Abstract

In this paper quantitative imaging of biological cells using high-resolution full-field optical coherence microscopy (FF-OCM) is reported. The FF-OCM was realized using a swept-source system, a Mirau interferometer, and a CCD camera (a two-dimensional detection unit). A Mirau-interferometric objective lens was used to generate the interferometric signal. The signal was analyzed by a Fourier analysis technique. Optically sectioned amplitude images and a quantitative phase map of biological cells such as onion skin and red blood cells (RBCs) are demonstrated. Further, the refractive index profile of the RBCs is also presented. For the 50× Mirau objective, the experimentally achieved axial and transverse resolution of the present system are 3.8 and 1.2μm, respectively. The CCD provides parallel detection and measures enface images without X, Y, Z mechanical scanning.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  2. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).
  3. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications (Springer, 2008).
  4. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [CrossRef]
  5. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49, D30–D61 (2010).
    [CrossRef]
  6. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [CrossRef]
  7. H. Lim, J. F. de Boer, B. H. Park, E. C. W. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815–870 nm range,” Opt. Express 14, 5937–5944 (2006).
    [CrossRef]
  8. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464(2006).
    [CrossRef]
  9. V. J. Srinivasan, R. Huber, I. Gorczynska, and J. G. Fujimoto, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007).
    [CrossRef]
  10. S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, Appl. Phys. Lett. 91, 181106 (2007).
    [CrossRef]
  11. M. P. Whelan, F. Lakestani, D. Rembges, and M. G. Sacco, “Heterodyne interference microscopy for non-invasive cell morphometry,” Proc. SPIE 6631, 66310E (2007).
    [CrossRef]
  12. J. A. Izatt, M. D. Kulkami, H. W. Wang, K. Kobayashi, and J. M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
    [CrossRef]
  13. A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, “High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging,” Opt. Lett. 28, 2064–2066 (2003).
    [CrossRef]
  14. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [CrossRef]
  15. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
    [CrossRef]
  16. R. A. Leitgeb, W. Drexler, A. Unterherber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
    [CrossRef]
  17. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44, 1387–1392 (2005).
    [CrossRef]
  18. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14, 8675–8684 (2006).
    [CrossRef]
  19. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735(2006).
    [CrossRef]
  20. A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008).
    [CrossRef]
  21. M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674–683(2009).
    [CrossRef]
  22. W. J. Choi, D. I. Jeon, S. G. Ahn, J. H. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express 18, 23285–23295 (2010).
    [CrossRef]
  23. R. Sharon, R. Friedman, and I. Abdulhalim, “Multilayered scattering reference mirror for full field optical coherence tomography with application to cell profiling,” Opt. Commun. 283, 4122–4125 (2010).
    [CrossRef]
  24. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
    [CrossRef]
  25. C. Kasseck, D. Rytz, N. C. Gerhardt, M. R. Hofmann, and N. Koukourakis, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17, 21015–21029 (2009).
    [CrossRef]
  26. J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiplewavelength digital holographic microscopy in reflection,” Opt. Lett. 34, 653–655 (2009).
    [CrossRef]
  27. L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35, 2961–2963 (2010).
    [CrossRef]
  28. N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836–1842 (2007).
    [CrossRef]
  29. W. Choi, C. F. Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
    [CrossRef]
  30. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
    [CrossRef]
  31. G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Diseases 41, 10–16(2008).
    [CrossRef]
  32. A. Dobroiu, H. Sakai, H. Ootaki, M. Sato, and N. Tanno, “Coaxial Mirau interferometer,” Opt. Lett. 27, 1153–1155(2002).
    [CrossRef]
  33. M. V. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral and swept-source OCT using 3×3 fiber couplers,” Opt. Express 13, 957–967 (2005).
    [CrossRef]
  34. P. Hariharan, Optical Interferometry (Academic, 2003).

2010 (4)

2009 (4)

2008 (2)

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Diseases 41, 10–16(2008).
[CrossRef]

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008).
[CrossRef]

2007 (5)

N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836–1842 (2007).
[CrossRef]

W. Choi, C. F. Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef]

V. J. Srinivasan, R. Huber, I. Gorczynska, and J. G. Fujimoto, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007).
[CrossRef]

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

M. P. Whelan, F. Lakestani, D. Rembges, and M. G. Sacco, “Heterodyne interference microscopy for non-invasive cell morphometry,” Proc. SPIE 6631, 66310E (2007).
[CrossRef]

2006 (4)

2005 (3)

2004 (1)

2003 (4)

2002 (2)

1998 (1)

1996 (1)

J. A. Izatt, M. D. Kulkami, H. W. Wang, K. Kobayashi, and J. M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Abdulhalim, I.

R. Sharon, R. Friedman, and I. Abdulhalim, “Multilayered scattering reference mirror for full field optical coherence tomography with application to cell profiling,” Opt. Commun. 283, 4122–4125 (2010).
[CrossRef]

Aguirre, A. D.

Ahn, S. G.

