Abstract

We present the application of the shape-from-silhouette technique to reconstruct the three-dimensional profile of ancient handworks from their x-ray absorption images. The acquisition technique is similar to tomography, since the images are taken all around the object while it is rotated. Some reference points are placed on a small and light structure corotating with the object, and are acquired on the images for calibration and registration. The reconstruction algorithm gives finally the three-dimensional appearance of the handwork. We present the analysis of a bronze pendant of VI–VII century B.C. (Venetic area, Italy) completely hidden by corrosion products. The three-dimensional reconstruction shows that the pendant is a very elaborated piece, with two embraced figures that were completely invisible at the excavation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Kalender, Computed Tomography (Publicis, 2005).
  2. M. Uda, G. Demortier, and I. Nakai, X-Rays for Archeology (Springer, 2005).
    [CrossRef]
  3. F. Casali, “X-ray and neutron digital radiography and computed tomography for cultural heritage,” in Physical Techniques in the Study of Art, Archaeology and Cultural Heritage, D.Bradley and D.Creagh, eds. (Elsevier, 2006), Chapter 2.
    [CrossRef]
  4. A. Laurentini, “The visual hull concept for silhouette-based image understanding,” IEEE Trans. Pattern Anal. Machine Intell. 16, 150–162 (1994).
    [CrossRef]
  5. A. Laurentini, “How many 2D silhouettes does it take to reconstruct a 3D object?,” Comput. Vis. Image Und. 67, 81–87(1997).
    [CrossRef]
  6. L. Poletto, M. Caldon, G. Tondello, and A. Megighian, “A system for high-resolution X-ray phase-contrast imaging and tomography of biological specimens,” Proc. SPIE 7078, 70781P (2008).
    [CrossRef]
  7. M. R. Pinasco, E. Stagno, M. G. Ienco, P. Piccardo, R. Macellari, and F. Fiori, “Manufacturing fifth century B.C. certosa brooches,” J. Min. Metals Mater. Soc. 52, 13–15(2000).
    [CrossRef]
  8. A. J. Nijboer, “Italy and the Levant during the late Bronze and Iron Age (1200-750/700 B.C.),” in Beyond the Homeland: Markers in Phoenician Chronology, C.Sagona, ed., Ancient Near Eastern Studies Supplement Series (Peeters Publishers, 2008), Vol.  28, pp. 423–460.
  9. W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH 2000 Proceedings (Association for Computing Machinery (ACM), 2000), pp. 369–374.
  10. D. Snow, P. Viola, and R. Zabih, “Exact voxel occupancy with graph cuts,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2000), Vol.  2, pp. 345–352.
    [CrossRef]
  11. R. Drost, D. C. Munson, and A. C. Singer, “A shape from silhouette approach to imaging ocean mines,” Proc. SPIE 4488, pp. 115–122 (2001).
    [CrossRef]
  12. Y. Yemez and F. Schmitt, “3D reconstruction of real objects with high resolution shape and texture,” Image Vision Comput. 22, 1137–1153 (2004).
    [CrossRef]
  13. C. R. Giardina and E. R. Dougherty, Morphological Methods in Image and Signal Processing (Prentice Hall, 1988).

2008 (1)

L. Poletto, M. Caldon, G. Tondello, and A. Megighian, “A system for high-resolution X-ray phase-contrast imaging and tomography of biological specimens,” Proc. SPIE 7078, 70781P (2008).
[CrossRef]

2004 (1)

Y. Yemez and F. Schmitt, “3D reconstruction of real objects with high resolution shape and texture,” Image Vision Comput. 22, 1137–1153 (2004).
[CrossRef]

2001 (1)

R. Drost, D. C. Munson, and A. C. Singer, “A shape from silhouette approach to imaging ocean mines,” Proc. SPIE 4488, pp. 115–122 (2001).
[CrossRef]

2000 (1)

M. R. Pinasco, E. Stagno, M. G. Ienco, P. Piccardo, R. Macellari, and F. Fiori, “Manufacturing fifth century B.C. certosa brooches,” J. Min. Metals Mater. Soc. 52, 13–15(2000).
[CrossRef]

1997 (1)

A. Laurentini, “How many 2D silhouettes does it take to reconstruct a 3D object?,” Comput. Vis. Image Und. 67, 81–87(1997).
[CrossRef]

1994 (1)

A. Laurentini, “The visual hull concept for silhouette-based image understanding,” IEEE Trans. Pattern Anal. Machine Intell. 16, 150–162 (1994).
[CrossRef]

Buehler, C.

