaker, J. K.

J. K. Bowmaker and Y. W. Kuntz, “Ultraviolet receptors. tetrachromatic colour vision, and retinal mosaics in the brown trout (Salmo trutta) age-dependent change,” Vision Res. 27, 2102–2108 (1987).
[CrossRef]

Browman, H. I.

H. I. Browman, I. Navales-Flamaridue, and C. W. Hawryghyn, “Ultraviolet photoreception contributes to prey search behavior in two species of zooplanktivorous fishes,” J. Exp. Biol. 186, 187–198 (1994).

Buma, A. G. J.

P. A. Boelen, A. F. Post, M. J. W. Veldhuis, and A. G. J. Buma, “Diel patterns of UVBR-induced DNA damage in picophytoplankton size fractions from the Gulf of Aqaba, Red Sea,” Microb. Ecol. 44, 164–174 (2002).
[CrossRef] [PubMed]

Callaghan, T. V.

R. G. Zepp, T. V. Callaghan, and D. J. Erickson, “Effects of increased solar ultraviolet radiation on biogeochemical cycles,” Ambio 24, 181–187 (1995).

Charlton, M. N.

R. E. H. Smith, J. A. Furgal, M. N. Charlton, B. M. Greenberg, V. Hiriart, and C. Marwood, “Attenuation of ultraviolet radiation in a large lake with low dissolved organic matter concentrations,” Can. J. Fish. Aquat. Sci. 56, 1351–1361(1999).
[CrossRef]

Chiang, W. L.

W. L. Chiang, R. S. Wu, P. K. Yu, and D. W. Au, “Are barnacle larvae able to escape from the threat of UV?,” Mar. Biol. 151, 703–711 (2007).
[CrossRef]

W. L. Chiang, D. W. T. Au, P. K. N. Yu, and R. S. S. Wu, “UV-B damages eyes of barnacle larvae and impairs their photo-responses and settlement success,” Environ. Sci. Technol. 37, 1089–1092 (2003).
[CrossRef] [PubMed]

Cullen, J. J.

J. J. Cullen, P. J. Neale, and M. P. Lesser, “Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation,” Science 258, 646–650 (1992).
[CrossRef] [PubMed]

Erickson, D. J.

R. G. Zepp, T. V. Callaghan, and D. J. Erickson, “Effects of increased solar ultraviolet radiation on biogeochemical cycles,” Ambio 24, 181–187 (1995).

Falkowski, P. G.

P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Blackwell Science, 1997).

Furgal, J. A.

R. E. H. Smith, J. A. Furgal, M. N. Charlton, B. M. Greenberg, V. Hiriart, and C. Marwood, “Attenuation of ultraviolet radiation in a large lake with low dissolved organic matter concentrations,” Can. J. Fish. Aquat. Sci. 56, 1351–1361(1999).
[CrossRef]

Gallegos, C. L.

C. L. Gallegos and R. G. Menzel, “Submicron size distributions of inorganic suspended solids in turbid waters by photon correlation spectroscopy,” Water Resour. Res. 23, 596–602(1987).
[CrossRef]

Gentili, B.

Gordon, H. R.

Greenberg, B. M.

R. E. H. Smith, J. A. Furgal, M. N. Charlton, B. M. Greenberg, V. Hiriart, and C. Marwood, “Attenuation of ultraviolet radiation in a large lake with low dissolved organic matter concentrations,” Can. J. Fish. Aquat. Sci. 56, 1351–1361(1999).
[CrossRef]

Hawryghyn, C. W.

H. I. Browman, I. Navales-Flamaridue, and C. W. Hawryghyn, “Ultraviolet photoreception contributes to prey search behavior in two species of zooplanktivorous fishes,” J. Exp. Biol. 186, 187–198 (1994).

C. W. Hawryghyn and W. N. McFarland, “Cone photoreception mechanisms and the detection of polarized light in fish,” J. Comp. Physiol. A 60, 459–465 (1987).
[CrossRef]

Hayakawa, K.

