Abstract

The generation of near-IR surface plasmon resonance in gold-coated tilted fiber Bragg gratings is strongly dependent on both the polarization state of the transmission light and the property of confining materials (including the coating materials and surrounding media). These dependencies can be advantageously used to demodulate the amplitude spectrum and retrieve the surrounding refractive index. In this paper, we present an automated demodulation technique that measures the surrounding refractive index by comparing the differential amplitude of resonance peaks near the plasmon attenuation for two orthogonal amplitude spectra recorded in the same operating conditions. A mean sensitivity of more than 500nm per refractive index unit is reported. This new refractive index measurement method is shown to be accurate to 5×105 over a full range of 0.01 in water solutions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
    [CrossRef]
  2. T. Guo, H.-Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17, 5736–5742 (2009).
    [CrossRef] [PubMed]
  3. G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
    [CrossRef]
  4. C. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46, 1142–1149(2007).
    [CrossRef] [PubMed]
  5. C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17, 2703–2705 (2005).
    [CrossRef]
  6. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. 13, 296–313 (1996).
    [CrossRef]
  7. T. Guo, C. Chen, A. Laroche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20, 635–637 (2008).
    [CrossRef]
  8. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32, 211–213(2007).
    [CrossRef] [PubMed]
  9. Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35, 637–639 (2010).
    [CrossRef] [PubMed]
  10. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Opt. Express 17, 16505–16517(2007).
  11. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?,” Appl. Opt. 46, 5456–5460(2009).
  12. R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sensors Actuators B Chem. 107, 952–956 (2005).
    [CrossRef]
  13. K.-H. Chen, J.-H. Chen, S.-W. Kuo, T.-T. Kuo, and M.-H. Lai, “Non-contact method for measuring solution concentration using surface plasmon resonance apparatus and heterodyne interferometry,” Opt. Commun. 283, 2182–2185(2010).
    [CrossRef]
  14. C. Caucheteur, Y. Shevchenko, L. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19, 1656–1664 (2011).
    [CrossRef] [PubMed]
  15. C. Caucheteur, Y. Shevchenko, L. Shao, P. Mégret, and J. Albert, “Demodulation technique for plasmonic fiber grating sensors using orthogonally polarized light states,” in Proceedings of the 21st Optical Fiber Sensors Conference (2011), paper No. 7753-354.
  16. L. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18, 11464–11471(2010).
    [CrossRef] [PubMed]

2011 (2)

C. Caucheteur, Y. Shevchenko, L. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19, 1656–1664 (2011).
[CrossRef] [PubMed]

C. Caucheteur, Y. Shevchenko, L. Shao, P. Mégret, and J. Albert, “Demodulation technique for plasmonic fiber grating sensors using orthogonally polarized light states,” in Proceedings of the 21st Optical Fiber Sensors Conference (2011), paper No. 7753-354.

2010 (3)

2009 (2)

2008 (1)

T. Guo, C. Chen, A. Laroche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20, 635–637 (2008).
[CrossRef]

2007 (3)

2005 (3)

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17, 2703–2705 (2005).
[CrossRef]

R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sensors Actuators B Chem. 107, 952–956 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[CrossRef]

2001 (1)

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

1996 (1)

Albert, J.

C. Caucheteur, Y. Shevchenko, L. Shao, P. Mégret, and J. Albert, “Demodulation technique for plasmonic fiber grating sensors using orthogonally polarized light states,” in Proceedings of the 21st Optical Fiber Sensors Conference (2011), paper No. 7753-354.

C. Caucheteur, Y. Shevchenko, L. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19, 1656–1664 (2011).
[CrossRef] [PubMed]

Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35, 637–639 (2010).
[CrossRef] [PubMed]

L. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18, 11464–11471(2010).
[CrossRef] [PubMed]

T. Guo, H.-Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17, 5736–5742 (2009).
[CrossRef] [PubMed]

T. Guo, C. Chen, A. Laroche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20, 635–637 (2008).
[CrossRef]

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32, 211–213(2007).
[CrossRef] [PubMed]

C. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46, 1142–1149(2007).
[CrossRef] [PubMed]

Allsop, T.

Bennion, I.

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[CrossRef]

Caucheteur, C.

C. Caucheteur, Y. Shevchenko, L. Shao, P. Mégret, and J. Albert, “Demodulation technique for plasmonic fiber grating sensors using orthogonally polarized light states,” in Proceedings of the 21st Optical Fiber Sensors Conference (2011), paper No. 7753-354.

C. Caucheteur, Y. Shevchenko, L. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19, 1656–1664 (2011).
[CrossRef] [PubMed]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17, 2703–2705 (2005).
[CrossRef]

Chan, C.

Chen, C.

Chen, J.-H.

K.-H. Chen, J.-H. Chen, S.-W. Kuo, T.-T. Kuo, and M.-H. Lai, “Non-contact method for measuring solution concentration using surface plasmon resonance apparatus and heterodyne interferometry,” Opt. Commun. 283, 2182–2185(2010).
[CrossRef]

Chen, K.-H.

