Abstract

We used an optimized photonic crystal based flat lens for target detection and image reconstruction of micrometer sized objects for an operating wavelength of 1.55μm. Using numerical retrieval procedures inspired from tomography, the ability to detect subwavelength sized targets and to image metallic objects of complex shapes is shown. The relation between the reconstructed image quality and lens resolution is investigated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative of ε and μ,” Sov. Phys. - Usp. 10, 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. N. Engheta and R. W. Ziolkowski, “A positive future for double negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005).
    [CrossRef]
  4. K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
    [CrossRef]
  5. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
    [CrossRef] [PubMed]
  6. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
    [CrossRef] [PubMed]
  7. E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
    [CrossRef]
  8. T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31, 2786–2788 (2006).
    [CrossRef] [PubMed]
  9. Z. Lu, B. Miao, T. R. Hodson, C. Lin, J. A. Muralowski, and D. W. Prather, “Negative refraction imaging in a hybrid photonic crystal device at near-infrared frequencies,” Opt. Express 15, 1286–1291 (2007).
    [CrossRef] [PubMed]
  10. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys Rev. B 71, 085106 (2005).
    [CrossRef]
  11. N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
    [CrossRef]
  12. M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
    [CrossRef]
  13. C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
    [CrossRef]
  14. N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
    [CrossRef] [PubMed]
  15. B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009).
    [CrossRef] [PubMed]
  16. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
    [CrossRef]
  17. D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
    [CrossRef] [PubMed]
  18. Y. Ben-Aryeh, “Nonclassical high resolution effects produced by evanescent waves,” J. Opt. B Quant. Semiclass. Opt. 5, S553–S556 (2003).
    [CrossRef]
  19. J. B. Pendry and S. Anantha Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002).
    [CrossRef]
  20. J. B. Pendry and S. Anantha Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003).
    [CrossRef]
  21. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
    [CrossRef] [PubMed]
  22. D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?” J. Opt. Soc. Am. A 21, 122–131 (2004).
    [CrossRef]
  23. A. L. Efros and C. Li, “Electrodynamics of left-handed medium,” Solid State Phenom. 121–123, 1065–1068 (2007).
    [CrossRef]
  24. G. Wang, J. Fang, and X. T. Dong, “Refocusing of backscattered microwaves in target detection by using LHM flat lens,” Opt. Express 15, 3312–3317 (2007).
    [CrossRef] [PubMed]
  25. G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007).
    [CrossRef]
  26. G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
    [CrossRef]
  27. J. Pearce, H. Choi, D. L. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30, 1653–1655 (2005).
    [CrossRef] [PubMed]
  28. N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Opto-electron. Rev. 14, 225–232 (2006).
    [CrossRef]
  29. W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection coatings for a photonic crystal flat lens,” Opt. Lett. 34, 3532–3534 (2009).
    [CrossRef] [PubMed]
  30. X. Pan, Proceedings of the 41st Annual Meeting of the American Association of Physicists in Medicine, www.aapm.org/meetings/99AM/pdf/2806-57576.pdf (1999).
  31. G. Thomas and V. K. Govindan, “Computationally efficient filtered back-projection algorithm for tomographic image reconstruction using Walsh transform,” J. Vis. Commun. Image Rep. 17, 581–588 (2006).
    [CrossRef]
  32. G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, 2nd ed. (Academic, 1980).

2010 (3)

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

2009 (2)

2008 (3)

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
[CrossRef]

2007 (5)

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[CrossRef]

Z. Lu, B. Miao, T. R. Hodson, C. Lin, J. A. Muralowski, and D. W. Prather, “Negative refraction imaging in a hybrid photonic crystal device at near-infrared frequencies,” Opt. Express 15, 1286–1291 (2007).
[CrossRef] [PubMed]

A. L. Efros and C. Li, “Electrodynamics of left-handed medium,” Solid State Phenom. 121–123, 1065–1068 (2007).
[CrossRef]

G. Wang, J. Fang, and X. T. Dong, “Refocusing of backscattered microwaves in target detection by using LHM flat lens,” Opt. Express 15, 3312–3317 (2007).
[CrossRef] [PubMed]

G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007).
[CrossRef]

2006 (5)

G. Thomas and V. K. Govindan, “Computationally efficient filtered back-projection algorithm for tomographic image reconstruction using Walsh transform,” J. Vis. Commun. Image Rep. 17, 581–588 (2006).
[CrossRef]

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Opto-electron. Rev. 14, 225–232 (2006).
[CrossRef]

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
[CrossRef]

T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31, 2786–2788 (2006).
[CrossRef] [PubMed]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

2005 (3)

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys Rev. B 71, 085106 (2005).
[CrossRef]

N. Engheta and R. W. Ziolkowski, “A positive future for double negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005).
[CrossRef]

J. Pearce, H. Choi, D. L. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30, 1653–1655 (2005).
[CrossRef] [PubMed]

2004 (2)

D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?” J. Opt. Soc. Am. A 21, 122–131 (2004).
[CrossRef]

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

2003 (2)

Y. Ben-Aryeh, “Nonclassical high resolution effects produced by evanescent waves,” J. Opt. B Quant. Semiclass. Opt. 5, S553–S556 (2003).
[CrossRef]

J. B. Pendry and S. Anantha Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003).
[CrossRef]

2002 (2)

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef] [PubMed]

J. B. Pendry and S. Anantha Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002).
[CrossRef]

2000 (2)

D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative of ε and μ,” Sov. Phys. - Usp. 10, 509–514 (1968).
[CrossRef]

Anand, S.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Aydin, K.

