Abstract

We report a method for microfluidic multiple trapping and continuous sorting of microparticles using an optical potential landscape projected by a Dammann grating, enabling a high power-efficient approach to forming a composite two-dimensional spots array with high uniformity. The Dammann grating is fabricated in a photoresist by optical lithography. It is employed to create an optical lattice for multiple optical trapping and sorting in a mixture of polymer particles (n=1.59) and silica particles (n=1.42) with the same diameters of 3.1μm. In addition to the exponential selectivity by the projected optical landscapes, the proposed microfluidic sorting system has advantages in terms of high power efficiency and high uniformity due to the Dammann grating.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription