Abstract

The use of aplanatic solid immersion lenses (ASILs) made of high refractive index optical materials provides a route to wide-field high-resolution optical microscopy. We analyze the aberrations that need to be circumvented for wide-field, high-resolution imaging by hybrid optical simulations based on both ray and wave optics. The conclusions on the relationships among ASIL size, fluorescence imaging spectral width, and field of view not only guide us to design the microscopic system demonstrated in this article, but also clearly demonstrate the general design considerations necessary when applying an ASIL in fluorescence microscopy. Based on the simulation results, we develop wide-field high-resolution solid immersion fluorescence (SIF) microscopy employing an ASIL with an effective numerical aperture (NA) of 1.85. We demonstrate wide-field, high-resolution imaging of synthetic and biological samples with our SIF system. In the presence of a gap between the ASIL and the sample, we experimentally demonstrate that the effective NA of the SIF system is determined by the refractive index of the gap medium in addition to that of the ASIL material; thus, in general, degrading the resolution. Future developments of the SIF system to suit routine use and make it achieve still higher resolution by combining SIF and other microscopic techniques are proposed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
    [CrossRef]
  2. Q. Wu, L. P. Ghislain, and V. B. Elings, “Imaging with solid immersion lenses, spatial resolution, and applications,” Proc. IEEE 88, 1491–1498 (2000).
    [CrossRef]
  3. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [CrossRef]
  4. S. M. Mansfield, “Solid immersion microscopy,” Ph.D. dissertation (Stanford University, 1992).
  5. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
    [CrossRef]
  6. S. B. Ippolito, “High spatial resolution subsurface microscopy,” Ph.D. dissertation (Boston University, 2004).
  7. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
    [CrossRef]
  8. J. Zhang, “High resolution solid immersion lens microscopy and its application to surface plasmon resonance imaging,” Ph.D. dissertation (University of Nottingham, 2006).
  9. J. Zhang, C. W. See, and M. G. Somekh, “Imaging performance of wide field solid immersion lens microscopy,” Appl. Opt. 46, 4202–4208 (2007).
    [CrossRef] [PubMed]
  10. F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16, 9501–9506 (2008).
    [CrossRef] [PubMed]
  11. T. Sasaki, M. Baba, M. Yoshita, and H. Akiyama, “Application of solid immersion lens to high-resolution photoluminescence imaging of patterned GaAs quantum wells,” Jpn. J. Appl. Phys. Part 2 36, L962–L964 (1997).
    [CrossRef]
  12. M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73, 635–637 (1998).
    [CrossRef]
  13. M. Baba, M. Yoshita, T. Sasaki, and H. Akiyama, “Application of solid immersion lens to submicron resolution imaging of nano-scale quantum wells,” Opt. Rev. 6, 257–260 (1999).
    [CrossRef]
  14. M. Yoshita, K. Koyama, Y. Hayamizu, M. Baba, and H. Akiyama, “Improved high collection efficiency in fluorescence microscopy with a Weierstrass-sphere solid immersion lens,” Jpn. J. Appl. Phys. Part 2 41, L858–L860 (2002).
    [CrossRef]
  15. V. Zwiller and G. Bjork, “Improved light extraction from emitters in high refractive index materials using solid immersion lenses,” J. Appl. Phys. 92, 660–665 (2002).
    [CrossRef]
  16. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
    [PubMed]
  17. L. Wang, “High-resolution structured illumination solid immersion fluorescence microscopy,” Ph.D. dissertation (University of Nottingham, 2010).
  18. M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).
    [CrossRef]
  19. T. D. Milster, “Chromatic correction of high-performance solid immersion lens systems,” Jpn. J. Appl. Phys. Part 1 38, 1777–1779 (1999).
    [CrossRef]
  20. J. M. Geary, Introduction to Lens Design: with Practical Zemax Examples (Willmann-Bell, 2002).
  21. P. C. D. Hobbs, Building Electro-Optical Systems: Making It All Work (Wiley, 2000).
    [CrossRef]
  22. Y. N. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
    [CrossRef]
  23. R. H. Gavin, Cytoskeleton Methods and Protocols (Humana, 2009).
  24. L. Dai, I. Gregor, I. Von Der Hocht, T. Ruckstuhl, and J. Enderlein, “Measuring large numerical apertures by imaging the angular distribution of radiation of fluorescing molecules,” Opt. Express 13, 9409–9414 (2005).
    [CrossRef] [PubMed]
  25. M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, “Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy,” J. Appl. Phys. 92, 862–865 (2002).
    [CrossRef]
  26. M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
    [CrossRef]
  27. J. Zhang, M. C. Pitter, S. G. Liu, C. W. See, and M. G. Somekh, “Surface-plasmon microscopy with a two-piece solid immersion lens: bright and dark fields,” Appl. Opt. 45, 7977–7986(2006).
    [CrossRef] [PubMed]
  28. K. König, “Laser tweezers and multiphoton microscopes in life sciences,” Histochem. Cell Biol. 114, 79–92 (2000).
    [PubMed]
  29. N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials 25, 2721–2730 (2004).
    [CrossRef] [PubMed]
  30. P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, “Topographical control of cell behavior. 1. Simple step cues,” Development (Cambridge, U.K.) 99, 439–448(1987).
  31. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
    [CrossRef]
  32. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150(2000).
    [CrossRef]
  33. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.,” J. Microsc. 198, 82–87 (2000).
    [CrossRef] [PubMed]
  34. A. L. Stout and D. Axelrod, “Evanescent field excitation of fluorescence by epi-illumination microscopy,” Appl. Opt. 28, 5237–5242 (1989).
    [CrossRef] [PubMed]