W. F. Vincent, M. Kumagai, C. Belzile, K. Ishikawa, and K. Hayakawa, “Effects of seston on ultraviolet attenuation in Lake Biwa,” Limnol. Oceanogr. 2, 179–184 (2001).

Hiriart, V.

R. E. H. Smith, J. A. Furgal, M. N. Charlton, B. M. Greenberg, V. Hiriart, and C. Marwood, “Attenuation of ultraviolet radiation in a large lake with low dissolved organic matter concentrations,” Can. J. Fish. Aquat. Sci. 56, 1351–1361(1999).
[CrossRef]

Huffman, D.

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Iqbal, M.

M. Iqbal, An Introduction to Solar Radiation (Academic, 1983).

Ishikawa, K.

W. F. Vincent, M. Kumagai, C. Belzile, K. Ishikawa, and K. Hayakawa, “Effects of seston on ultraviolet attenuation in Lake Biwa,” Limnol. Oceanogr. 2, 179–184 (2001).

Jacobs, G. H.

G. H. Jacobs, “Ultraviolet vision in vertebrates,” Am. Zool. 32, 544–554 (1992).

Jerlov, N. G.

N. G. Jerlov, Marine Optics (Elsevier, 1976).

Jin, Z.

Kattawar, G. W.

Kirk, J. T. O.

J. T. O. Kirk, “Characteristics of the light field in highly turbid waters: a Monte Carlo study,” Limnol. Oceanogr. 39, 702–706(1994).
[CrossRef]

J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467(1991).
[CrossRef]

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
[CrossRef]

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge, 1994).
[CrossRef]

Kozel, R.

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Environ. Geol. 34, 257–269 (1998).
[CrossRef]

Kumagai, M.

C. Belzile, W. F. Vincent, and M. Kumagai, “Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa,” Limnol. Oceanogr. 47, 95–107 (2002).
[CrossRef]

W. F. Vincent, M. Kumagai, C. Belzile, K. Ishikawa, and K. Hayakawa, “Effects of seston on ultraviolet attenuation in Lake Biwa,” Limnol. Oceanogr. 2, 179–184 (2001).

Kuntz, Y. W.

J. K. Bowmaker and Y. W. Kuntz, “Ultraviolet receptors. tetrachromatic colour vision, and retinal mosaics in the brown trout (Salmo trutta) age-dependent change,” Vision Res. 27, 2102–2108 (1987).
[CrossRef]

Lesser, M. P.

J. J. Cullen, P. J. Neale, and M. P. Lesser, “Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation,” Science 258, 646–650 (1992).
[CrossRef] [PubMed]

Llabres, M.

M. Llabres and S. Agusti, “Picophytoplankton cell death induced by UV radiation: evidence for oceanic Atlantic communities,” Limnol. Oceanogr. 51, 21–29 (2006).
[CrossRef]

Marwood, C.

R. E. H. Smith, J. A. Furgal, M. N. Charlton, B. M. Greenberg, V. Hiriart, and C. Marwood, “Attenuation of ultraviolet radiation in a large lake with low dissolved organic matter concentrations,” Can. J. Fish. Aquat. Sci. 56, 1351–1361(1999).
[CrossRef]

McFarland, W. N.

C. W. Hawryghyn and W. N. McFarland, “Cone photoreception mechanisms and the detection of polarized light in fish,” J. Comp. Physiol. A 60, 459–465 (1987).
[CrossRef]

Menzel, R. G.

C. L. Gallegos and R. G. Menzel, “Submicron size distributions of inorganic suspended solids in turbid waters by photon correlation spectroscopy,” Water Resour. Res. 23, 596–602(1987).
[CrossRef]

Miller, G. C.

G. C. Miller and R. G. Zepp, “Effects of suspended sediments on photolysis rates of dissolved pollutants,” Water Res. 13, 453–459 (1979).
[CrossRef]

Mobley, C. D.

Morel, A.

Mulberry, W. E.

W. E. Mulberry, “Particulate scattering and the penetration and effects of ultraviolet light in coastal and inland waters,” M.S. thesis (University of North Carolina at Greensboro, 2007).

Navales-Flamaridue, I.

H. I. Browman, I. Navales-Flamaridue, and C. W. Hawryghyn, “Ultraviolet photoreception contributes to prey search behavior in two species of zooplanktivorous fishes,” J. Exp. Biol. 186, 187–198 (1994).

Neale, P. J.

J. J. Cullen, P. J. Neale, and M. P. Lesser, “Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation,” Science 258, 646–650 (1992).
[CrossRef] [PubMed]

Perret, D.

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Environ. Geol. 34, 257–269 (1998).
[CrossRef]

Petzold, T. L.

T. L. Petzold, “Volume scattering functions for selected ocean waters,” Scripps Inst. Oceanogr Ref. 72-28 (Scripps Institute of Oceanography, 1972).

Post, A. F.

P. A. Boelen, A. F. Post, M. J. W. Veldhuis, and A. G. J. Buma, “Diel patterns of UVBR-induced DNA damage in picophytoplankton size fractions from the Gulf of Aqaba, Red Sea,” Microb. Ecol. 44, 164–174 (2002).
[CrossRef] [PubMed]

Raven, J. A.

P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Blackwell Science, 1997).

Reinersman, P.

Rossi, P.

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Environ. Geol. 34, 257–269 (1998).
[CrossRef]

Shifrin, K. S.

K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, 1988).

Smith, R.

R. Smith and K. Baker, “Penetration of UV-B and biologically effective dose-rates in natural waters,” Photochem. Photobiol. 32, 367–374 (1979).

Smith, R. E. H.

R. E. H. Smith, J. A. Furgal, M. N. Charlton, B. M. Greenberg, V. Hiriart, and C. Marwood, “Attenuation of ultraviolet radiation in a large lake with low dissolved organic matter concentrations,” Can. J. Fish. Aquat. Sci. 56, 1351–1361(1999).
[CrossRef]

Stamnes, K.

Stavn, R. H.

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7505 (1993).
[CrossRef] [PubMed]

R. H. Stavn, “The three-parameter model of the submarine light field: radiant energy absorption and trapping in nepheloid layers recalculated,” J. Geophys. Res. 92, 1934–1936(1987).
[CrossRef]

Stramski, D.

D. Stramski and S. B. Wozniak, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

Sundman, L. K.

Veldhuis, M. J. W.

P. A. Boelen, A. F. Post, M. J. W. Veldhuis, and A. G. J. Buma, “Diel patterns of UVBR-induced DNA damage in picophytoplankton size fractions from the Gulf of Aqaba, Red Sea,” Microb. Ecol. 44, 164–174 (2002).
[CrossRef] [PubMed]

Vincent, W. F.

C. Belzile, W. F. Vincent, and M. Kumagai, “Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa,” Limnol. Oceanogr. 47, 95–107 (2002).
[CrossRef]

W. F. Vincent, M. Kumagai, C. Belzile, K. Ishikawa, and K. Hayakawa, “Effects of seston on ultraviolet attenuation in Lake Biwa,” Limnol. Oceanogr. 2, 179–184 (2001).

W. F. Vincent, “Solar UV-B and aquatic primary production: damage, protection, and recovery,” Environ. Rev. 1, 1–12(1993).
[CrossRef]

Wetzel, R. G.

R. G. Wetzel, Limnology: Lake and River Ecosystems(Academic, 2001).

Wozniak, S. B.

D. Stramski and S. B. Wozniak, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

Wu, R. S.

W. L. Chiang, R. S. Wu, P. K. Yu, and D. W. Au, “Are barnacle larvae able to escape from the threat of UV?,” Mar. Biol. 151, 703–711 (2007).
[CrossRef]

Wu, R. S. S.

W. L. Chiang, D. W. T. Au, P. K. N. Yu, and R. S. S. Wu, “UV-B damages eyes of barnacle larvae and impairs their photo-responses and settlement success,” Environ. Sci. Technol. 37, 1089–1092 (2003).
[CrossRef] [PubMed]

Yu, P. K.

W. L. Chiang, R. S. Wu, P. K. Yu, and D. W. Au, “Are barnacle larvae able to escape from the threat of UV?,” Mar. Biol. 151, 703–711 (2007).
[CrossRef]

Yu, P. K. N.

W. L. Chiang, D. W. T. Au, P. K. N. Yu, and R. S. S. Wu, “UV-B damages eyes of barnacle larvae and impairs their photo-responses and settlement success,” Environ. Sci. Technol. 37, 1089–1092 (2003).
[CrossRef] [PubMed]

Zepp, R. G.

R. G. Zepp, T. V. Callaghan, and D. J. Erickson, “Effects of increased solar ultraviolet radiation on biogeochemical cycles,” Ambio 24, 181–187 (1995).

G. C. Miller and R. G. Zepp, “Effects of suspended sediments on photolysis rates of dissolved pollutants,” Water Res. 13, 453–459 (1979).
[CrossRef]

Am. Zool.

G. H. Jacobs, “Ultraviolet vision in vertebrates,” Am. Zool. 32, 544–554 (1992).

Ambio

R. G. Zepp, T. V. Callaghan, and D. J. Erickson, “Effects of increased solar ultraviolet radiation on biogeochemical cycles,” Ambio 24, 181–187 (1995).

Appl. Opt.

Can. J. Fish. Aquat. Sci.

R. E. H. Smith, J. A. Furgal, M. N. Charlton, B. M. Greenberg, V. Hiriart, and C. Marwood, “Attenuation of ultraviolet radiation in a large lake with low dissolved organic matter concentrations,” Can. J. Fish. Aquat. Sci. 56, 1351–1361(1999).
[CrossRef]

Environ. Geol.

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Environ. Geol. 34, 257–269 (1998).
[CrossRef]

Environ. Rev.

W. F. Vincent, “Solar UV-B and aquatic primary production: damage, protection, and recovery,” Environ. Rev. 1, 1–12(1993).
[CrossRef]

Environ. Sci. Technol.

W. L. Chiang, D. W. T. Au, P. K. N. Yu, and R. S. S. Wu, “UV-B damages eyes of barnacle larvae and impairs their photo-responses and settlement success,” Environ. Sci. Technol. 37, 1089–1092 (2003).
[CrossRef] [PubMed]

J. Comp. Physiol. A

C. W. Hawryghyn and W. N. McFarland, “Cone photoreception mechanisms and the detection of polarized light in fish,” J. Comp. Physiol. A 60, 459–465 (1987).
[CrossRef]

J. Exp. Biol.

H. I. Browman, I. Navales-Flamaridue, and C. W. Hawryghyn, “Ultraviolet photoreception contributes to prey search behavior in two species of zooplanktivorous fishes,” J. Exp. Biol. 186, 187–198 (1994).

J. Geophys. Res.

R. H. Stavn, “The three-parameter model of the submarine light field: radiant energy absorption and trapping in nepheloid layers recalculated,” J. Geophys. Res. 92, 1934–1936(1987).
[CrossRef]

Limnol. Oceanogr.

D. Stramski and S. B. Wozniak, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

W. F. Vincent, M. Kumagai, C. Belzile, K. Ishikawa, and K. Hayakawa, “Effects of seston on ultraviolet attenuation in Lake Biwa,” Limnol. Oceanogr. 2, 179–184 (2001).

M. Llabres and S. Agusti, “Picophytoplankton cell death induced by UV radiation: evidence for oceanic Atlantic communities,” Limnol. Oceanogr. 51, 21–29 (2006).
[CrossRef]

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
[CrossRef]

J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467(1991).
[CrossRef]

J. T. O. Kirk, “Characteristics of the light field in highly turbid waters: a Monte Carlo study,” Limnol. Oceanogr. 39, 702–706(1994).
[CrossRef]

C. Belzile, W. F. Vincent, and M. Kumagai, “Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa,” Limnol. Oceanogr. 47, 95–107 (2002).
[CrossRef]

Mar. Biol.

