Abstract

A fast and automated approach to measuring two-photon fluorescence excitation (TPE) spectra of fluorophores with high resolution (2nm) by pulse shaping ultrabroad-bandwidth femtosecond laser pulses is demonstrated. Selective excitation in the range of 675990nm was achieved by imposing a series of specially designed phase and amplitude masks on the excitation pulses using a pulse shaper. The method eliminates the need for laser tuning and is, thus, suitable for non-laser-expert use. The TPE spectrum of Fluorescein was compared with independent measurements and the spectra of the pH-sensitive dye 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in acidic and basic environments were measured for the first time using this approach.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Goppert-Mayer, “Elementary file with two quantum fissures,” Ann. Phys. 9, 273–294 (1931).
    [CrossRef]
  2. W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
    [CrossRef]
  3. M. N. R. Ashfold and J. D. Howe, “Multiphoton spectroscopy of molecular species,” Annu. Rev. Phys. Chem. 45, 57–82 (1994).
    [CrossRef]
  4. W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  5. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
    [CrossRef] [PubMed]
  6. A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005).
    [CrossRef]
  7. W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141–155 (1997).
    [CrossRef] [PubMed]
  8. S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129, 2669–2675 (2007).
    [CrossRef] [PubMed]
  9. M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
    [CrossRef] [PubMed]
  10. D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235–243 (2001).
    [CrossRef]
  11. P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205(2000).
    [CrossRef]
  12. P. F. Tian and W. S. Warren, “Ultrafast measurement of two-photon absorption by loss modulation,” Opt. Lett. 27, 1634–1636 (2002).
    [CrossRef]
  13. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
    [CrossRef]
  14. C. Xu, J. Guild, W. W. Webb, and W. Denk, “Determination of absolute two-photon excitation cross-sections by in situ second-order autocorrelation,” Opt. Lett. 20, 2372–2374(1995).
    [CrossRef] [PubMed]
  15. P. Kaatz and D. P. Shelton, “Two-photon fluorescence cross-section measurements calibrated with hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 16, 998–1006 (1999).
    [CrossRef]
  16. R. Kapoor, C. S. Friend, and A. Patra, “Two-photon-excited absolute emission cross-sectional measurements calibrated with a luminance meter,” J. Opt. Soc. Am. B 20, 1550–1554(2003).
    [CrossRef]
  17. M. Kauert, P. C. Stoller, M. Frenz, and J. Ricka, “Absolute measurement of molecular two-photon absorption cross-sections using a fluorescence saturation technique,” Opt. Express 14, 8434–8447 (2006).
    [CrossRef] [PubMed]
  18. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550–1600 nm excitation wavelength range,” Opt. Express 16, 4029–4047 (2008).
    [CrossRef] [PubMed]
  19. J. P. Ogilvie, K. J. Kubarych, A. Alexandrou, and M. Joffre, “Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control,” Opt. Lett. 30, 911–913 (2005).
    [CrossRef] [PubMed]
  20. K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
    [CrossRef]
  21. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37, 7352–7356 (1998).
    [CrossRef]
  22. G. A. Blab, P. H. M. Lommerse, L. Cognet, G. S. Harms, and T. Schmidt, “Two-photon excitation action cross-sections of the autofluorescent proteins,” Chem. Phys. Lett. 350, 71–77(2001).
    [CrossRef]
  23. S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
    [CrossRef] [PubMed]
  24. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
    [CrossRef]
  25. B. W. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, “Pulse shaping of octave spanning femtosecond laser pulses,” Opt. Express 14, 10939–10944 (2006).
    [CrossRef] [PubMed]
  26. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. W. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
    [CrossRef]
  27. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
    [CrossRef]
  28. A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Second-harmonic generation frequency-resolved optical gating in the single-cycle regime,” IEEE J. Quantum Electron. 35, 459–478 (1999).
    [CrossRef]
  29. B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
    [CrossRef]
  30. V. V. Lozovoy, B. W. Xu, J. C. Shane, and M. Dantus, “Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields,” Phys. Rev. A 74, 041805(2006).
    [CrossRef]
  31. R. D. Jones and P. R. Callis, “A power-squared sensor for 2-photon spectroscopy and dispersion of 2nd-order coherence,” J. Appl. Phys. 64, 4301–4305 (1988).
    [CrossRef]
  32. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. USA 101, 16996–17001 (2004).
    [CrossRef] [PubMed]
  33. D. B. Spry, A. Goun, C. B. Bell III, and M. D. Fayer, “Identification and properties of the L1a and L1b states of pyranine,” J. Chem. Phys. 125, 144514 (2006).
    [CrossRef] [PubMed]
  34. V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” Chem. Phys. Chem. 6, 1970–2000 (2005).
    [CrossRef] [PubMed]