W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH 2000 Proceedings (Association for Computing Machinery (ACM), 2000), pp. 369–374.

Caldon, M.

L. Poletto, M. Caldon, G. Tondello, and A. Megighian, “A system for high-resolution X-ray phase-contrast imaging and tomography of biological specimens,” Proc. SPIE 7078, 70781P (2008).
[CrossRef]

Casali, F.

F. Casali, “X-ray and neutron digital radiography and computed tomography for cultural heritage,” in Physical Techniques in the Study of Art, Archaeology and Cultural Heritage, D.Bradley and D.Creagh, eds. (Elsevier, 2006), Chapter 2.
[CrossRef]

Demortier, G.

M. Uda, G. Demortier, and I. Nakai, X-Rays for Archeology (Springer, 2005).
[CrossRef]

Dougherty, E. R.

C. R. Giardina and E. R. Dougherty, Morphological Methods in Image and Signal Processing (Prentice Hall, 1988).

Drost, R.

R. Drost, D. C. Munson, and A. C. Singer, “A shape from silhouette approach to imaging ocean mines,” Proc. SPIE 4488, pp. 115–122 (2001).
[CrossRef]

Fiori, F.

M. R. Pinasco, E. Stagno, M. G. Ienco, P. Piccardo, R. Macellari, and F. Fiori, “Manufacturing fifth century B.C. certosa brooches,” J. Min. Metals Mater. Soc. 52, 13–15(2000).
[CrossRef]

Giardina, C. R.

C. R. Giardina and E. R. Dougherty, Morphological Methods in Image and Signal Processing (Prentice Hall, 1988).

Gortler, S.

W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH 2000 Proceedings (Association for Computing Machinery (ACM), 2000), pp. 369–374.

Ienco, M. G.

M. R. Pinasco, E. Stagno, M. G. Ienco, P. Piccardo, R. Macellari, and F. Fiori, “Manufacturing fifth century B.C. certosa brooches,” J. Min. Metals Mater. Soc. 52, 13–15(2000).
[CrossRef]

Kalender, W. A.

W. A. Kalender, Computed Tomography (Publicis, 2005).

Laurentini, A.

A. Laurentini, “How many 2D silhouettes does it take to reconstruct a 3D object?,” Comput. Vis. Image Und. 67, 81–87(1997).
[CrossRef]

A. Laurentini, “The visual hull concept for silhouette-based image understanding,” IEEE Trans. Pattern Anal. Machine Intell. 16, 150–162 (1994).
[CrossRef]

Macellari, R.

M. R. Pinasco, E. Stagno, M. G. Ienco, P. Piccardo, R. Macellari, and F. Fiori, “Manufacturing fifth century B.C. certosa brooches,” J. Min. Metals Mater. Soc. 52, 13–15(2000).
[CrossRef]

Matusik, W.

W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH 2000 Proceedings (Association for Computing Machinery (ACM), 2000), pp. 369–374.

McMillan, L.

W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH 2000 Proceedings (Association for Computing Machinery (ACM), 2000), pp. 369–374.

Megighian, A.

L. Poletto, M. Caldon, G. Tondello, and A. Megighian, “A system for high-resolution X-ray phase-contrast imaging and tomography of biological specimens,” Proc. SPIE 7078, 70781P (2008).
[CrossRef]

Munson, D. C.

R. Drost, D. C. Munson, and A. C. Singer, “A shape from silhouette approach to imaging ocean mines,” Proc. SPIE 4488, pp. 115–122 (2001).
[CrossRef]

Nakai, I.

