Abstract

Polarization techniques can suppress multiply scattering light and have been demonstrated as an effective tool to improve image quality of superficial tissues where many cancers start to develop. Learning the penetration depth behavior of different polarization imaging techniques is important for their clinical applications in diagnosis of skin abnormalities. In the present paper, we construct a two-layer sample consisting of isotropic and anisotropic media and examine quantitatively using both experiments and Monte Carlo simulations the penetration depths of three different polarization imaging methods, i.e., linear differential polarization imaging (LDPI), degree of linear polarization imaging (DOLPI), and rotating linear polarization imaging (RLPI). The results show that the contrast curves of the three techniques are distinctively different, but their characteristic depths are all of the order of the transport mean free path length of the top layer. Penetration depths of LDPI and DOLPI depend on the incident polarization angle. The characteristic depth of DOLPI, and approximately of LDPI at small g, scales with the transport mean free path length. The characteristic depth of RLPI is almost twice as big as that of DOLPI and LDPI, and increases significantly as g increases.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kienle, F. Forster, R. Diebolder, and R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
    [CrossRef] [PubMed]
  2. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
    [CrossRef] [PubMed]
  3. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
    [CrossRef] [PubMed]
  4. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
    [CrossRef] [PubMed]
  5. S. P. Morgan and I. M. Stockford, “Surface-reflection elimination in polarization imaging of superficial tissue,” Opt. Lett. 28, 114–116 (2003).
    [CrossRef] [PubMed]
  6. H. R. Shao, Y. H. He, W. Li, and H. Ma, “Polarization-degree imaging contrast in turbid media: a quantitative study,” Appl. Opt. 45, 4491–4496 (2006).
    [CrossRef] [PubMed]
  7. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129(2000).
    [CrossRef] [PubMed]
  8. Y. Liu, Y. L. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13, 601–611 (2005).
    [CrossRef] [PubMed]
  9. R. Nothdurft and G. Yao, “Expression of target optical properties in subsurface polarization-gating imaging,” Opt. Express 13, 4185–4195 (2005).
    [CrossRef] [PubMed]
  10. S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873–2886 (2000).
    [CrossRef] [PubMed]
  11. X. Y. Jiang, N. Zeng, Y. H. He, and H. Ma, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659–663 (2007).
  12. R. Liao, N. Zeng, X. Y. Jiang, D. Z. Li, T. Yun, Y. H. He, and H. Ma, “A rotating linear polarization imaging technique for anisotropic tissues,” J. Biomed. Opt. 15, 030614 (2010).
    [CrossRef]
  13. N. Zeng, X. Jiang, Q. Gao, Y. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
    [CrossRef]
  14. T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17, 16590–16602 (2009).
    [CrossRef] [PubMed]
  15. H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere–cylinder scattering model to skeletal muscle,” Opt. Express 18, 15104–15112 (2010).
    [CrossRef] [PubMed]
  16. H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere–cylinder scattering medium,” Opt. Lett. 35, 2323–2325 (2010).
    [CrossRef] [PubMed]
  17. T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17, 223–229 (2010).
    [CrossRef]
  18. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  19. V. Tuchin, “Methods and algorithm for the measurement of the optical parameters of tissues,” in Tissue Optics: Light Scattering Method and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007), pp 144–191.
  20. H. C. van de Hulst, “Circular cylinders,” in Light Scattering by Small Particles (Dover, 1981), Chap. 15, pp. 297–328.
  21. A. Shuaib and G. Yao, “Equi-intensity distribution of optical reflectance in a fibrous turbid media,” Appl. Opt. 49, 838–844(2010).
    [CrossRef] [PubMed]
  22. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990).
    [CrossRef] [PubMed]
  23. X. Li, J. C. Ranasinghesagara, and G. Yao, “Polarization-sensitive reflectance imaging in skeletal muscle,” Opt. Express 16, 9927–9935 (2008).
    [CrossRef] [PubMed]
  24. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
    [CrossRef]
  25. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  26. J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11, 040504 (2006).
    [CrossRef] [PubMed]
  27. V. Sanharan, M. J. Everett, D. J. Maitland, and J. T. Walsh, “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett. 24, 1044–1046 (1999).
    [CrossRef]
  28. G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–804 (1998).
    [CrossRef]
  29. N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992).
    [CrossRef]

2010 (5)

2009 (2)

2008 (1)

2007 (2)

X. Y. Jiang, N. Zeng, Y. H. He, and H. Ma, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659–663 (2007).

V. Tuchin, “Methods and algorithm for the measurement of the optical parameters of tissues,” in Tissue Optics: Light Scattering Method and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007), pp 144–191.