2010 (1)

L. Wang, “High-resolution structured illumination solid immersion fluorescence microscopy,” Ph.D. dissertation (University of Nottingham, 2010).

2009 (1)

R. H. Gavin, Cytoskeleton Methods and Protocols (Humana, 2009).

2008 (1)

2007 (1)

2006 (2)

J. Zhang, “High resolution solid immersion lens microscopy and its application to surface plasmon resonance imaging,” Ph.D. dissertation (University of Nottingham, 2006).

J. Zhang, M. C. Pitter, S. G. Liu, C. W. See, and M. G. Somekh, “Surface-plasmon microscopy with a two-piece solid immersion lens: bright and dark fields,” Appl. Opt. 45, 7977–7986(2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

S. B. Ippolito, “High spatial resolution subsurface microscopy,” Ph.D. dissertation (Boston University, 2004).

N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials 25, 2721–2730 (2004).
[CrossRef] [PubMed]

2002 (5)

M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, “Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy,” J. Appl. Phys. 92, 862–865 (2002).
[CrossRef]

J. M. Geary, Introduction to Lens Design: with Practical Zemax Examples (Willmann-Bell, 2002).

M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).
[CrossRef]

M. Yoshita, K. Koyama, Y. Hayamizu, M. Baba, and H. Akiyama, “Improved high collection efficiency in fluorescence microscopy with a Weierstrass-sphere solid immersion lens,” Jpn. J. Appl. Phys. Part 2 41, L858–L860 (2002).
[CrossRef]

V. Zwiller and G. Bjork, “Improved light extraction from emitters in high refractive index materials using solid immersion lenses,” J. Appl. Phys. 92, 660–665 (2002).
[CrossRef]

2000 (5)

Q. Wu, L. P. Ghislain, and V. B. Elings, “Imaging with solid immersion lenses, spatial resolution, and applications,” Proc. IEEE 88, 1491–1498 (2000).
[CrossRef]

P. C. D. Hobbs, Building Electro-Optical Systems: Making It All Work (Wiley, 2000).
[CrossRef]

K. König, “Laser tweezers and multiphoton microscopes in life sciences,” Histochem. Cell Biol. 114, 79–92 (2000).
[PubMed]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150(2000).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