K.-H. Chen, J.-H. Chen, S.-W. Kuo, T.-T. Kuo, and M.-H. Lai, “Non-contact method for measuring solution concentration using surface plasmon resonance apparatus and heterodyne interferometry,” Opt. Commun. 283, 2182–2185(2010).
[CrossRef]

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[CrossRef]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[CrossRef]

Dakka, M. A.

Erdogan, T.

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[CrossRef]

Guo, T.

T. Guo, H.-Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17, 5736–5742 (2009).
[CrossRef] [PubMed]

T. Guo, C. Chen, A. Laroche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20, 635–637 (2008).
[CrossRef]

Homola, J.

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[CrossRef]

Jafari, A.

Kajikawa, K.

R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sensors Actuators B Chem. 107, 952–956 (2005).
[CrossRef]

Krug, P. A.

Kuo, S.-W.

K.-H. Chen, J.-H. Chen, S.-W. Kuo, T.-T. Kuo, and M.-H. Lai, “Non-contact method for measuring solution concentration using surface plasmon resonance apparatus and heterodyne interferometry,” Opt. Commun. 283, 2182–2185(2010).
[CrossRef]

Kuo, T.-T.

K.-H. Chen, J.-H. Chen, S.-W. Kuo, T.-T. Kuo, and M.-H. Lai, “Non-contact method for measuring solution concentration using surface plasmon resonance apparatus and heterodyne interferometry,” Opt. Commun. 283, 2182–2185(2010).
[CrossRef]

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

Lai, M.-H.

K.-H. Chen, J.-H. Chen, S.-W. Kuo, T.-T. Kuo, and M.-H. Lai, “Non-contact method for measuring solution concentration using surface plasmon resonance apparatus and heterodyne interferometry,” Opt. Commun. 283, 2182–2185(2010).
[CrossRef]

Laroche, A.

T. Guo, C. Chen, A. Laroche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20, 635–637 (2008).
[CrossRef]

Laronche, A.

Mapps, D.

Mégret, P.

C. Caucheteur, Y. Shevchenko, L. Shao, P. Mégret, and J. Albert, “Demodulation technique for plasmonic fiber grating sensors using orthogonally polarized light states,” in Proceedings of the 21st Optical Fiber Sensors Conference (2011), paper No. 7753-354.

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17, 2703–2705 (2005).
[CrossRef]

Naraoka, R.

R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sensors Actuators B Chem. 107, 952–956 (2005).
[CrossRef]

Neal, R.

Piliarik, M.

Rehman, S.

Shao, L.

Shevchenko, Y.

Shevchenko, Y. Y.

Sipe, J. E.

Tam, H.-Y.

Thomson, D. J.

Webb, D. J.

Wuilpart, M.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (3)

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17, 2703–2705 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[CrossRef]

T. Guo, C. Chen, A. Laroche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20, 635–637 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

Opt. Commun. (1)

K.-H. Chen, J.-H. Chen, S.-W. Kuo, T.-T. Kuo, and M.-H. Lai, “Non-contact method for measuring solution concentration using surface plasmon resonance apparatus and heterodyne interferometry,” Opt. Commun. 283, 2182–2185(2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Sensors Actuators B Chem. (1)

R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sensors Actuators B Chem. 107, 952–956 (2005).
[CrossRef]

Other (1)

C. Caucheteur, Y. Shevchenko, L. Shao, P. Mégret, and J. Albert, “Demodulation technique for plasmonic fiber grating sensors using orthogonally polarized light states,” in Proceedings of the 21st Optical Fiber Sensors Conference (2011), paper No. 7753-354.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch of the demodulation technique used to interrogate SPR sensor.

Fig. 2
Fig. 2

Orthogonal transmitted amplitude spectra with SPR signature maximized (state x) and minimized (state y) for the refractive index of (a)  1.33 and (b)  1.39 ( n ref ).

Fig. 3
Fig. 3

Evolution of transmitted amplitude spectrum (a) for the polarization state x and (b) for the polarization state y as a function of Δ n .

Fig. 4
Fig. 4

Zoom on the plasmon resonance with cladding mode resonances detection (dots in x spectrum and triangles in y spectrum).

Fig. 5
Fig. 5

Differential wavelength of corresponding cladding mode resonances for two orthogonal polarization states as a function of the wavelength.

Fig. 6
Fig. 6

Differential amplitude of corresponding cladding mode resonances for two orthogonal polarization states as a function of the wavelength.

Fig. 7
Fig. 7

Evolution of Δ A x , y around 1560 nm as a function of the SRI ( Δ n ) and its detection threshold ( Δ A x , y = 8 dB ).

Fig. 8
Fig. 8

Wavelength shift of Δ A x , y as a function of the SRI ( Δ n ). Inset: zoom around Δ n = 3.5 × 10 3 to better identify the error bars.

Metrics