W. L. Chiang, R. S. Wu, P. K. Yu, and D. W. Au, “Are barnacle larvae able to escape from the threat of UV?,” Mar. Biol. 151, 703–711 (2007).
[CrossRef]

Microb. Ecol.

P. A. Boelen, A. F. Post, M. J. W. Veldhuis, and A. G. J. Buma, “Diel patterns of UVBR-induced DNA damage in picophytoplankton size fractions from the Gulf of Aqaba, Red Sea,” Microb. Ecol. 44, 164–174 (2002).
[CrossRef] [PubMed]

Photochem. Photobiol.

R. Smith and K. Baker, “Penetration of UV-B and biologically effective dose-rates in natural waters,” Photochem. Photobiol. 32, 367–374 (1979).

Science

J. J. Cullen, P. J. Neale, and M. P. Lesser, “Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation,” Science 258, 646–650 (1992).
[CrossRef] [PubMed]

Vision Res.

J. K. Bowmaker and Y. W. Kuntz, “Ultraviolet receptors. tetrachromatic colour vision, and retinal mosaics in the brown trout (Salmo trutta) age-dependent change,” Vision Res. 27, 2102–2108 (1987).
[CrossRef]

Water Res.

G. C. Miller and R. G. Zepp, “Effects of suspended sediments on photolysis rates of dissolved pollutants,” Water Res. 13, 453–459 (1979).
[CrossRef]

Water Resour. Res.

C. L. Gallegos and R. G. Menzel, “Submicron size distributions of inorganic suspended solids in turbid waters by photon correlation spectroscopy,” Water Resour. Res. 23, 596–602(1987).
[CrossRef]

Other

N. G. Jerlov, Marine Optics (Elsevier, 1976).

K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, 1988).

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge, 1994).
[CrossRef]

R. G. Wetzel, Limnology: Lake and River Ecosystems(Academic, 2001).

J.Calkins, ed., The Role of Solar Ultraviolet Radiation in Marine Ecosystems, NATO Conference Series (Springer, 1982).

P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Blackwell Science, 1997).

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

M. Iqbal, An Introduction to Solar Radiation (Academic, 1983).

W. E. Mulberry, “Particulate scattering and the penetration and effects of ultraviolet light in coastal and inland waters,” M.S. thesis (University of North Carolina at Greensboro, 2007).

T. L. Petzold, “Volume scattering functions for selected ocean waters,” Scripps Inst. Oceanogr Ref. 72-28 (Scripps Institute of Oceanography, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

NS9. Linear regressions of mean photon pathlength versus K dav for the four VSF function simulations. The wavelengths of the ultraviolet light photons for each VSF regression indicated for the individual data points. The data points are identified for VSF regressions only at the top and bottom of the figure for clarity.

Fig. 2
Fig. 2

Akanoi Bay. Linear regressions of mean photon pathlength versus K dav for the four VSF function simulations. The wavelengths of the ultraviolet light photons for each VSF regression areindicated for the individual data points. The data points are identified for VSF regressions only at the top and bottom of the figure for clarity.

Fig. 3
Fig. 3

NS5. Linear regressions of mean photon pathlength versus K dav for the four VSF function simulations. The wavelengths of the ultraviolet light photons for each VSF regression are indicated for the individual data points. The data points are identified for VSF regressions only at the top and bottom of the figure for clarity.

Fig. 4
Fig. 4

EW6. Linear regressions of mean photon pathlength versus K dav for the four VSF function simulations. The wavelengths of the ultraviolet light photons for each VSF regression are indicated for the individual data points. The data points are identified for VSF regressions only at the top and bottom of the figure for clarity.

Fig. 5
Fig. 5

NS9. Linear regressions of mean photon pathlength versus b / a for the four VSF function simulations. The wavelengths of the ultraviolet light photons for each VSF regression are indicated for the individual data points. The data points are identified for VSF regressions only at the top and bottom of figure for the clarity.