1999 (6)

M. Baba, M. Yoshita, T. Sasaki, and H. Akiyama, “Application of solid immersion lens to submicron resolution imaging of nano-scale quantum wells,” Opt. Rev. 6, 257–260 (1999).
[CrossRef]

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
[PubMed]

T. D. Milster, “Chromatic correction of high-performance solid immersion lens systems,” Jpn. J. Appl. Phys. Part 1 38, 1777–1779 (1999).
[CrossRef]

1998 (1)

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73, 635–637 (1998).
[CrossRef]

1997 (1)

T. Sasaki, M. Baba, M. Yoshita, and H. Akiyama, “Application of solid immersion lens to high-resolution photoluminescence imaging of patterned GaAs quantum wells,” Jpn. J. Appl. Phys. Part 2 36, L962–L964 (1997).
[CrossRef]

1996 (1)

Y. N. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
[CrossRef]

1994 (1)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

1992 (1)

S. M. Mansfield, “Solid immersion microscopy,” Ph.D. dissertation (Stanford University, 1992).

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

1989 (1)

1987 (1)

P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, “Topographical control of cell behavior. 1. Simple step cues,” Development (Cambridge, U.K.) 99, 439–448(1987).

Agard, D. A.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150(2000).
[CrossRef]

Akiyama, H.

M. Yoshita, K. Koyama, Y. Hayamizu, M. Baba, and H. Akiyama, “Improved high collection efficiency in fluorescence microscopy with a Weierstrass-sphere solid immersion lens,” Jpn. J. Appl. Phys. Part 2 41, L858–L860 (2002).
[CrossRef]

M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, “Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy,” J. Appl. Phys. 92, 862–865 (2002).
[CrossRef]

M. Baba, M. Yoshita, T. Sasaki, and H. Akiyama, “Application of solid immersion lens to submicron resolution imaging of nano-scale quantum wells,” Opt. Rev. 6, 257–260 (1999).
[CrossRef]

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
[CrossRef]

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73, 635–637 (1998).
[CrossRef]

T. Sasaki, M. Baba, M. Yoshita, and H. Akiyama, “Application of solid immersion lens to high-resolution photoluminescence imaging of patterned GaAs quantum wells,” Jpn. J. Appl. Phys. Part 2 36, L962–L964 (1997).
[CrossRef]

Axelrod, D.

Baba, M.

M. Yoshita, K. Koyama, Y. Hayamizu, M. Baba, and H. Akiyama, “Improved high collection efficiency in fluorescence microscopy with a Weierstrass-sphere solid immersion lens,” Jpn. J. Appl. Phys. Part 2 41, L858–L860 (2002).
[CrossRef]

M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, “Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy,” J. Appl. Phys. 92, 862–865 (2002).
[CrossRef]

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
[CrossRef]

M. Baba, M. Yoshita, T. Sasaki, and H. Akiyama, “Application of solid immersion lens to submicron resolution imaging of nano-scale quantum wells,” Opt. Rev. 6, 257–260 (1999).
[CrossRef]

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73, 635–637 (1998).
[CrossRef]

T. Sasaki, M. Baba, M. Yoshita, and H. Akiyama, “Application of solid immersion lens to high-resolution photoluminescence imaging of patterned GaAs quantum wells,” Jpn. J. Appl. Phys. Part 2 36, L962–L964 (1997).
[CrossRef]

Bjork, G.

V. Zwiller and G. Bjork, “Improved light extraction from emitters in high refractive index materials using solid immersion lenses,” J. Appl. Phys. 92, 660–665 (2002).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
[PubMed]

Clark, P.

P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, “Topographical control of cell behavior. 1. Simple step cues,” Development (Cambridge, U.K.) 99, 439–448(1987).

Connolly, P.

P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, “Topographical control of cell behavior. 1. Simple step cues,” Development (Cambridge, U.K.) 99, 439–448(1987).

Cremer, C.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

Curtis, A. S. G.