Anna, T.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Badizadegan, K.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[CrossRef]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Diseases 41, 10–16(2008).
[CrossRef]

N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836–1842 (2007).
[CrossRef]

W. Choi, C. F. Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef]

Bajraszewski, T.

Barbastathis, G.

Beaurepaire, E.

Blanchot, L.

Boccara, A. C.

Boccara, C.

Bouma, B. E.

Cense, B.

Choi, W.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[CrossRef]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Diseases 41, 10–16(2008).
[CrossRef]

W. Choi, C. F. Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef]

N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836–1842 (2007).
[CrossRef]

Choi, W. J.

Choma, M.

Choma, M. A.

Colomb, T.

Cuche, E.

Dabu, R.

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674–683(2009).
[CrossRef]

Dasari, R. R.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[CrossRef]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Diseases 41, 10–16(2008).
[CrossRef]

W. Choi, C. F. Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef]

N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836–1842 (2007).
[CrossRef]

de Boer, J. F.

Depeursinge, C.

Dobroiu, A.

Drexler, W.

R. A. Leitgeb, W. Drexler, A. Unterherber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications (Springer, 2008).

Dubey, S. K.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Dubois, A.

Emery, Y.

Fang-Yen, C.

Feld, M. S.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[CrossRef]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Diseases 41, 10–16(2008).
[CrossRef]

W. Choi, C. F. Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef]

N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836–1842 (2007).
[CrossRef]

Fercher, A. F.

R. A. Leitgeb, W. Drexler, A. Unterherber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Friedman, R.

R. Sharon, R. Friedman, and I. Abdulhalim, “Multilayered scattering reference mirror for full field optical coherence tomography with application to cell profiling,” Opt. Commun. 283, 4122–4125 (2010).
[CrossRef]

Fujimoto, J. G.

Gerhardt, N. C.

Gorczynska, I.

Hariharan, P.

P. Hariharan, Optical Interferometry (Academic, 2003).

Hartl, I.

Hayasaka, Y.

Hermann, B.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Hofmann, M. R.

Hrebesh, M. S.

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674–683(2009).
[CrossRef]

Hsiung, P.

Huber, R.

Iftimia, N.

Ikeda, T.

Izatt, J.

Izatt, J. A.

Jeon, D. I.

Kasseck, C.

Kim, S.

Ko, T. H.

Kobayashi, K.

J. A. Izatt, M. D. Kulkami, H. W. Wang, K. Kobayashi, and J. M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Koukourakis, N.

Kühn, J.

Kulkami, M. D.

J. A. Izatt, M. D. Kulkami, H. W. Wang, K. Kobayashi, and J. M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Lakestani, F.

M. P. Whelan, F. Lakestani, D. Rembges, and M. G. Sacco, “Heterodyne interference microscopy for non-invasive cell morphometry,” Proc. SPIE 6631, 66310E (2007).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Le, T.

Lebec, M.

Lee, B. H.

Lee, E. C. W.

Leitgeb, R. A.

Lim, H.

Lue, N.

N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836–1842 (2007).
[CrossRef]

W. Choi, C. F. Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef]

Luo, Y.

Magistretti, P. J.

Marquet, P.

Mehta, D. S.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Montfort, F.

Moratal, C.

Moreau, J.

Oh, S.

W. Choi, C. F. Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef]

Oh, W. Y.

Ootaki, H.

Park, B. H.

Park, Y. K.

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Diseases 41, 10–16(2008).
[CrossRef]

Pavillon, N.

Pierce, M. C.

Popescu, G.

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Diseases 41, 10–16(2008).
[CrossRef]

N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836–1842 (2007).
[CrossRef]

Rappaz, B.

Rembges, D.

M. P. Whelan, F. Lakestani, D. Rembges, and M. G. Sacco, “Heterodyne interference microscopy for non-invasive cell morphometry,” Proc. SPIE 6631, 66310E (2007).
[CrossRef]

Rytz, D.

Sacco, M. G.

M. P. Whelan, F. Lakestani, D. Rembges, and M. G. Sacco, “Heterodyne interference microscopy for non-invasive cell morphometry,” Proc. SPIE 6631, 66310E (2007).
[CrossRef]

Saint-Jalmes, H.

Sakai, H.

Sarunic, M.

Sarunic, M. V.

Sato, M.

Shakher, C.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Sharon, R.

R. Sharon, R. Friedman, and I. Abdulhalim, “Multilayered scattering reference mirror for full field optical coherence tomography with application to cell profiling,” Opt. Commun. 283, 4122–4125 (2010).
[CrossRef]

Sivak, J. M. V.

J. A. Izatt, M. D. Kulkami, H. W. Wang, K. Kobayashi, and J. M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Srinivasan, V. J.

Stingl, A.

Sung, Y.

Tanno, N.

Tearney, G. J.

Unterherber, A.

Vabre, L.

Waller, L.

Wang, H. W.

J. A. Izatt, M. D. Kulkami, H. W. Wang, K. Kobayashi, and J. M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Watanabe, Y.