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[CrossRef]

Baba, T.

Banyal, R. K.

Ben-Aryeh, Y.

Y. Ben-Aryeh, “Nonclassical high resolution effects produced by evanescent waves,” J. Opt. B Quant. Semiclass. Opt. 5, S553–S556 (2003).
[CrossRef]

Berrier, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Bulu, I.

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[CrossRef]

Casse, B. D. F.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009).
[CrossRef] [PubMed]

Choi, H.

Cluzel, B.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Croënne, C.

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

de Fornel, F.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Decoopman, T.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

Dokmeci, M. R.

Dong, X. T.

G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007).
[CrossRef]

G. Wang, J. Fang, and X. T. Dong, “Refocusing of backscattered microwaves in target detection by using LHM flat lens,” Opt. Express 15, 3312–3317 (2007).
[CrossRef] [PubMed]

Dumas, C.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

Efros, A. L.

A. L. Efros and C. Li, “Electrodynamics of left-handed medium,” Solid State Phenom. 121–123, 1065–1068 (2007).
[CrossRef]

Engheta, N.

N. Engheta and R. W. Ziolkowski, “A positive future for double negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005).
[CrossRef]

Enoch, S.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?” J. Opt. Soc. Am. A 21, 122–131 (2004).
[CrossRef]

Eom, K. S.

Fabre, N.

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
[CrossRef]

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Opto-electron. Rev. 14, 225–232 (2006).
[CrossRef]

Fang, J.

G. Wang, J. Fang, and X. T. Dong, “Refocusing of backscattered microwaves in target detection by using LHM flat lens,” Opt. Express 15, 3312–3317 (2007).
[CrossRef] [PubMed]

G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007).
[CrossRef]

Fasquel, S.

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Opto-electron. Rev. 14, 225–232 (2006).
[CrossRef]

Foteinopoulou, S.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys Rev. B 71, 085106 (2005).
[CrossRef]

François, M.

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Opto-electron. Rev. 14, 225–232 (2006).
[CrossRef]

Gaillot, D. P.

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

Garcia, N.

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef] [PubMed]

Govindan, V. K.

G. Thomas and V. K. Govindan, “Computationally efficient filtered back-projection algorithm for tomographic image reconstruction using Walsh transform,” J. Vis. Commun. Image Rep. 17, 581–588 (2006).
[CrossRef]

Gralak, B.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection coatings for a photonic crystal flat lens,” Opt. Lett. 34, 3532–3534 (2009).
[CrossRef] [PubMed]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

Gultepe, E.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

Guven, K.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys Rev. B 71, 085106 (2005).
[CrossRef]

Herman, G. T.

G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, 2nd ed. (Academic, 1980).

Hodson, T. R.

Hofman, M.

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

Huang, Y. J.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009).
[CrossRef] [PubMed]

Kroll, N.

D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
[CrossRef] [PubMed]

Lalouat, L.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Legrand, C.

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Opto-electron. Rev. 14, 225–232 (2006).
[CrossRef]

Li, C.

A. L. Efros and C. Li, “Electrodynamics of left-handed medium,” Solid State Phenom. 121–123, 1065–1068 (2007).
[CrossRef]

Lin, C.

Lippens, D.

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Opto-electron. Rev. 14, 225–232 (2006).
[CrossRef]

Lu, W. T.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009).
[CrossRef] [PubMed]

Lu, Z.

Matsumoto, T.

Maystre, D.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?” J. Opt. Soc. Am. A 21, 122–131 (2004).
[CrossRef]

Mélique, X.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Opto-electron. Rev. 14, 225–232 (2006).
[CrossRef]

Menon, L.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

Miao, B.

Mittleman, D. L.

Moussa, R.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys Rev. B 71, 085106 (2005).
[CrossRef]

Muller, M.

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Opto-electron. Rev. 14, 225–232 (2006).
[CrossRef]

Mulot, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Muralowski, J. A.

Nieto-Vesperinas, M.

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef] [PubMed]

Ozbay, E.

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[CrossRef]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys Rev. B 71, 085106 (2005).
[CrossRef]

Pan, X.

X. Pan, Proceedings of the 41st Annual Meeting of the American Association of Physicists in Medicine, www.aapm.org/meetings/99AM/pdf/2806-57576.pdf (1999).

Park, W.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Pearce, J.

Pendry, J. B.

J. B. Pendry and S. Anantha Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003).
[CrossRef]

J. B. Pendry and S. Anantha Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Perry, C. H.

Pierre, R.

Prather, D. W.