P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, “Topographical control of cell behavior. 1. Simple step cues,” Development (Cambridge, U.K.) 99, 439–448(1987).

Dai, L.

Dow, J. A. T.

P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, “Topographical control of cell behavior. 1. Simple step cues,” Development (Cambridge, U.K.) 99, 439–448(1987).

Elings, V. B.

Q. Wu, L. P. Ghislain, and V. B. Elings, “Imaging with solid immersion lenses, spatial resolution, and applications,” Proc. IEEE 88, 1491–1498 (2000).
[CrossRef]

Enderlein, J.

Faucheux, N.

N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials 25, 2721–2730 (2004).
[CrossRef] [PubMed]

Feke, G. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

Gavin, R. H.

R. H. Gavin, Cytoskeleton Methods and Protocols (Humana, 2009).

Geary, J. M.

J. M. Geary, Introduction to Lens Design: with Practical Zemax Examples (Willmann-Bell, 2002).

Ghislain, L. P.

Q. Wu, L. P. Ghislain, and V. B. Elings, “Imaging with solid immersion lenses, spatial resolution, and applications,” Proc. IEEE 88, 1491–1498 (2000).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

Goldberg, B. B.

F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16, 9501–9506 (2008).
[CrossRef] [PubMed]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

Gregor, I.

Grober, R. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

Groth, T.

N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials 25, 2721–2730 (2004).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150(2000).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

Hayamizu, Y.

M. Yoshita, K. Koyama, Y. Hayamizu, M. Baba, and H. Akiyama, “Improved high collection efficiency in fluorescence microscopy with a Weierstrass-sphere solid immersion lens,” Jpn. J. Appl. Phys. Part 2 41, L858–L860 (2002).
[CrossRef]

Heintzmann, R.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

Hobbs, P. C. D.

P. C. D. Hobbs, Building Electro-Optical Systems: Making It All Work (Wiley, 2000).
[CrossRef]

Ippolito, S. B.

F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16, 9501–9506 (2008).
[CrossRef] [PubMed]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

S. B. Ippolito, “High spatial resolution subsurface microscopy,” Ph.D. dissertation (Boston University, 2004).

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Köklü, F. H.

König, K.

K. König, “Laser tweezers and multiphoton microscopes in life sciences,” Histochem. Cell Biol. 114, 79–92 (2000).
[PubMed]

Koyama, K.

M. Yoshita, K. Koyama, Y. Hayamizu, M. Baba, and H. Akiyama, “Improved high collection efficiency in fluorescence microscopy with a Weierstrass-sphere solid immersion lens,” Jpn. J. Appl. Phys. Part 2 41, L858–L860 (2002).
[CrossRef]

M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, “Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy,” J. Appl. Phys. 92, 862–865 (2002).
[CrossRef]

Liu, S. G.

Lutzow, K.

N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials 25, 2721–2730 (2004).
[CrossRef] [PubMed]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield, “Solid immersion microscopy,” Ph.D. dissertation (Stanford University, 1992).

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Milster, T. D.

T. D. Milster, “Chromatic correction of high-performance solid immersion lens systems,” Jpn. J. Appl. Phys. Part 1 38, 1777–1779 (1999).
[CrossRef]

Pitter, M. C.

Qin, D.

Y. N. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
[CrossRef]

Quesnel, J. I.

Ruckstuhl, T.

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Sasaki, T.

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
[CrossRef]

M. Baba, M. Yoshita, T. Sasaki, and H. Akiyama, “Application of solid immersion lens to submicron resolution imaging of nano-scale quantum wells,” Opt. Rev. 6, 257–260 (1999).
[CrossRef]

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73, 635–637 (1998).
[CrossRef]

T. Sasaki, M. Baba, M. Yoshita, and H. Akiyama, “Application of solid immersion lens to high-resolution photoluminescence imaging of patterned GaAs quantum wells,” Jpn. J. Appl. Phys. Part 2 36, L962–L964 (1997).
[CrossRef]

Schweiss, R.