Fig. 6
Fig. 6

Akanoi Bay. Linear regressions of mean photon pathlength versus b / a for the four VSF function simulations. The wavelengths of the ultraviolet light photons for each VSF regression are indicated for the individual data points. The data points are identified for VSF regressions only at the top and bottom of figure for clarity.

Fig. 7
Fig. 7

NS5. Linear regressions of mean photon pathlength versus b / a for the four VSF function simulations. The wavelengths of the ultraviolet light photons for each VSF regression are indicated for the individual data points. The data points are identified for VSF regressions only at the top and bottom of the figure for clarity.

Fig. 8
Fig. 8

EW6. Linear regressions of mean photon pathlength versus b / a for the four VSF function simulations. The wavelengths of the ultraviolet light photons for each VSF regression are indicated for the individual data points. The data points are identified for VSF regressions only at the top and bottom of the figure for clarity.

Fig. 9
Fig. 9

Plots of the volume scattering functions used in the simulations. Four volume scattering functions are represented: those associated with the SDBH, 0.5 μm diameter particles, 0.30 μm diameter particles, and 0.25 μm diameter particles.

Fig. 10
Fig. 10

NS9. Plots of the best-fit regressions of the log of the attenuation coefficient K dav versus the probabilities of scattering into the angular range of 0 ° 2.5 ° from the propagation axis of the VSF. Decreasing forward scatter probabilities at each wavelength are associated with decreasing diameter of mineral particle.

Fig. 11
Fig. 11

Akanoi Bay. Plots of the best-fit regressions of the log of the attenuation coefficient K dav versus the probabilities of scattering at an angular range of 0 ° 2.5 ° from the propagation axis of the VSF. Decreasing forward scatter probabilities at each wavelength are associated with decreasing diam eter of mineral particle.

Fig. 12
Fig. 12

NS5. Plots of the best-fit regressions of the log of the attenuation coefficient K dav versus the probabilities of scattering at an angle range of 0 ° 2.5 ° from the propagation axis of the VSF. Decreasing forward scatter probabilities at each wavelength are associated with decreasing diameter of mineral particle.

Fig. 13
Fig. 13

EW6. Plots of the best-fit regressions of the log of the attenuation coefficient K dav versus the probabilities of scattering at an angle range of 0 ° 2.5 ° from the propagation axis of the VSF. Decreasing forward scatter probabilities at each wavelength are associated with decreasing diameter of mineral particle.

Tables (3)

Tables Icon

Table 1 Optical Properties of the Turbid and Clear Stations in Lake Biwa, Japan, at the Wavelengths of 555 nm , 440 nm , 380 nm , 340 nm , 320 nm , and 306 nm a

Tables Icon

Table 2 Comparison of the Measured K dav and b / a Values from the Four Stations in Lake Biwa, Japan, with K dav Values Derived from Monte Carlo Simulations, Utilizing the SDBH Volume Scattering Function and the Inorganic Particle VSF’s a

Tables Icon

Table 3 Comparison of the Mean Photon Pathlength Values and K dav / a Values in Ultraviolet for the Four Stations in Lake Biwa, Japan a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

UV - A : 320 nm < λ < 390 nm , UV - B : 280 nm < λ < 320 nm , UV - C : 235 nm < λ < 280 nm .
K d a = 1 μ 0 [ 1 + G ( μ 0 ) b a ] 1 2 ,
K d = 1 μ 0 [ a 2 + G ( μ 0 ) a b ] 1 2 .
E B = A I 0 k v [ 1 exp ( k D ) ] ,
E z E 0 = μ ¯ = 1 p * ,
K 0 K d K z = a · p * .
E s = 1 4 E 0 .
E B = A sph E 0 4 ( a p * ) v [ 1 exp ( a p * D ) ] ,
E B = A E 0 ( a p * ) v [ 1 exp ( a p * D ) ] ,
E B = A I 0 a v [ 1 exp ( a p * D ) ] .

Metrics