2009

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

2008

2007

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129, 2669–2675 (2007).
[CrossRef] [PubMed]

2006

2005

J. P. Ogilvie, K. J. Kubarych, A. Alexandrou, and M. Joffre, “Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control,” Opt. Lett. 30, 911–913 (2005).
[CrossRef] [PubMed]

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” Chem. Phys. Chem. 6, 1970–2000 (2005).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[CrossRef] [PubMed]

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005).
[CrossRef]

2004

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. USA 101, 16996–17001 (2004).
[CrossRef] [PubMed]

2003

2002

P. F. Tian and W. S. Warren, “Ultrafast measurement of two-photon absorption by loss modulation,” Opt. Lett. 27, 1634–1636 (2002).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[CrossRef]

S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[CrossRef] [PubMed]

2001

G. A. Blab, P. H. M. Lommerse, L. Cognet, G. S. Harms, and T. Schmidt, “Two-photon excitation action cross-sections of the autofluorescent proteins,” Chem. Phys. Lett. 350, 71–77(2001).
[CrossRef]

D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235–243 (2001).
[CrossRef]

2000

P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205(2000).
[CrossRef]

1999

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Second-harmonic generation frequency-resolved optical gating in the single-cycle regime,” IEEE J. Quantum Electron. 35, 459–478 (1999).
[CrossRef]

P. Kaatz and D. P. Shelton, “Two-photon fluorescence cross-section measurements calibrated with hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 16, 998–1006 (1999).
[CrossRef]

1998

1997

W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141–155 (1997).
[CrossRef] [PubMed]

1996

1995

1994

M. N. R. Ashfold and J. D. Howe, “Multiphoton spectroscopy of molecular species,” Annu. Rev. Phys. Chem. 45, 57–82 (1994).
[CrossRef]

1990

W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1988

R. D. Jones and P. R. Callis, “A power-squared sensor for 2-photon spectroscopy and dispersion of 2nd-order coherence,” J. Appl. Phys. 64, 4301–4305 (1988).
[CrossRef]

1961

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

1931

M. Goppert-Mayer, “Elementary file with two quantum fissures,” Ann. Phys. 9, 273–294 (1931).
[CrossRef]

Albota, M. A.

Alexandrou, A.

Anderson, H. L.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

Ashfold, M. N. R.

M. N. R. Ashfold and J. D. Howe, “Multiphoton spectroscopy of molecular species,” Annu. Rev. Phys. Chem. 45, 57–82 (1994).
[CrossRef]

Balaji, J.

P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205(2000).
[CrossRef]

Balaz, M.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

Baltuska, A.

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Second-harmonic generation frequency-resolved optical gating in the single-cycle regime,” IEEE J. Quantum Electron. 35, 459–478 (1999).
[CrossRef]

Banerjee, S.

P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205(2000).
[CrossRef]

Bell, C. B.

D. B. Spry, A. Goun, C. B. Bell III, and M. D. Fayer, “Identification and properties of the L1a and L1b states of pyranine,” J. Chem. Phys. 125, 144514 (2006).
[CrossRef] [PubMed]

Blab, G. A.

G. A. Blab, P. H. M. Lommerse, L. Cognet, G. S. Harms, and T. Schmidt, “Two-photon excitation action cross-sections of the autofluorescent proteins,” Chem. Phys. Lett. 350, 71–77(2001).
[CrossRef]

Borukhovich, I.

Callis, P. R.

R. D. Jones and P. R. Callis, “A power-squared sensor for 2-photon spectroscopy and dispersion of 2nd-order coherence,” J. Appl. Phys. 64, 4301–4305 (1988).
[CrossRef]

Chirico, G.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005).
[CrossRef]

Coello, Y.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

Cognet, L.