2006 (2)

J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11, 040504 (2006).
[CrossRef] [PubMed]

H. R. Shao, Y. H. He, W. Li, and H. Ma, “Polarization-degree imaging contrast in turbid media: a quantitative study,” Appl. Opt. 45, 4491–4496 (2006).
[CrossRef] [PubMed]

2005 (2)

2003 (2)

S. P. Morgan and I. M. Stockford, “Surface-reflection elimination in polarization imaging of superficial tissue,” Opt. Lett. 28, 114–116 (2003).
[CrossRef] [PubMed]

A. Kienle, F. Forster, R. Diebolder, and R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
[CrossRef] [PubMed]

2002 (2)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef] [PubMed]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef] [PubMed]

2000 (2)

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873–2886 (2000).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129(2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1997 (1)

1995 (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

1994 (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

1992 (2)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992).
[CrossRef]

1990 (1)

1981 (1)

H. C. van de Hulst, “Circular cylinders,” in Light Scattering by Small Particles (Dover, 1981), Chap. 15, pp. 297–328.

Aizu, Y.

T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17, 223–229 (2010).
[CrossRef]

Alfano, R. R.

Arakawa, N.

T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17, 223–229 (2010).
[CrossRef]

Backman, V.

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Demos, S. G.

Diebolder, R.

A. Kienle, F. Forster, R. Diebolder, and R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
[CrossRef] [PubMed]

Essenpreis, M.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873–2886 (2000).
[CrossRef] [PubMed]

Everett, M. J.

Farrell, T. J.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873–2886 (2000).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Forster, F.

A. Kienle, F. Forster, R. Diebolder, and R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
[CrossRef] [PubMed]

Gao, Q.

Garcia, N.

N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992).
[CrossRef]

Genack, A. Z.

N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992).
[CrossRef]

Gerrard, D. E.

J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11, 040504 (2006).
[CrossRef] [PubMed]

He, H.

He, Y.

He, Y. H.

R. Liao, N. Zeng, X. Y. Jiang, D. Z. Li, T. Yun, Y. H. He, and H. Ma, “A rotating linear polarization imaging technique for anisotropic tissues,” J. Biomed. Opt. 15, 030614 (2010).
[CrossRef]

X. Y. Jiang, N. Zeng, Y. H. He, and H. Ma, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659–663 (2007).

H. R. Shao, Y. H. He, W. Li, and H. Ma, “Polarization-degree imaging contrast in turbid media: a quantitative study,” Appl. Opt. 45, 4491–4496 (2006).
[CrossRef] [PubMed]

Hermann, M.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873–2886 (2000).
[CrossRef] [PubMed]

Hibst, R.

A. Kienle, F. Forster, R. Diebolder, and R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
[CrossRef] [PubMed]

Jacques, S. L.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129(2000).
[CrossRef] [PubMed]

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Jiang, X.

Jiang, X. Y.

R. Liao, N. Zeng, X. Y. Jiang, D. Z. Li, T. Yun, Y. H. He, and H. Ma, “A rotating linear polarization imaging technique for anisotropic tissues,” J. Biomed. Opt. 15, 030614 (2010).
[CrossRef]

X. Y. Jiang, N. Zeng, Y. H. He, and H. Ma, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659–663 (2007).

Kienle, A.

A. Kienle, F. Forster, R. Diebolder, and R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
[CrossRef] [PubMed]

Kim, Y. L.

Krämer, U.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873–2886 (2000).
[CrossRef] [PubMed]

Lee, K.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129(2000).
[CrossRef] [PubMed]

Li, D.

Li, D. Z.

R. Liao, N. Zeng, X. Y. Jiang, D. Z. Li, T. Yun, Y. H. He, and H. Ma, “A rotating linear polarization imaging technique for anisotropic tissues,” J. Biomed. Opt. 15, 030614 (2010).
[CrossRef]

Li, W.

Li, X.

Liao, R.

Lin, S.-P.

Lisyansky, A. A.

N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992).
[CrossRef]

Liu, Y.