M. Uda, G. Demortier, and I. Nakai, X-Rays for Archeology (Springer, 2005).
[CrossRef]

Nijboer, A. J.

A. J. Nijboer, “Italy and the Levant during the late Bronze and Iron Age (1200-750/700 B.C.),” in Beyond the Homeland: Markers in Phoenician Chronology, C.Sagona, ed., Ancient Near Eastern Studies Supplement Series (Peeters Publishers, 2008), Vol.  28, pp. 423–460.

Piccardo, P.

M. R. Pinasco, E. Stagno, M. G. Ienco, P. Piccardo, R. Macellari, and F. Fiori, “Manufacturing fifth century B.C. certosa brooches,” J. Min. Metals Mater. Soc. 52, 13–15(2000).
[CrossRef]

Pinasco, M. R.

M. R. Pinasco, E. Stagno, M. G. Ienco, P. Piccardo, R. Macellari, and F. Fiori, “Manufacturing fifth century B.C. certosa brooches,” J. Min. Metals Mater. Soc. 52, 13–15(2000).
[CrossRef]

Poletto, L.

L. Poletto, M. Caldon, G. Tondello, and A. Megighian, “A system for high-resolution X-ray phase-contrast imaging and tomography of biological specimens,” Proc. SPIE 7078, 70781P (2008).
[CrossRef]

Raskar, R.

W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH 2000 Proceedings (Association for Computing Machinery (ACM), 2000), pp. 369–374.

Schmitt, F.

Y. Yemez and F. Schmitt, “3D reconstruction of real objects with high resolution shape and texture,” Image Vision Comput. 22, 1137–1153 (2004).
[CrossRef]

Singer, A. C.

R. Drost, D. C. Munson, and A. C. Singer, “A shape from silhouette approach to imaging ocean mines,” Proc. SPIE 4488, pp. 115–122 (2001).
[CrossRef]

Snow, D.

D. Snow, P. Viola, and R. Zabih, “Exact voxel occupancy with graph cuts,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2000), Vol.  2, pp. 345–352.
[CrossRef]

Stagno, E.

M. R. Pinasco, E. Stagno, M. G. Ienco, P. Piccardo, R. Macellari, and F. Fiori, “Manufacturing fifth century B.C. certosa brooches,” J. Min. Metals Mater. Soc. 52, 13–15(2000).
[CrossRef]

Tondello, G.

L. Poletto, M. Caldon, G. Tondello, and A. Megighian, “A system for high-resolution X-ray phase-contrast imaging and tomography of biological specimens,” Proc. SPIE 7078, 70781P (2008).
[CrossRef]

Uda, M.

M. Uda, G. Demortier, and I. Nakai, X-Rays for Archeology (Springer, 2005).
[CrossRef]

Viola, P.

D. Snow, P. Viola, and R. Zabih, “Exact voxel occupancy with graph cuts,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2000), Vol.  2, pp. 345–352.
[CrossRef]

Yemez, Y.

Y. Yemez and F. Schmitt, “3D reconstruction of real objects with high resolution shape and texture,” Image Vision Comput. 22, 1137–1153 (2004).
[CrossRef]

Zabih, R.

D. Snow, P. Viola, and R. Zabih, “Exact voxel occupancy with graph cuts,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2000), Vol.  2, pp. 345–352.
[CrossRef]

Comput. Vis. Image Und. (1)

A. Laurentini, “How many 2D silhouettes does it take to reconstruct a 3D object?,” Comput. Vis. Image Und. 67, 81–87(1997).
[CrossRef]

IEEE Trans. Pattern Anal. Machine Intell. (1)

A. Laurentini, “The visual hull concept for silhouette-based image understanding,” IEEE Trans. Pattern Anal. Machine Intell. 16, 150–162 (1994).
[CrossRef]

Image Vision Comput. (1)

Y. Yemez and F. Schmitt, “3D reconstruction of real objects with high resolution shape and texture,” Image Vision Comput. 22, 1137–1153 (2004).
[CrossRef]