G. A. Blab, P. H. M. Lommerse, L. Cognet, G. S. Harms, and T. Schmidt, “Two-photon excitation action cross-sections of the autofluorescent proteins,” Chem. Phys. Lett. 350, 71–77(2001).
[CrossRef]

Collini, M.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005).
[CrossRef]

Collins, H. A.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

Comstock, M.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. USA 101, 16996–17001 (2004).
[CrossRef] [PubMed]

Dahlstedt, E.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

Dantus, M.

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. W. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
[CrossRef]

B. W. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, “Pulse shaping of octave spanning femtosecond laser pulses,” Opt. Express 14, 10939–10944 (2006).
[CrossRef] [PubMed]

B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
[CrossRef]

V. V. Lozovoy, B. W. Xu, J. C. Shane, and M. Dantus, “Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields,” Phys. Rev. A 74, 041805(2006).
[CrossRef]

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” Chem. Phys. Chem. 6, 1970–2000 (2005).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. USA 101, 16996–17001 (2004).
[CrossRef] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[CrossRef]

Dees, C.

W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141–155 (1997).
[CrossRef] [PubMed]

Dela Cruz, J. M.

B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. USA 101, 16996–17001 (2004).
[CrossRef] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[CrossRef] [PubMed]

C. Xu, J. Guild, W. W. Webb, and W. Denk, “Determination of absolute two-photon excitation cross-sections by in situ second-order autocorrelation,” Opt. Lett. 20, 2372–2374(1995).
[CrossRef] [PubMed]

W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Diaspro, A.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005).
[CrossRef]

Drobizhev, M.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550–1600 nm excitation wavelength range,” Opt. Express 16, 4029–4047 (2008).
[CrossRef] [PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

Dvornikov, A. S.

D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235–243 (2001).
[CrossRef]

Fayer, M. D.

D. B. Spry, A. Goun, C. B. Bell III, and M. D. Fayer, “Identification and properties of the L1a and L1b states of pyranine,” J. Chem. Phys. 125, 144514 (2006).
[CrossRef] [PubMed]

Fisher, W. G.

W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141–155 (1997).
[CrossRef] [PubMed]

Frenz, M.

Friend, C. S.

Garrett, C. G. B.

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

Goppert-Mayer, M.

M. Goppert-Mayer, “Elementary file with two quantum fissures,” Ann. Phys. 9, 273–294 (1931).
[CrossRef]

Goun, A.

D. B. Spry, A. Goun, C. B. Bell III, and M. D. Fayer, “Identification and properties of the L1a and L1b states of pyranine,” J. Chem. Phys. 125, 144514 (2006).
[CrossRef] [PubMed]

Guild, J.

Gunaratne, T. C.

Gunn, J. M.

Harms, G. S.

G. A. Blab, P. H. M. Lommerse, L. Cognet, G. S. Harms, and T. Schmidt, “Two-photon excitation action cross-sections of the autofluorescent proteins,” Chem. Phys. Lett. 350, 71–77(2001).
[CrossRef]

Harris, D. A.

Heikal, A. A.

S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[CrossRef] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[CrossRef] [PubMed]

Howe, J. D.

M. N. R. Ashfold and J. D. Howe, “Multiphoton spectroscopy of molecular species,” Annu. Rev. Phys. Chem. 45, 57–82 (1994).
[CrossRef]

Huang, S. H.

S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[CrossRef] [PubMed]

Isobe, K.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[CrossRef]

Joffre, M.

Jones, R. D.

R. D. Jones and P. R. Callis, “A power-squared sensor for 2-photon spectroscopy and dispersion of 2nd-order coherence,” J. Appl. Phys. 64, 4301–4305 (1988).
[CrossRef]

Kaatz, P.

Kaiser, W.

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Kannari, F.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[CrossRef]

Kapoor, R.

Kauert, M.

Kawano, H.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[CrossRef]

Kim, S.

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129, 2669–2675 (2007).
[CrossRef] [PubMed]

Kubarych, K. J.

Kuimova, M. K.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

Kumar, G. R.

P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205(2000).
[CrossRef]

Levitt, J. A.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

Lommerse, P. H. M.

G. A. Blab, P. H. M. Lommerse, L. Cognet, G. S. Harms, and T. Schmidt, “Two-photon excitation action cross-sections of the autofluorescent proteins,” Chem. Phys. Lett. 350, 71–77(2001).
[CrossRef]

Lozovoy, V. V.