Ma, H.

Maeda, T.

T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17, 223–229 (2010).
[CrossRef]

Maitland, D. J.

Marquez, G.

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Morgan, S. P.

Nickell, S.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873–2886 (2000).
[CrossRef] [PubMed]

Nothdurft, R.

Patterson, M. S.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873–2886 (2000).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Peli, E.

Ranasinghesagara, J. C.

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129(2000).
[CrossRef] [PubMed]

Sanharan, V.

Schmitt, J. M.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Schwartz, J. A.

Shao, H. R.

Shuaib, A.

Stockford, I. M.

Takahashi, M.

T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17, 223–229 (2010).
[CrossRef]

Thomsen, S. L.

Tuchin, V.

V. Tuchin, “Methods and algorithm for the measurement of the optical parameters of tissues,” in Tissue Optics: Light Scattering Method and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007), pp 144–191.

van de Hulst, H. C.

H. C. van de Hulst, “Circular cylinders,” in Light Scattering by Small Particles (Dover, 1981), Chap. 15, pp. 297–328.

Walsh, J. T.

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Wang, L. V.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef] [PubMed]

G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–804 (1998).
[CrossRef]

Wang, X.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef] [PubMed]

Weaver, A.

J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11, 040504 (2006).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Xia, J.

J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11, 040504 (2006).
[CrossRef] [PubMed]

Yao, G.

Yun, T.

Zeng, N.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Appl. Opt. (5)

Comput. Methods Programs Biomed. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

R. Liao, N. Zeng, X. Y. Jiang, D. Z. Li, T. Yun, Y. H. He, and H. Ma, “A rotating linear polarization imaging technique for anisotropic tissues,” J. Biomed. Opt. 15, 030614 (2010).
[CrossRef]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef] [PubMed]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef] [PubMed]

J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11, 040504 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Lasers Surg. Med. (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129(2000).
[CrossRef] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Opt. Rev. (1)

T. Maeda, N. Arakawa, M. Takahashi, and Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17, 223–229 (2010).
[CrossRef]

Phys. Med. Biol. (2)

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873–2886 (2000).
[CrossRef] [PubMed]

A. Kienle, F. Forster, R. Diebolder, and R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7–N14 (2003).
[CrossRef] [PubMed]

Phys. Rev. B (1)

N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992).
[CrossRef]

Phys. Rev. E (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Prog. Biochem. Biophys. (1)

X. Y. Jiang, N. Zeng, Y. H. He, and H. Ma, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659–663 (2007).

Other (2)

V. Tuchin, “Methods and algorithm for the measurement of the optical parameters of tissues,” in Tissue Optics: Light Scattering Method and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007), pp 144–191.

H. C. van de Hulst, “Circular cylinders,” in Light Scattering by Small Particles (Dover, 1981), Chap. 15, pp. 297–328.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of the experimental setup for LDPI, DOLPI, and RLPI.

Fig. 2
Fig. 2

Schematic diagram of the two-layer sphere–cylinder sample.

Fig. 3
Fig. 3

Experimental contrast curves of DP, DOP, A, B, and G with different z d . The vertical line locates where z d is equal to z 0 of DOP.

Fig. 4
Fig. 4

Simulated contrast curves of DP, DOP, A, B, and G with different z d .

Fig. 5
Fig. 5

Experimental contrast curves of (a) DOP and (b) DP at different θ i . The corresponding (c)  z 0 and (d) DOP at z d = 0 are plotted as functions of θ i .

Fig. 6
Fig. 6

z 0 of DP, DOP, and G versus μ s and g of medium-1. For (a) and (b), z 0 is normalized by l of medium-1 and for (c), z 0 is normalized by l t . For (a), g = 0.93 ; and for (b)and (c), μ s = 30 cm 1 .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

LDP ( θ i , θ s ) = 1 2 I in * A cos ( 4 θ s φ 1 ) + B * cos [ 2 θ i φ 2 ( θ s ) ] + 1 2 I in * C * cos ( 2 θ s φ 3 ) .
DP = I ( θ i , θ i ) I ( θ i , θ i + π / 2 ) ,
DOP = I ( θ i , θ i ) I ( θ i , θ i + π / 2 ) I ( θ i , θ i ) + I ( θ i , θ i + π / 2 ) .
contrast = | i tar i bg i tar + i bg | ,

Metrics