J. Min. Metals Mater. Soc. (1)

M. R. Pinasco, E. Stagno, M. G. Ienco, P. Piccardo, R. Macellari, and F. Fiori, “Manufacturing fifth century B.C. certosa brooches,” J. Min. Metals Mater. Soc. 52, 13–15(2000).
[CrossRef]

Proc. SPIE (2)

L. Poletto, M. Caldon, G. Tondello, and A. Megighian, “A system for high-resolution X-ray phase-contrast imaging and tomography of biological specimens,” Proc. SPIE 7078, 70781P (2008).
[CrossRef]

R. Drost, D. C. Munson, and A. C. Singer, “A shape from silhouette approach to imaging ocean mines,” Proc. SPIE 4488, pp. 115–122 (2001).
[CrossRef]

Other (7)

C. R. Giardina and E. R. Dougherty, Morphological Methods in Image and Signal Processing (Prentice Hall, 1988).

W. A. Kalender, Computed Tomography (Publicis, 2005).

M. Uda, G. Demortier, and I. Nakai, X-Rays for Archeology (Springer, 2005).
[CrossRef]

F. Casali, “X-ray and neutron digital radiography and computed tomography for cultural heritage,” in Physical Techniques in the Study of Art, Archaeology and Cultural Heritage, D.Bradley and D.Creagh, eds. (Elsevier, 2006), Chapter 2.
[CrossRef]

A. J. Nijboer, “Italy and the Levant during the late Bronze and Iron Age (1200-750/700 B.C.),” in Beyond the Homeland: Markers in Phoenician Chronology, C.Sagona, ed., Ancient Near Eastern Studies Supplement Series (Peeters Publishers, 2008), Vol.  28, pp. 423–460.

W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH 2000 Proceedings (Association for Computing Machinery (ACM), 2000), pp. 369–374.

D. Snow, P. Viola, and R. Zabih, “Exact voxel occupancy with graph cuts,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2000), Vol.  2, pp. 345–352.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

System for x-ray analysis: a) schematic drawing of the setup; b) image of the system.

Fig. 2
Fig. 2

Image of a pendant of VI century B.C. a) as found, and b) x-ray radiography revealing its appearance.

Fig. 3
Fig. 3

Schematic illustration of the definition of the base B k of N ( k ) points associated to each of the x-ray transmission images. 1) The sequences of images with the same N ( k ) are identified and the related points are sorted. 2) The sequences previously identified are used to detect the position of the other points using parabolic approximation. Step (2) is repeated until the maximum covering is granted. 3) Final configuration: the points are sorted. Some of the tie points are generally not detected.

Fig. 4
Fig. 4

a) The object used as test target to validate the calibration algorithm. b) One of the x-ray transmission images of the object covered by plasticine and inserted in the paper box with the calibration nails. The shape of the object and of the plasticine layer are clearly visible in the x-ray image. Most of the nails are clearly detectable, with the exception of those covered by the object.

Fig. 5
Fig. 5

Different views of the reconstructed 3D model of the object shown in Fig. 5.

Fig. 6
Fig. 6

a) Change of the volume of the 3D model of the object shown in Fig. 8 caused by the noise introduced in the detection of the positions of the nails. b) Particular of the face of the nun reconstructed without introducing noise, where minimal features, such as mouth or eyes, are visible. c) 3D model generated using a noise with a variance of 20 pixels on the coordinates of nails.

Fig. 7
Fig. 7

One of the 40 x-ray images taken around the pendant before restoration to reconstruct its 3D shape. The calibration nails that have been fixed in the paper box surrounding the object are also clearly detectable, with the exception of the two nails covered by the object.

Fig. 8
Fig. 8

3D model of the pendant reconstructed by the shape- from-silhouette algorithm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x i k P k [ X i 1 ] ,
L i = [ X i T 1 0 1 × 4 x i k [ X i T 1 ] 0 1 × 4 X i T 1 ] .
L = [ L 1 L N ] ,

Metrics