Abstract

Monte Carlo simulations are used to explain and quantify the errors in inherent optical properties (IOPs) (absorption and attenuation coefficients) measured using the WET Labs AC-9 submarine spectrophotometer, and to assess correction algorithms. Simulated samples with a wide range of IOPs encountered in natural waters are examined. The relative errors on the measured absorption coefficient are in general lower than 25%, but reach up to 100% in highly scattering waters. Relative errors on attenuation and scattering coefficients are more stable, with an underestimation mainly driven by the volume scattering function. The errors in attenuation and scattering spectral shapes are small.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
    [CrossRef]
  2. J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).
    [CrossRef]
  3. J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. C. Moore, “Analysis of in-situ spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
    [CrossRef]
  4. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046(1997).
    [CrossRef] [PubMed]
  5. V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921(2001).
    [CrossRef]
  6. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependence of absorption by water and heavy water in the 450–750nm spectral range,” Appl. Opt. 45, 5294–5309 (2006).
    [CrossRef] [PubMed]
  7. J. Piskozub, D. Stramski, E. Terril, and W. K. Melville, “Influence of forward and multiple light scatter on the measurements of beam attenuation in highly scattering marine environments,” Appl. Opt. 43, 4723–4731 (2004).
    [CrossRef] [PubMed]
  8. J. R. V. Zaneveld and R. Bartz, “Beam attenuation and absorption meters,” Proc. SPIE 489, 318–324 (1984).
  9. K. J. Voss and R. W. Austin, “Beam attenuation measurement error due to small-angle scattering acceptance,” J. Atmos. Ocean. Technol. 10, 113–121 (1993).
    [CrossRef]
  10. E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009).
    [CrossRef] [PubMed]
  11. J. T. O. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modelling,” Appl. Opt. 36, 6123–6128 (1997).
    [CrossRef] [PubMed]
  12. R. A. Leathers, T. V. Downes, and C. O. Davis, “Analysis of a point-source integrating-cavity absorption meter,” Appl. Opt. 39, 6118–6127 (2000).
    [CrossRef]
  13. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Contract No. N62269-71-C-0676, UCSD, SIO Ref. 72–78 (Scripps Institution of Oceanography, 1972).
  14. J. T. O. Kirk, “Monte Carlo modeling of the performance of a reflective tube absorption meter,” Appl. Opt. 31, 6463–6468(1992).
    [CrossRef] [PubMed]
  15. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
    [CrossRef] [PubMed]
  16. J. Piskozub, P. J. Flatau, and J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Ocean. Technol. 18, 438–445 (2001).
    [CrossRef]
  17. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700nm) of pure water,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  18. L. H. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65 to 2.5μm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
    [CrossRef] [PubMed]
  19. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N.G.Jerlov and E.S.Nielsen, eds. (Academic, 1974), pp. 1–24.
  20. X. Zhang, L. Hu, and M. X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698–5710 (2009).
    [CrossRef] [PubMed]
  21. L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
    [CrossRef]
  22. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficient of natural phytoplankton: analysis and parametrization,” J. Geophys. Res. 100, 13321–13332 (1995).
    [CrossRef]
  23. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44, 412–422 (2005).
    [CrossRef] [PubMed]
  24. H. R. Gordon and A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery, a review,” Lecture Notes on Coastal and Estuarine Studies (Springer Verlag, 1983), Vol. 4.
  25. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
    [CrossRef]
  26. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211–3230 (2003).
    [CrossRef]
  27. C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
    [CrossRef]
  28. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
    [CrossRef]
  29. S. Sathyendranath, L. Prieur, and A. Morel, “A 3 component model of ocean color and its application to remote-sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
    [CrossRef]
  30. D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54, 1257–1271(2009).
    [CrossRef]
  31. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  32. D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Appl. Opt. 45, 2310–2324 (2006).
    [CrossRef] [PubMed]
  33. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
    [CrossRef]
  34. G. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
    [CrossRef]
  35. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
    [CrossRef] [PubMed]
  36. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142(2001).
    [CrossRef]
  37. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
    [CrossRef] [PubMed]
  38. A. Morel, “Light scattering by seawater. Experimental results and theoretical approach,” in Optics of the Sea, AGARD Lecture Series (NATO, 1973), pp. 3.1.1–3.1.76.
  39. E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001).
    [CrossRef]
  40. D. McKee, J. Piskozub, and I. Brown, “Scattering error corrections for in situ absorption and attenuation measurements,” Opt. Express 16, 19480–19492 (2008).
    [CrossRef] [PubMed]
  41. D. McKee, A. Cunningham, and S. Craig, “Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom,” Appl. Opt. 42, 4369–4374 (2003).
    [CrossRef] [PubMed]
  42. M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
    [CrossRef]
  43. M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
    [CrossRef]
  44. S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42, 4802–4810 (2003).
    [CrossRef] [PubMed]
  45. R. Röttgers, A. Bracher, S. Gehnke, B. Schmitt, and S. Wozniak, “Light absorption by natural aquatic particles in the near-infrared (700–900nm) spectral region,” presented at Ocean Optics XIX conference, Barga, Italy, 6 October 2008.
  46. R. Röttgers, Institute for Coastal Research, GKSS Research Center Geesthacht, Max-Planck-Strasse 1, D-21502 (personal communication, 2010).
  47. H. Loisel, X. Mériaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
    [CrossRef]
  48. D. McKee and A. Cunningham, “Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci. 68, 305–316 (2006).
    [CrossRef]
  49. D. McKee, M. Chami, I. Brown, V. Sanjuan Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48, 4663–4675 (2009).
    [CrossRef] [PubMed]