Qiu, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Ramakrishna, S. Anantha

J. B. Pendry and S. Anantha Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003).
[CrossRef]

J. B. Pendry and S. Anantha Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002).
[CrossRef]

Scherrer, G.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

Schonbrun, E.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Selvarasah, S.

Smigaj, W.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection coatings for a photonic crystal flat lens,” Opt. Lett. 34, 3532–3534 (2009).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys Rev. B 71, 085106 (2005).
[CrossRef]

Sridhar, S.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009).
[CrossRef] [PubMed]

Summers, C. J.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Swillo, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Talneau, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Tayeb, G.

W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection coatings for a photonic crystal flat lens,” Opt. Lett. 34, 3532–3534 (2009).
[CrossRef] [PubMed]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

Thomas, G.

G. Thomas and V. K. Govindan, “Computationally efficient filtered back-projection algorithm for tomographic image reconstruction using Walsh transform,” J. Vis. Commun. Image Rep. 17, 581–588 (2006).
[CrossRef]

Thylen, L.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Tuttle, G.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys Rev. B 71, 085106 (2005).
[CrossRef]

Vanbésien, O.

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Opto-electron. Rev. 14, 225–232 (2006).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative of ε and μ,” Sov. Phys. - Usp. 10, 509–514 (1968).
[CrossRef]

Wang, G.

G. Wang, J. Fang, and X. T. Dong, “Refocusing of backscattered microwaves in target detection by using LHM flat lens,” Opt. Express 15, 3312–3317 (2007).
[CrossRef] [PubMed]

G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007).
[CrossRef]

White, J.

Yamashita, T.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Zhang, L.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys Rev. B 71, 085106 (2005).
[CrossRef]

Zimdars, D.

Ziolkowski, R. W.

N. Engheta and R. W. Ziolkowski, “A positive future for double negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

N. Engheta and R. W. Ziolkowski, “A positive future for double negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005).
[CrossRef]

J. Opt. B Quant. Semiclass. Opt. (1)

Y. Ben-Aryeh, “Nonclassical high resolution effects produced by evanescent waves,” J. Opt. B Quant. Semiclass. Opt. 5, S553–S556 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Condens. Matter (2)

J. B. Pendry and S. Anantha Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002).
[CrossRef]

J. B. Pendry and S. Anantha Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003).
[CrossRef]

J. Vis. Commun. Image Rep. (1)

G. Thomas and V. K. Govindan, “Computationally efficient filtered back-projection algorithm for tomographic image reconstruction using Walsh transform,” J. Vis. Commun. Image Rep. 17, 581–588 (2006).
[CrossRef]

Opt. Commun. (2)

N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
[CrossRef]

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opto-electron. Rev. (1)

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Opto-electron. Rev. 14, 225–232 (2006).
[CrossRef]

Phys Rev. B (1)

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys Rev. B 71, 085106 (2005).
[CrossRef]

Phys. Rev. B (2)

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
[CrossRef]

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

Phys. Rev. Lett. (6)

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
[CrossRef] [PubMed]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef] [PubMed]

Solid State Phenom. (1)

A. L. Efros and C. Li, “Electrodynamics of left-handed medium,” Solid State Phenom. 121–123, 1065–1068 (2007).
[CrossRef]

Sov. Phys. - Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative of ε and μ,” Sov. Phys. - Usp. 10, 509–514 (1968).
[CrossRef]

Other (2)

X. Pan, Proceedings of the 41st Annual Meeting of the American Association of Physicists in Medicine, www.aapm.org/meetings/99AM/pdf/2806-57576.pdf (1999).

G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, 2nd ed. (Academic, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Band structure of the PC (the crossing of the light line and the second TE band at a / λ = 0.31 defines the operating point) and (b) focusing experiment at 1.55 μm for the 13-row lens described in Table 1.

Fig. 2
Fig. 2

Operating numerical setup for target detection and image reconstruction using a n = 1 flat lens.

Fig. 3
Fig. 3

Target detection and image reconstruction for a metallic crossbar at 1.55 μm : (a) reconstructed image with the flat lens, (b) reconstructed images without the flat lens, and (c) optical field in front of the lens without reconstruction. (The object to be imaged is redrawn on the upper side as a guide for the eye.)

Fig. 4
Fig. 4

Target detection and image reconstruction at 1.55 μm for (a) a 600 nm diameter metallic circle, (b) a 2.6 μm diameter metallic circle, (c) a 2 μm side metallic square, (d) a 4 μm × 1 μm metallic rectangle, and (e) an isosceles triangle (base: 2 μm ). (The object to be imaged is redrawn on the upper side as a guide for the eye.)

Fig. 5
Fig. 5

(a) Optical signals extracted in the input focusing plane for three circular target diameters: 50, 600, and 2600 nm . (b) Comparison between the optical signal recorded with and without the lens in presence of a 50 nm circular target.

Tables (1)

Tables Icon

Table 1 Photonic Crystal, Antireflection Coatings, and Flat Lens Parameters for Operation at 1.55 μm with a Refractive Index of 1 Under Matched Conditions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

p θ ( t ) = + + f ( x , y ) δ ( x cos θ + y sin θ t ) d x d y ,

Metrics