N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials 25, 2721–2730 (2004).
[CrossRef] [PubMed]

Sedat, J. W.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150(2000).
[CrossRef]

See, C. W.

Somekh, M. G.

Stout, A. L.

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Tien, J.

Y. N. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
[CrossRef]

Ünlü, M. S.

F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16, 9501–9506 (2008).
[CrossRef] [PubMed]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

Vamivakas, A. N.

Von Der Hocht, I.

Wang, L.

L. Wang, “High-resolution structured illumination solid immersion fluorescence microscopy,” Ph.D. dissertation (University of Nottingham, 2010).

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).
[CrossRef]

Werner, C.

N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials 25, 2721–2730 (2004).
[CrossRef] [PubMed]

Whitesides, G. M.

Y. N. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
[CrossRef]

Wilkinson, C. D. W.

P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, “Topographical control of cell behavior. 1. Simple step cues,” Development (Cambridge, U.K.) 99, 439–448(1987).

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
[PubMed]

Wu, Q.

Q. Wu, L. P. Ghislain, and V. B. Elings, “Imaging with solid immersion lenses, spatial resolution, and applications,” Proc. IEEE 88, 1491–1498 (2000).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

Xia, Y. N.

Y. N. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
[CrossRef]

Yoshita, M.

M. Yoshita, K. Koyama, Y. Hayamizu, M. Baba, and H. Akiyama, “Improved high collection efficiency in fluorescence microscopy with a Weierstrass-sphere solid immersion lens,” Jpn. J. Appl. Phys. Part 2 41, L858–L860 (2002).
[CrossRef]

M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, “Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy,” J. Appl. Phys. 92, 862–865 (2002).
[CrossRef]

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
[CrossRef]

M. Baba, M. Yoshita, T. Sasaki, and H. Akiyama, “Application of solid immersion lens to submicron resolution imaging of nano-scale quantum wells,” Opt. Rev. 6, 257–260 (1999).
[CrossRef]

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73, 635–637 (1998).
[CrossRef]

T. Sasaki, M. Baba, M. Yoshita, and H. Akiyama, “Application of solid immersion lens to high-resolution photoluminescence imaging of patterned GaAs quantum wells,” Jpn. J. Appl. Phys. Part 2 36, L962–L964 (1997).
[CrossRef]

Zhang, J.

Zwiller, V.

V. Zwiller and G. Bjork, “Improved light extraction from emitters in high refractive index materials using solid immersion lenses,” J. Appl. Phys. 92, 660–665 (2002).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73, 635–637 (1998).
[CrossRef]

Biomaterials (1)

N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials 25, 2721–2730 (2004).
[CrossRef] [PubMed]

Development (Cambridge, U.K.) (1)

P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, “Topographical control of cell behavior. 1. Simple step cues,” Development (Cambridge, U.K.) 99, 439–448(1987).

Histochem. Cell Biol. (1)

K. König, “Laser tweezers and multiphoton microscopes in life sciences,” Histochem. Cell Biol. 114, 79–92 (2000).
[PubMed]

J. Appl. Phys. (4)

M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, “Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy,” J. Appl. Phys. 92, 862–865 (2002).
[CrossRef]

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
[CrossRef]

V. Zwiller and G. Bjork, “Improved light extraction from emitters in high refractive index materials using solid immersion lenses,” J. Appl. Phys. 92, 660–665 (2002).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. Part 1 (1)

T. D. Milster, “Chromatic correction of high-performance solid immersion lens systems,” Jpn. J. Appl. Phys. Part 1 38, 1777–1779 (1999).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (2)

T. Sasaki, M. Baba, M. Yoshita, and H. Akiyama, “Application of solid immersion lens to high-resolution photoluminescence imaging of patterned GaAs quantum wells,” Jpn. J. Appl. Phys. Part 2 36, L962–L964 (1997).
[CrossRef]

