Abstract

We present an active null test system adapted to test lenses and wavefronts with complex shapes and strong local deformations. This system provides greater flexibility than conventional static null tests that match only a precisely positioned, individual wavefront. The system is based on a cylindrical Shack–Hartmann wavefront sensor, a commercial liquid crystal programmable phase modulator (PPM), which acts as the active null corrector, enabling the compensation of large strokes with high fidelity in a single iteration, and a spatial filter to remove unmodulated light when steep phase changes are compensated. We have evaluated the PPM’s phase response at 635nm and checked its performance by measuring its capability to generate different amounts of defocus aberration, finding root mean squared errors below λ/18 for spherical wavefronts with peak-to-valley heights of up to 78.7λ, which stands as the limit from which diffractive artifacts created by the PPM have been found to be critical under no spatial filtering. Results of a null test for a complex lens (an ophthalmic customized progressive addition lens) are presented and discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, “Ultrathin cameras using annular folded optics,” Appl. Opt. 46, 463–471 (2007).
    [CrossRef] [PubMed]
  2. D. Meister and R. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: modern progressive lens technologies,” Clin. Exp. Optom. 91, 251–264 (2008).
    [CrossRef] [PubMed]
  3. D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing,3rd ed., D.Malacara, ed. (Wiley, 2007).
    [CrossRef]
  4. H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
    [CrossRef]
  5. H. J. Tiziani, T. Haist, J. Liesener, M. Reicherter, and L. Seifert, “Application of SLMs for optical metrology,” Proc. SPIE 4457, 72–81 (2001).
    [CrossRef]
  6. C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233, 15–19(2004).
    [CrossRef]
  7. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071(2004).
    [CrossRef] [PubMed]
  8. M. T. Gruneisen, M. B. Garvin, R. C. Dymale, and J. R. Rotge, “Mosaic imaging with spatial light modulator technology,” Appl. Opt. 45, 7211–7223 (2006).
    [CrossRef] [PubMed]
  9. F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5, 174–178(1998).
    [CrossRef]
  10. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17, 11013–11025 (2009).
    [CrossRef] [PubMed]
  11. D. Malacara and A. Cornejo, “Null Ronchi test for aspherical surfaces,” Appl. Opt. 13, 1778–1780 (1974).
    [CrossRef] [PubMed]
  12. M. Ares, S. Royo, and J. Caum, “Shack–Hartmann sensor based on a cylindrical microlens array,” Opt. Lett. 32, 769–771 (2007).
    [CrossRef] [PubMed]
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: the Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).
  14. M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, “Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators,” Opt. Eng. 43, 1387–1393 (2004).
    [CrossRef]
  15. D. R. Neal, D. J. Armstrong, and W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” Proc. SPIE 2993, 211–220 (1997).
    [CrossRef]
  16. G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Shack–Hartmann wave-front measurement with a large F-number plastic microlens array,” Appl. Opt. 35, 188–192(1996).
    [CrossRef] [PubMed]

2009

2008

D. Meister and R. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: modern progressive lens technologies,” Clin. Exp. Optom. 91, 251–264 (2008).
[CrossRef] [PubMed]

2007

2006

2004

C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233, 15–19(2004).
[CrossRef]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071(2004).
[CrossRef] [PubMed]

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, “Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators,” Opt. Eng. 43, 1387–1393 (2004).
[CrossRef]

2001

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

H. J. Tiziani, T. Haist, J. Liesener, M. Reicherter, and L. Seifert, “Application of SLMs for optical metrology,” Proc. SPIE 4457, 72–81 (2001).
[CrossRef]

1998

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5, 174–178(1998).
[CrossRef]

1997

D. R. Neal, D. J. Armstrong, and W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” Proc. SPIE 2993, 211–220 (1997).
[CrossRef]

1996

1974

Ares, M.

Armstrong, D. J.

D. R. Neal, D. J. Armstrong, and W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” Proc. SPIE 2993, 211–220 (1997).
[CrossRef]

Artal, P.

Caum, J.

Cornejo, A.

Creath, K.

D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing,3rd ed., D.Malacara, ed. (Wiley, 2007).
[CrossRef]

DeSandre, L. F.

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, “Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators,” Opt. Eng. 43, 1387–1393 (2004).
[CrossRef]

Dymale, R. C.

M. T. Gruneisen, M. B. Garvin, R. C. Dymale, and J. R. Rotge, “Mosaic imaging with spatial light modulator technology,” Appl. Opt. 45, 7211–7223 (2006).
[CrossRef] [PubMed]

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, “Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators,” Opt. Eng. 43, 1387–1393 (2004).
[CrossRef]

Fernández, E. J.

Fisher, R.

D. Meister and R. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: modern progressive lens technologies,” Clin. Exp. Optom. 91, 251–264 (2008).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: the Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).

Ford, J. E.

Garvin, M. B.

Gruneisen, M. T.

M. T. Gruneisen, M. B. Garvin, R. C. Dymale, and J. R. Rotge, “Mosaic imaging with spatial light modulator technology,” Appl. Opt. 45, 7211–7223 (2006).
[CrossRef] [PubMed]

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, “Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators,” Opt. Eng. 43, 1387–1393 (2004).
[CrossRef]

Haist, T.

H. J. Tiziani, T. Haist, J. Liesener, M. Reicherter, and L. Seifert, “Application of SLMs for optical metrology,” Proc. SPIE 4457, 72–81 (2001).
[CrossRef]

Hara, T.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5, 174–178(1998).
[CrossRef]

Hofbauer, U.

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

Igasaki, Y.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5, 174–178(1998).
[CrossRef]

Inoue, T.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5, 174–178(1998).
[CrossRef]

Jitsuno, T.