Weinberg, S.

Whelan, M. P.

M. P. Whelan, F. Lakestani, D. Rembges, and M. G. Sacco, “Heterodyne interference microscopy for non-invasive cell morphometry,” Proc. SPIE 6631, 66310E (2007).
[CrossRef]

Wojtkowski, M.

Yang, C.

Yang, S. Y.

Yelin, R.

Yen, C. F.

W. Choi, C. F. Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef]

Yoon, J. H.

Yun, S. H.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Blood Cells Mol. Diseases (1)

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Diseases 41, 10–16(2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Izatt, M. D. Kulkami, H. W. Wang, K. Kobayashi, and J. M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Nat. Methods (1)

W. Choi, C. F. Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef]

Opt. Commun. (2)

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674–683(2009).
[CrossRef]

R. Sharon, R. Friedman, and I. Abdulhalim, “Multilayered scattering reference mirror for full field optical coherence tomography with application to cell profiling,” Opt. Commun. 283, 4122–4125 (2010).
[CrossRef]

Opt. Express (11)

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
[CrossRef]

C. Kasseck, D. Rytz, N. C. Gerhardt, M. R. Hofmann, and N. Koukourakis, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17, 21015–21029 (2009).
[CrossRef]

W. J. Choi, D. I. Jeon, S. G. Ahn, J. H. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express 18, 23285–23295 (2010).
[CrossRef]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[CrossRef]

M. V. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral and swept-source OCT using 3×3 fiber couplers,” Opt. Express 13, 957–967 (2005).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterherber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
[CrossRef]

W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14, 8675–8684 (2006).
[CrossRef]

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735(2006).
[CrossRef]

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008).
[CrossRef]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
[CrossRef]

H. Lim, J. F. de Boer, B. H. Park, E. C. W. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815–870 nm range,” Opt. Express 14, 5937–5944 (2006).
[CrossRef]

Opt. Lett. (8)

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464(2006).
[CrossRef]

V. J. Srinivasan, R. Huber, I. Gorczynska, and J. G. Fujimoto, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007).
[CrossRef]

A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, “High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging,” Opt. Lett. 28, 2064–2066 (2003).
[CrossRef]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
[CrossRef]

A. Dobroiu, H. Sakai, H. Ootaki, M. Sato, and N. Tanno, “Coaxial Mirau interferometer,” Opt. Lett. 27, 1153–1155(2002).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef]

J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiplewavelength digital holographic microscopy in reflection,” Opt. Lett. 34, 653–655 (2009).
[CrossRef]

L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35, 2961–2963 (2010).
[CrossRef]

Proc. SPIE (1)

M. P. Whelan, F. Lakestani, D. Rembges, and M. G. Sacco, “Heterodyne interference microscopy for non-invasive cell morphometry,” Proc. SPIE 6631, 66310E (2007).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Other (3)

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications (Springer, 2008).

P. Hariharan, Optical Interferometry (Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a high-resolution FF-OCM system based on the Mirau-interferometric objective lens.

Fig. 2
Fig. 2

(a) Axial and (b) transverse resolution (c) imaging of USAF target using 10 × , and (d) imaging of USAF target using 50 × .

Fig. 3
Fig. 3

(a) Interferogram at 843.7 nm (RF 91 MHz ), (b) variation of intensity for recorded interferograms along the wave length axis, (c) FFT of the interference signal for the stacked interferograms, (d) FFT of the interference fringe signal corresponding to depth (micrometers).

Fig. 4
Fig. 4

(a)–(d) Cross-sectional images of the onion skin at 29, 33, 57, and 65 μm depth, respectively, (e)–(h) corresponding phase map of (a)–(d), and (i) unwrapped phase map at 33 μm .

Fig. 5
Fig. 5

(a) Interferogram at 843.7 nm (RF 91 MHz ), (b)–(e) cross-sectional images at 16, 31.2, 32.9, and 65 μm depth, respectively (f)–(i) corresponding wrapped phase map of (b)–(e), (j) unwrapped phase map at 32.9 μm , and (k) refractive index profile.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ; k m ) = S ( x , y ; k m ) { ( R R + R S ) + 2 R R R S cos ( 2 k m Δ z ( x , y ; k m ) + Δ Φ ( x , y ; k m ) ) } ,
Δ Φ ( x , y ; k m ) = 2 π λ 0 Δ z ( x , y ; k m ) = 4 π λ 0 t ( x , y ) { n ( x , y ; k m ) 1 } ,
I [ z n ] = m = 1 M I [ x , y ; k m ] e ( j 2 π ( 2 k m z n ) ) , n { 1 , M } .
I ( z n ) = Γ 2 ( z n ) { R R δ ( z n ) + R S δ ( z n ) + 2 R R R S ( δ ( z n + Δ z ) + δ ( z n Δ z ) ) } ,
δ z [ NA 2 n avg λ 0 + n avg π 2 ln 2 ( Δ λ λ 0 2 ) ] 1 ,
Δ X 0.46 λ 0 / NA .

Metrics