Abstract

We report a method for microfluidic multiple trapping and continuous sorting of microparticles using an optical potential landscape projected by a Dammann grating, enabling a high power-efficient approach to forming a composite two-dimensional spots array with high uniformity. The Dammann grating is fabricated in a photoresist by optical lithography. It is employed to create an optical lattice for multiple optical trapping and sorting in a mixture of polymer particles (n=1.59) and silica particles (n=1.42) with the same diameters of 3.1μm. In addition to the exponential selectivity by the projected optical landscapes, the proposed microfluidic sorting system has advantages in terms of high power efficiency and high uniformity due to the Dammann grating.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
    [CrossRef] [PubMed]
  3. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
    [CrossRef] [PubMed]
  4. I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 13, 2852–2857 (2005).
    [CrossRef] [PubMed]
  5. Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
    [CrossRef]
  6. A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
    [CrossRef] [PubMed]
  7. J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
    [CrossRef] [PubMed]
  8. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
    [CrossRef] [PubMed]
  9. K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004).
    [CrossRef]
  10. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Dynamically reconfigurable optical lattices,” Opt. Express 13, 1384–1394(2005).
    [CrossRef] [PubMed]
  11. I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
    [CrossRef]
  12. Y. Y. Sun, L. S. Ong, and X.-C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
    [CrossRef]
  13. M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential energy landscapes,” Phys. Rev. E 70, 031108 (2004).
    [CrossRef]
  14. H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging b means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
    [CrossRef]

2008

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

2006

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

Y. Y. Sun, L. S. Ong, and X.-C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

2005

2004

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004).
[CrossRef]

K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
[CrossRef] [PubMed]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef] [PubMed]

2003

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

1999

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef] [PubMed]

1996

1986

1971

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging b means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Arnold, F. H.

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef] [PubMed]

Ashkin, A.

Bjorkholm, J. E.

Burg, K. J. L.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

Chu, S.

Dammann, H.

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging b means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Daria, V. R.

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Dziedzic, J. M.

Enger, J.

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef] [PubMed]

Eriksson, E.

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

Fu, Y.

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef] [PubMed]

Gahagan, K. T.

Gao, B. Z.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

Glückstad, J.

Goksor, M.

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

Goksör, M.

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef] [PubMed]

Gortler, K.

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging b means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Grier, D. G.

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
[CrossRef] [PubMed]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004).
[CrossRef]

Hagberg, P.

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef] [PubMed]

Hanstorp, D.

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef] [PubMed]

Kasza, K.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004).
[CrossRef]

Ladavac, K.

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004).
[CrossRef]

K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
[CrossRef] [PubMed]

Ma, Z.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Ong, L. S.

Y. Y. Sun, L. S. Ong, and X.-C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

Pelton, M.

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

Peng, X.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

Perch-Nielsen, I. R.

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 13, 2852–2857 (2005).
[CrossRef] [PubMed]

Quake, S. R.

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef] [PubMed]

Ramser, K.

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef] [PubMed]

Rodrigo, P. J.

Scherer, A.

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef] [PubMed]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Spence, C.

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef] [PubMed]

Sun, Y. Y.

Y. Y. Sun, L. S. Ong, and X.-C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

Swartzlander, G. A.

Wei, Y.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

Yuan, X.-C.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

Y. Y. Sun, L. S. Ong, and X.-C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

Appl. Phys. Lett.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

Y. Y. Sun, L. S. Ong, and X.-C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

Lab Chip

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef] [PubMed]

Nat. Biotechnol.

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef] [PubMed]

Nature

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Opt. Commun.

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging b means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004).
[CrossRef]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

Proc. SPIE

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Trajectories of particles passing through the optical landscape.

Fig. 2
Fig. 2

Relationship between deflecting criterion κ and particle size a under conditions of n 1 = 1.59 , n 2 = 1.33 , θ = 30 ° , ξ = 10 3 kg / ms , u = 15 μm / s , b = 10 μm , ω = 0.4 b , and p = 0.75 mW .

Fig. 3
Fig. 3

Relationship between deflecting criterion κ and refractive index of the particle n 1 under conditions of n 2 = 1.33 , a = 3.1 θ = 30 ° , ξ = 10 3 kg / ms , u = 15 μm / s , b = 10 μm , ω = 0.4 b , and p = 0.75 mW .

Fig. 4
Fig. 4

Phase profile of one period of the Dammann grating.

Fig. 5
Fig. 5

Calculation pattern of binary Dammann grating for generation of 5 × 5 spots array ( a 1 = 0 , b 1 = 0.04 , a 2 = 0.39 , b 2 = 0.65 ).

Fig. 6
Fig. 6

SEM photo of the (a) Dammann grating and the (b) part structures of the fabricated Dammann grating.

Fig. 7
Fig. 7

Optical configuration of multiple optical trapping system enabled with a fabricated Dammann grating.

Fig. 8
Fig. 8

Optical spots array generated by the Dammann grating (scale bar: 10 μm ).

Fig. 9
Fig. 9

Regular array of the trapped particles (scale bar: 10 μm ).

Fig. 10
Fig. 10

Sequential images of the sorted particle motion taken with 1 / 3 s intervals.

Fig. 11
Fig. 11

Trajectories of two types of particles passing through the projected optical lattice. Trajectories shown in solid lines are polymer particles and in dashed lines are silica particles.

Tables (2)

Tables Icon

Table 1 Transition Points Result for Dammann Grating

Tables Icon

Table 2 Diffraction Efficiency and Intensity of Different Orders of 1D Dammann Grating

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

F f sin θ max { y [ I ( r ) * f ( r ) ] } = max ( F 0 ) .
F o = 8 π e × P × a 3 ω ( a 2 + ω 2 ) × | n 2 c ( n 2 2 n 1 2 n 2 2 + 2 n 1 2 ) | × exp [ b 2 8 ( a 2 + ω 2 ) ] ,
κ = F o F f sin θ = 4 3 e sin θ × P × a 2 ω ξ u ( a 2 + ω 2 ) × | n 2 c ( n 2 2 n 1 2 n 2 2 + 2 n 1 2 ) | × exp [ b 2 8 ( a 2 + ω 2 ) ] .
f a ( x ) = l = 1 L rect ( x ( b 1 + a 1 ) / 2 b 1 a 1 ) .
f a ( x ) = m = 0 F a ( m ) exp ( i 2 π m x ) ,
f p ( x ) = f a ( x ) exp [ i ( π 2 φ ) ] + [ 1 f a ( x ) ] exp [ + i ( π 2 + φ ) ] = [ 2 f a ( x ) 1 ] sin φ + i cos φ ,
F p ( m ) = 0 1 f p ( x ) exp ( i 2 π m x ) d x = 0 1 { [ 2 f a ( x ) 1 ] sin φ + i cos φ } exp ( i 2 π m x ) d x .
0 1 exp ( i 2 π m x ) d x = 0 ,
F p ( m ) = 2 sin φ F a ( m ) .
P ( m ) = | F p ( m ) | 2 .
| F p ( m ) | 2 = I ( m ) = 1.
| F p ( N ) | 2 = = | F p ( 2 ) | 2 = | F p ( 1 ) | 2 = | F p ( 0 ) | 2 = | F p ( 1 ) | 2 = | F p ( 2 ) | 2 = = | F p ( N ) | 2 .
η a = total energy of the expected equally bright orders total energy of the light passing through the grating = N N I ( m ) 1 .
η = η a × η b ,
d = M 2 λ n 1 ,

Metrics