Kobayashi, Y.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5, 174–178(1998).
[CrossRef]

Li, F. H.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5, 174–178(1998).
[CrossRef]

Liesener, J.

H. J. Tiziani, T. Haist, J. Liesener, M. Reicherter, and L. Seifert, “Application of SLMs for optical metrology,” Proc. SPIE 4457, 72–81 (2001).
[CrossRef]

Lubin, D. L.

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, “Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators,” Opt. Eng. 43, 1387–1393 (2004).
[CrossRef]

Malacara, D.

D. Malacara and A. Cornejo, “Null Ronchi test for aspherical surfaces,” Appl. Opt. 13, 1778–1780 (1974).
[CrossRef] [PubMed]

D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing,3rd ed., D.Malacara, ed. (Wiley, 2007).
[CrossRef]

Manzanera, S.

Meister, D.

D. Meister and R. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: modern progressive lens technologies,” Clin. Exp. Optom. 91, 251–264 (2008).
[CrossRef] [PubMed]

Morrison, R. L.

Mukohzaka, N.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5, 174–178(1998).
[CrossRef]

Nakai, S.

Nakatsuka, M.

Neal, D. R.

D. R. Neal, D. J. Armstrong, and W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” Proc. SPIE 2993, 211–220 (1997).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: the Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).

Prieto, P. M.

Pruss, C.

C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233, 15–19(2004).
[CrossRef]

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

Reichelt, S.

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

Reicherter, M.

H. J. Tiziani, T. Haist, J. Liesener, M. Reicherter, and L. Seifert, “Application of SLMs for optical metrology,” Proc. SPIE 4457, 72–81 (2001).
[CrossRef]

Rocktaschel, M.

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

Rotge, J. R.

M. T. Gruneisen, M. B. Garvin, R. C. Dymale, and J. R. Rotge, “Mosaic imaging with spatial light modulator technology,” Appl. Opt. 45, 7211–7223 (2006).
[CrossRef] [PubMed]

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, “Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators,” Opt. Eng. 43, 1387–1393 (2004).
[CrossRef]

Royo, S.

Schmit, J.

D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing,3rd ed., D.Malacara, ed. (Wiley, 2007).
[CrossRef]

Seifert, L.

H. J. Tiziani, T. Haist, J. Liesener, M. Reicherter, and L. Seifert, “Application of SLMs for optical metrology,” Proc. SPIE 4457, 72–81 (2001).
[CrossRef]

Stack, R. A.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: the Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).

Tiziani, H. J.

C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233, 15–19(2004).
[CrossRef]

H. J. Tiziani, T. Haist, J. Liesener, M. Reicherter, and L. Seifert, “Application of SLMs for optical metrology,” Proc. SPIE 4457, 72–81 (2001).
[CrossRef]

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

Toyoda, H.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5, 174–178(1998).
[CrossRef]

Tremblay, E. J.

Turner, W. T.

D. R. Neal, D. J. Armstrong, and W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” Proc. SPIE 2993, 211–220 (1997).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: the Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).

Wyant, J. C.

D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing,3rd ed., D.Malacara, ed. (Wiley, 2007).
[CrossRef]

Yoon, G. Y.

Yoshida, N.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5, 174–178(1998).
[CrossRef]

Appl. Opt.

Clin. Exp. Optom.

D. Meister and R. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: modern progressive lens technologies,” Clin. Exp. Optom. 91, 251–264 (2008).
[CrossRef] [PubMed]

Opt. Commun.

C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233, 15–19(2004).
[CrossRef]

Opt. Eng.

M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin, “Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators,” Opt. Eng. 43, 1387–1393 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5, 174–178(1998).
[CrossRef]

Proc. SPIE

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

H. J. Tiziani, T. Haist, J. Liesener, M. Reicherter, and L. Seifert, “Application of SLMs for optical metrology,” Proc. SPIE 4457, 72–81 (2001).
[CrossRef]

D. R. Neal, D. J. Armstrong, and W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” Proc. SPIE 2993, 211–220 (1997).
[CrossRef]

Other

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: the Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).

D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing,3rd ed., D.Malacara, ed. (Wiley, 2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of the active null test system for testing complex-shaped lenses. The linearly polarized wavefront transmitted by lens O is fully compensated with a liquid crystal PPM, whose molecules are parallel to the beam polarization. A telescope formed by lenses L2 and L3 conjugates the PPM with a cylindrical Shack–Hartmann sensor, which measures the wavefront.

Fig. 2
Fig. 2

Scheme characterizing the phase response of the PPM in an intensity modulation working mode. A lensless camera positioned close to the image focus of doublet L2 collects the light transmitted by an analyzer (A) for the different uniform gray-level maps displayed in the PPM. The analyzer was oriented orthogonally to linear polarizer P, which was placed at 45 ° relative to the orientation of the molecules of the PPM.

Fig. 3
Fig. 3

Sinusoidal fitting of the mean intensity (I) recorded by the camera sensor as a function of the uniform gray-level maps (G) displayed in the PPM.

Fig. 4
Fig. 4

(a) Line patterns associated with the wavefront transmitted by a Varilux Ipseo PAL custom designed for head-mover users. The line patterns were detected by the cylindrical Shack–Hartmann wavefront sensor with the PPM acting as a mirror. (b) Reconstruction of the wavefront.

Fig. 5
Fig. 5

Line pattern associated with the light that the PPM outputs when the conjugated phase map of the PAL is displayed on it (a) without and (b) with the pinhole filter introduced in the setup. (c) Reconstruction of the resulting null wavefront, which has an RMS error from an ideal flat surface of λ / 12 .

Tables (1)

Tables Icon

Table 1 PPM Performance for the Generation of Different Defocus Aberrations within the Null Test System Developed

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = I max + I min 2 I max I min 2 cos ( α G + α 2 φ 0 ) ,

Metrics