Abstract

We report the focusing of a normally incident plane wave of 405nm through a Ag/dielectric annular ring structure, using finite-difference time domain analysis. We first study the dependency of the focusing efficiency on slit width when the incident wave is transmitted through a single ring whose slit is filled with a dielectric. Then, light focusing by the multiple-ring structure is investigated as a function of the dielectric thickness. It is observed that the focusing is tunable between near-field and quasi-far-field regimes in the Ag/dielectric layered annular ring structure. Also, the focal intensities are remarkably enhanced by the addition of the dielectric layer, showing a Fabry–Perot-like resonance with respect to the thickness of the dielectric layer. The controllable near-field and far-field focusing offers more flexibility for applications of future nano-optic devices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271-2276 (2007).
    [CrossRef]
  2. D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano. Lett. 6, 2279-2283 (2006).
    [CrossRef] [PubMed]
  3. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano. Lett. 4, 1085-1088 (2004).
    [CrossRef]
  4. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247-8256 (2006).
    [CrossRef] [PubMed]
  5. X. L. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. Part 1 41, 1632-1635 (2002).
    [CrossRef]
  6. D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77, 2109-2111 (2000).
    [CrossRef]
  7. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano. Lett. 5, 1726-1729 (2005).
    [CrossRef] [PubMed]
  8. Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88, 171108 (2006).
    [CrossRef]
  9. A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17, 924-932 (2009).
    [CrossRef] [PubMed]
  10. H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188-2191 (2008).
    [CrossRef]
  11. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  12. D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92, 233106 (2008).
  13. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933-1938 (2005).
    [CrossRef] [PubMed]
  14. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815-6820 (2005).
    [CrossRef] [PubMed]
  15. J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664-5670 (2006).
    [CrossRef] [PubMed]
  16. K. M. Chae, H. H. Lee, S. Y. Yim, and S. H. Park, “Evolution of electromagnetic interference through nano-metallic double-slit,” Opt. Express 12, 2870-2879 (2004).
    [CrossRef] [PubMed]

2009 (1)

2008 (2)

H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188-2191 (2008).
[CrossRef]

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92, 233106 (2008).

2007 (1)

S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271-2276 (2007).
[CrossRef]

2006 (4)

D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano. Lett. 6, 2279-2283 (2006).
[CrossRef] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247-8256 (2006).
[CrossRef] [PubMed]

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664-5670 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (2)

2002 (1)

X. L. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. Part 1 41, 1632-1635 (2002).
[CrossRef]

2000 (1)

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77, 2109-2111 (2000).
[CrossRef]

Alekseyev, L. V.

Brolo, A. G.

Chae, K. M.

Chang, C. K.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92, 233106 (2008).

Chen, C. H.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92, 233106 (2008).

Chen, S. C.

D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano. Lett. 6, 2279-2283 (2006).
[CrossRef] [PubMed]

Cheng, M.

H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188-2191 (2008).
[CrossRef]

S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271-2276 (2007).
[CrossRef]

Cheng, T. D.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92, 233106 (2008).

Crozier, K. B.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77, 2109-2111 (2000).
[CrossRef]

Dong, X. C.

Du, C. L.

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano. Lett. 4, 1085-1088 (2004).
[CrossRef]

Fletcher, D. A.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77, 2109-2111 (2000).
[CrossRef]

Gao, H. T.

Goodson, K. E.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77, 2109-2111 (2000).
[CrossRef]

Gordon, R.

Hesselink, L.

X. L. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. Part 1 41, 1632-1635 (2002).
[CrossRef]

Jacob, Z.

Kim, H. C.

H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188-2191 (2008).
[CrossRef]

S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271-2276 (2007).
[CrossRef]

Kino, G. S.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77, 2109-2111 (2000).
[CrossRef]

Ko, H.

H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188-2191 (2008).
[CrossRef]

S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271-2276 (2007).
[CrossRef]

Lee, C. K.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92, 233106 (2008).

Lee, H.

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

Lee, H. H.

Levy, U.

Lin, D. Z.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92, 233106 (2008).

Liu, Z. W.

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664-5670 (2006).
[CrossRef] [PubMed]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano. Lett. 4, 1085-1088 (2004).
[CrossRef]

Luo, X. G.

Narimanov, E.

Palanker, D. V.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77, 2109-2111 (2000).
[CrossRef]

Park, S. H.

Pikus, Y.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Quate, C. F.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77, 2109-2111 (2000).
[CrossRef]

Seo, S.

S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271-2276 (2007).
[CrossRef]

Shao, D. B.

D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano. Lett. 6, 2279-2283 (2006).
[CrossRef] [PubMed]

Shi, H. F.

Shi, X. L.

X. L. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. Part 1 41, 1632-1635 (2002).
[CrossRef]

Simanovskii, D.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77, 2109-2111 (2000).
[CrossRef]

Srituravanich, W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano. Lett. 4, 1085-1088 (2004).
[CrossRef]

Steele, J. M.

J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664-5670 (2006).
[CrossRef] [PubMed]

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Sun, C.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano. Lett. 4, 1085-1088 (2004).
[CrossRef]

Wang, C. T.

Wang, Y.

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Yanai, A.

Yeh, C. S.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92, 233106 (2008).

Yim, S. Y.

Zhang, X.

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664-5670 (2006).
[CrossRef] [PubMed]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano. Lett. 4, 1085-1088 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77, 2109-2111 (2000).
[CrossRef]

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

J. Vac. Sci. Technol. B (2)

S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271-2276 (2007).
[CrossRef]

H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188-2191 (2008).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

X. L. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. Part 1 41, 1632-1635 (2002).
[CrossRef]

Nano. Lett. (3)

D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano. Lett. 6, 2279-2283 (2006).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano. Lett. 4, 1085-1088 (2004).
[CrossRef]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

Other (2)

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92, 233106 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of the Ag/dielectric annular ring structure. The slit is filed with a dielectric with n d = 2.2 . It is illuminated by a plane wave with wavelength 405 nm . Left, top view; right, side view.

Fig. 2
Fig. 2

(a) Optical field exiting the annular slit at the x z plane, y = 4 μm when the slit width (d) is 120 nm . (b) Intensity normalized to incident beam as a function of z distance from the center point of the annular ring. (c) Focusing efficiency with respect to the slit width. (d) Dependence of propagation constant of SPs in the slit as a function of the slit width. The focusing efficiency and imaginary part of the propagation constant have maximum and minimum values at d = 60 nm , respectively.

Fig. 3
Fig. 3

Near-field and quasi-far-field focal intensities as a function of dielectric layer thickness ( t d ). Near-field focal intensities are measured at the surface of the dielectric layers. t d = 0 means that the annular slit is filled with the dielectric, but there is no dielectric layer. Inset, schematic of the three-annular-ring structure.

Fig. 4
Fig. 4

(a) Optical field exiting the annular slit at the x z plane, y = 4 μm , when the thickness of the dielectric layer ( t d ) is 80 nm . (b) Intensity distribution versus x direction at the focus of (a) ( z = 0 μm ). (c) Optical field exiting the annular slit at the x z plane, y = 4 μm , when the thickness of the dielectric layer ( t d ) is 120 nm . (d) Intensity distribution versus x direction at the focus of (c) ( z = 1.98 μm ). Note that I / I 0 represents the intensity normalized to incidence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

tanh ( β 2 k 0 2 ε d w / 2 ) = ε d β 2 k 0 2 ε m ε m β 2 k 0 2 ε d ,

Metrics