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. W. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
[CrossRef]

B. W. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, “Pulse shaping of octave spanning femtosecond laser pulses,” Opt. Express 14, 10939–10944 (2006).
[CrossRef] [PubMed]

B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
[CrossRef]

V. V. Lozovoy, B. W. Xu, J. C. Shane, and M. Dantus, “Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields,” Phys. Rev. A 74, 041805(2006).
[CrossRef]

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” Chem. Phys. Chem. 6, 1970–2000 (2005).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. USA 101, 16996–17001 (2004).
[CrossRef] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[CrossRef]

Maiti, S.

P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205(2000).
[CrossRef]

Makarov, N. S.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550–1600 nm excitation wavelength range,” Opt. Express 16, 4029–4047 (2008).
[CrossRef] [PubMed]

Midorikawa, K.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[CrossRef]

Miyawaki, A.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[CrossRef]

Mizuno, H.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[CrossRef]

Ogilvie, J. P.

Ohulchanskyy, T. Y.

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129, 2669–2675 (2007).
[CrossRef] [PubMed]

Oulianov, D. A.

D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235–243 (2001).
[CrossRef]

Pandey, R. K.

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129, 2669–2675 (2007).
[CrossRef] [PubMed]

Partridge, W. P.

W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141–155 (1997).
[CrossRef] [PubMed]

Pastirk, I.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. USA 101, 16996–17001 (2004).
[CrossRef] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[CrossRef]

Patra, A.

Philip, R.

P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205(2000).
[CrossRef]

Phillips, D.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

Prasad, P. N.

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129, 2669–2675 (2007).
[CrossRef] [PubMed]

Pshenichnikov, M. S.

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Second-harmonic generation frequency-resolved optical gating in the single-cycle regime,” IEEE J. Quantum Electron. 35, 459–478 (1999).
[CrossRef]

Pudavar, H. E.

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129, 2669–2675 (2007).
[CrossRef] [PubMed]

Rebane, A.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550–1600 nm excitation wavelength range,” Opt. Express 16, 4029–4047 (2008).
[CrossRef] [PubMed]

Rentzepis, P. M.

D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235–243 (2001).
[CrossRef]

Ricka, J.

Schmidt, T.

G. A. Blab, P. H. M. Lommerse, L. Cognet, G. S. Harms, and T. Schmidt, “Two-photon excitation action cross-sections of the autofluorescent proteins,” Chem. Phys. Lett. 350, 71–77(2001).
[CrossRef]

Sengupta, P.

P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205(2000).
[CrossRef]

Sergent, N.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

Shane, J. C.

V. V. Lozovoy, B. W. Xu, J. C. Shane, and M. Dantus, “Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields,” Phys. Rev. A 74, 041805(2006).
[CrossRef]

Shelton, D. P.

Spry, D. B.

D. B. Spry, A. Goun, C. B. Bell III, and M. D. Fayer, “Identification and properties of the L1a and L1b states of pyranine,” J. Chem. Phys. 125, 144514 (2006).
[CrossRef] [PubMed]

Stoller, P. C.

Strickler, J.

W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Suda, A.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[CrossRef]

Suhling, K.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

Tanaka, M.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[CrossRef]

Tian, P. F.

Tomov, I. V.

D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235–243 (2001).
[CrossRef]

Tseng, C. H.

Wachter, E. A.

W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141–155 (1997).
[CrossRef] [PubMed]

Walowicz, K. A.

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[CrossRef]

Warren, W. S.

Webb, W.

W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Webb, W. W.

Weinacht, T.

Wiersma, D. A.

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Second-harmonic generation frequency-resolved optical gating in the single-cycle regime,” IEEE J. Quantum Electron. 35, 459–478 (1999).
[CrossRef]

Xu, B. W.

Xu, C.

Ann. Phys.

M. Goppert-Mayer, “Elementary file with two quantum fissures,” Ann. Phys. 9, 273–294 (1931).
[CrossRef]

Annu. Rev. Phys. Chem.

M. N. R. Ashfold and J. D. Howe, “Multiphoton spectroscopy of molecular species,” Annu. Rev. Phys. Chem. 45, 57–82 (1994).
[CrossRef]

Appl. Opt.

Biophys. J.

S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[CrossRef] [PubMed]

Chem. Phys. Chem.

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” Chem. Phys. Chem. 6, 1970–2000 (2005).
[CrossRef] [PubMed]

Chem. Phys. Lett.

G. A. Blab, P. H. M. Lommerse, L. Cognet, G. S. Harms, and T. Schmidt, “Two-photon excitation action cross-sections of the autofluorescent proteins,” Chem. Phys. Lett. 350, 71–77(2001).
[CrossRef]

IEEE J. Quantum Electron.

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Second-harmonic generation frequency-resolved optical gating in the single-cycle regime,” IEEE J. Quantum Electron. 35, 459–478 (1999).
[CrossRef]

J. Am. Chem. Soc.

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129, 2669–2675 (2007).
[CrossRef] [PubMed]

J. Appl. Phys.

R. D. Jones and P. R. Callis, “A power-squared sensor for 2-photon spectroscopy and dispersion of 2nd-order coherence,” J. Appl. Phys. 64, 4301–4305 (1988).
[CrossRef]

J. Chem. Phys.

D. B. Spry, A. Goun, C. B. Bell III, and M. D. Fayer, “Identification and properties of the L1a and L1b states of pyranine,” J. Chem. Phys. 125, 144514 (2006).
[CrossRef] [PubMed]

P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205(2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[CrossRef]

Nat. Methods

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[CrossRef] [PubMed]

Opt. Commun.

D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, “Observations on the measurement of two-photon absorption cross-section,” Opt. Commun. 191, 235–243 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Org. Biomol. Chem.

M. K. Kuimova, H. A. Collins, M. Balaz, E. Dahlstedt, J. A. Levitt, N. Sergent, K. Suhling, M. Drobizhev, N. S. Makarov, A. Rebane, H. L. Anderson, and D. Phillips, “Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy,” Org. Biomol. Chem. 7, 889–896 (2009).
[CrossRef] [PubMed]

Photochem. Photobiol.

W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141–155 (1997).
[CrossRef] [PubMed]

Phys. Rev. A

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[CrossRef]

V. V. Lozovoy, B. W. Xu, J. C. Shane, and M. Dantus, “Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields,” Phys. Rev. A 74, 041805(2006).
[CrossRef]

Phys. Rev. Lett.

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Proc. Natl. Acad. Sci. USA

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. USA 101, 16996–17001 (2004).
[CrossRef] [PubMed]

Q. Rev. Biophys.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006).
[CrossRef]

Science

W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. The beam from the laser oscillator enters the pulse shaper after a 1 2.5 collimation telescope is used to expand and collimate the beam. The output shaped pulses are focused onto the sample (S), which is either a KDP crystal to generate SHG light or the fluorescent solution, using a spherical mirror (SM). The SHG was separated from the fundamental light and then detected with a spectrometer to characterize the second-order nonlinear spectrum of the shaped pulses. The fluorescence signal was collected with a 40 × objective (OB) at 90 ° and focused onto the APD detection unit with a lens (L). A bandpass filter (F) that allowed the transmission of fluorescence was placed before the detection system.

Fig. 2
Fig. 2

Selective two-photon excitation by pulse shaping ultrabroad-bandwidth femtosecond laser pulses. In this experiment, the goal was to generate narrow-bandwidth second-order nonlinear spectra suitable for selective two-photon excitation. Experimental SHG spectra were used to characterize the second-order nonlinear spectra of the shaped pulses. (a) 2D contour plot showing SHG spectra obtained by amplitude shaping. The top left plot shows the fundamental (unshaped) spectrum of the laser. The lower right plot shows an example SHG spectrum obtained with amplitude shaping. (b) 2D contour plot showing SHG spectra obtained using binary phase shaping. The lower right plot shows an example SHG spectrum obtained with binary phase shaping. In all cases, spectral intensities are shown in linear scale. In the contour plots, darker regions correspond to higher spectral intensities.

Fig. 3
Fig. 3

TPE spectrum of Fluorescein at pH 13. The spectra measured by amplitude and binary phase shaping is shown in (a) and (b), respectively, together with independent measurements reported in the literature.

Fig. 4
Fig. 4

TPE spectra of HPTS in acidic and basic aqueous environments. (a) Acid–base equilibrium reaction of HPTS. (b) TPE spectra of HPTS at pH 6 measured with amplitude (circles) and binary phase shaping (squares). (c) TPE spectra of HPTS at pH 10 measured with amplitude (circles) and binary phase shaping (squares). In both figures, the one-photon absorption spectrum is plotted at twice the wavelength for comparison (solid curve).

Metrics