M. Yoshita, K. Koyama, Y. Hayamizu, M. Baba, and H. Akiyama, “Improved high collection efficiency in fluorescence microscopy with a Weierstrass-sphere solid immersion lens,” Jpn. J. Appl. Phys. Part 2 41, L858–L860 (2002).
[CrossRef]

Langmuir (1)

Y. N. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
[CrossRef]

Opt. Express (2)

Opt. Rev. (1)

M. Baba, M. Yoshita, T. Sasaki, and H. Akiyama, “Application of solid immersion lens to submicron resolution imaging of nano-scale quantum wells,” Opt. Rev. 6, 257–260 (1999).
[CrossRef]

Proc. IEEE (1)

Q. Wu, L. P. Ghislain, and V. B. Elings, “Imaging with solid immersion lenses, spatial resolution, and applications,” Proc. IEEE 88, 1491–1498 (2000).
[CrossRef]

Proc. SPIE (2)

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150(2000).
[CrossRef]

Other (9)

R. H. Gavin, Cytoskeleton Methods and Protocols (Humana, 2009).

J. M. Geary, Introduction to Lens Design: with Practical Zemax Examples (Willmann-Bell, 2002).

P. C. D. Hobbs, Building Electro-Optical Systems: Making It All Work (Wiley, 2000).
[CrossRef]

S. M. Mansfield, “Solid immersion microscopy,” Ph.D. dissertation (Stanford University, 1992).

J. Zhang, “High resolution solid immersion lens microscopy and its application to surface plasmon resonance imaging,” Ph.D. dissertation (University of Nottingham, 2006).

S. B. Ippolito, “High spatial resolution subsurface microscopy,” Ph.D. dissertation (Boston University, 2004).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
[PubMed]

L. Wang, “High-resolution structured illumination solid immersion fluorescence microscopy,” Ph.D. dissertation (University of Nottingham, 2010).

M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Ray propagation model of the combination of an ASIL and a conventional objective lens. r is the radius of the ASIL, n is its refractive index, n is the refractive index of the medium (usually air) between the ASIL and the conventional objective lens, and f is the focal length of the conventional objective lens. For the purpose of deriving the effective focal length of the ASIL-objective, the front focal plane ( F o ), the front ( P o ) and rear principal planes ( P o ) of the conventional objective, and the front ( P s ) and rear principal planes ( P s ) of the ASIL are also shown.

Fig. 2
Fig. 2

Layout of the combination of an ASIL (material, S-LAH79; diameter, 5 mm ) and an f = 12 mm diverging lens made of optical glass SF11 in ZEMAX modeling.

Fig. 3
Fig. 3

Spot diagrams showing PSF with Airy disk reference at the center wavelength (black circle) for an isotropic point source at the aplanatic point. (a) The PSF for ASIL imaging for three wavelengths: 607.8 (blue crosses) and 657.8 nm (red squares), and the mid-wavelength, 632.8 nm , which is focused to a single axial point and therefore forms a diffraction-limited image corresponding to the Airy disk. (b) The rays focusing within the Airy disk for all the wavelengths, indicating near diffraction-limited resolution for imaging the combination of an ASIL and a diverging lens. Note the unevenly distributed pattern shows the evidence of small degrees of spherical aberration.

Fig. 4
Fig. 4

Relationship between full fluorescence imaging spectral width and NA eff (on-axis) with different ASIL sizes from the SIF simulations. ASIL material, S-LAH79; central wavelength, 632.8 nm . The curves A, B, C, D, and E correspond to the ASIL diameters shown in the figure legend. It shows that the smaller the ASIL, the broader the fluorescence imaging spectral width that can be tolerated for a given spatial resolution.

Fig. 5
Fig. 5

Relationship between FOV and NA eff with different ASIL sizes from the SIF simulations. ASIL material, S-LAH79; central wavelength, 632.8 nm . The curves A, B, C, D, and E correspond to the ASIL diameter/spectral width combinations shown in the figure legend. It shows that the greater the size of the ASIL, the larger the effective FOV we can achieve. The dotted curve depicts the relationship between the FOVs and NA eff when ASIL diameter is 5 mm and full imaging spectral width is 3 nm , which was adopted in our experiments.

Fig. 6
Fig. 6

Schematic of the SIF system applying an ASIL. The light red shading illustrates the Köhler illumination beam, the dark red shading indicates the fluorescent light forming the specimen images, and the green dashed lines represent the fluorescent light forming the back focal plane (BFP) images. The enlarged ASIL configuration is also shown in the inset.

Fig. 7
Fig. 7

(a) 20 nm fluorescent bead image obtained with the SIF system and (b) a simulated 20 nm fluorescent bead image from a NA 1.85 microscope system.

Fig. 8
Fig. 8

Two-dimensional correlation coefficient data and quadratic fitting curve between the experimental SIF image and a series of simulated images of a 20 nm bead under different NA; the peak of the curve is at ( 1.85 ± 0.01 , 0.759 ± 0.0005 ). We can conclude the practical NA of the SIF system is 1.85 ± 0.01 .

Fig. 9
Fig. 9

Images of a 679 nm pitch dye grid obtained with (a) an AFM and (b) the SIF system . The 191 ± 30 nm wide horizontal row structure can be clearly seen in the SIF image.

Fig. 10
Fig. 10

(a) Fluorescent image of Jurkat cell F-actin cytoskeleton obtained with the SIF system. Filopodia of around 200 nm width are observed in the upper right of the cell margins, as indicated by the dashed box, which is shown as the enlarged figure in (b).

Fig. 11
Fig. 11

(a) BFP image captured when imaging a 679 nm pitch dye grid in the SIF system and (b) its cross-sectional profile. The estimated NA from this distribution approaches 2 by measuring the distance from edge to edge.

Fig. 12
Fig. 12

(a)–(d) Series of images of a 170 nm fluorescent bead obtained with the SIF system and (e)–(g) their BFP images with different gap medium. From (a) to (d), the gap medium is air ( n = 1 ), distilled water ( n = 1.33 ), immersion oil ( n = 1.518 ), and high- index liquid ( n = 1.78 ), respectively, and the corresponding measured NAs are 1.05, 1.28, 1.47, and 1.7 in sequence. From (e) to (g), the NAs measured from BFP are 1, 1.3, and 1.51 respectively.

Fig. 13
Fig. 13

Schematic of the integration of an ASIL and a conventional objective lens. The ASIL is composed of an HSIL and a cover glass with certain thickness; the distance between the conventional objective lens and the HSIL is precisely set by the mechanical connection. There is no need to realign the ASIL with this configuration.

Tables (2)

Tables Icon

Table 1 Data Depicting the Relationships among ASIL Size, Full Fluorescence Imaging Spectral Width, and FOV When NA eff of the SIF is Maintained at 2 from the SIF Simulations a

Tables Icon

Table 2 Comparisons of the Refractive Indices of Gap Media, Practical NAs, and NAs Measured from BFPs When Using Different Gap Media in the SIF System

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

sin U sin U = n n ,
NA eff = n sin U = n · n sin U = n 2 sin U = n 2 NA ,
f eff = f n 2 ,
R RMS = i [ ( x i x c ) 2 + ( y i y c ) 2 ] m ,
S ( r ) = 2 × R RMS n 2 .
d = 2 f · NA ,
ϕ L = ( n 1 ) c L = ( n 1 ) · 0 = 0 ,
ϕ R = ( 1 n ) c R = 1 n r = n 1 r ,
ϕ s = ϕ L + ϕ R d n ϕ L ϕ R = 0 + ϕ R d n · 0 · ϕ R = ϕ R = n 1 r .
d = f ( r + r n ) ,
ϕ = ϕ s + ϕ o d n ϕ s ϕ o ,
ϕ = n 1 r + 1 f f ( r + r n ) 1 n 1 r 1 f = n 2 f .
f eff = 1 ϕ = f n 2 .

Metrics