2009 (5)

2008 (2)

D. McKee, J. Piskozub, and I. Brown, “Scattering error corrections for in situ absorption and attenuation measurements,” Opt. Express 16, 19480–19492 (2008).
[CrossRef] [PubMed]

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

2007 (1)

H. Loisel, X. Mériaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
[CrossRef]

2006 (3)

2005 (1)

2004 (2)

2003 (4)

S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42, 4802–4810 (2003).
[CrossRef] [PubMed]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211–3230 (2003).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

D. McKee, A. Cunningham, and S. Craig, “Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom,” Appl. Opt. 42, 4369–4374 (2003).
[CrossRef] [PubMed]

2002 (2)

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[CrossRef] [PubMed]

2001 (4)

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142(2001).
[CrossRef]

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001).
[CrossRef]

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921(2001).
[CrossRef]

J. Piskozub, P. J. Flatau, and J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Ocean. Technol. 18, 438–445 (2001).
[CrossRef]

2000 (1)

1998 (1)

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

1997 (3)

1995 (1)

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficient of natural phytoplankton: analysis and parametrization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

1994 (2)

J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).
[CrossRef]

G. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
[CrossRef]

1993 (3)

1992 (2)

J. T. O. Kirk, “Monte Carlo modeling of the performance of a reflective tube absorption meter,” Appl. Opt. 31, 6463–6468(1992).
[CrossRef] [PubMed]

J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. C. Moore, “Analysis of in-situ spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
[CrossRef]

1989 (2)

S. Sathyendranath, L. Prieur, and A. Morel, “A 3 component model of ocean color and its application to remote-sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

1984 (1)

J. R. V. Zaneveld and R. Bartz, “Beam attenuation and absorption meters,” Proc. SPIE 489, 318–324 (1984).

1981 (2)

L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

1977 (1)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

Antoine, D.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

Austin, R. W.

K. J. Voss and R. W. Austin, “Beam attenuation measurement error due to small-angle scattering acceptance,” J. Atmos. Ocean. Technol. 10, 113–121 (1993).
[CrossRef]

Babin, M.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54, 1257–1271(2009).
[CrossRef]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211–3230 (2003).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficient of natural phytoplankton: analysis and parametrization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Barnard, A. H.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependence of absorption by water and heavy water in the 450–750nm spectral range,” Appl. Opt. 45, 5294–5309 (2006).
[CrossRef] [PubMed]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142(2001).
[CrossRef]

Bartz, R.

J. R. V. Zaneveld and R. Bartz, “Beam attenuation and absorption meters,” Proc. SPIE 489, 318–324 (1984).

Bécu, G.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

Behrenfeld, M.

Berthon, J. F.

H. Loisel, X. Mériaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
[CrossRef]

Boss, E.

Bracher, A.

R. Röttgers, A. Bracher, S. Gehnke, B. Schmitt, and S. Wozniak, “Light absorption by natural aquatic particles in the near-infrared (700–900nm) spectral region,” presented at Ocean Optics XIX conference, Barga, Italy, 6 October 2008.

Bricaud, A.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211–3230 (2003).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficient of natural phytoplankton: analysis and parametrization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. C. Moore, “Analysis of in-situ spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Brown, I.

Carder, K. L.

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Chami, M.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54, 1257–1271(2009).
[CrossRef]

D. McKee, M. Chami, I. Brown, V. Sanjuan Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48, 4663–4675 (2009).
[CrossRef] [PubMed]

Cherukuru, R. C. N.

Chylek, P.

Claustre, H.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211–3230 (2003).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficient of natural phytoplankton: analysis and parametrization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Craig, S.

Cunningham, A.

d’Ortenzio, F.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

Dall’Olmo, G.

Davis, C. O.

Donaghay, P. L.

Downes, T. V.

Doxaran, D.

Fell, F.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211–3230 (2003).
[CrossRef]

S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42, 4802–4810 (2003).
[CrossRef] [PubMed]

Flatau, P. J.

J. Piskozub, P. J. Flatau, and J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Ocean. Technol. 18, 438–445 (2001).
[CrossRef]

Forand, J. L.

G. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
[CrossRef]

Fournier, G.

G. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
[CrossRef]

Fournier-Sicre, V.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Fry, E. S.

Gehnke, S.

R. Röttgers, A. Bracher, S. Gehnke, B. Schmitt, and S. Wozniak, “Light absorption by natural aquatic particles in the near-infrared (700–900nm) spectral region,” presented at Ocean Optics XIX conference, Barga, Italy, 6 October 2008.

Gentili, B.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54, 1257–1271(2009).
[CrossRef]

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

Gitelson, A. A.

Gordon, H. R.

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

H. R. Gordon and A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery, a review,” Lecture Notes on Coastal and Estuarine Studies (Springer Verlag, 1983), Vol. 4.

Gray, D.

He, M. X.

Herring, S.

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211–3230 (2003).
[CrossRef]

Hooker, S. B.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

Hu, L.

Jin, Z.

Kattawar, G. W.

Kirk, J. T. O.

Kitchen, J. C.

J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).
[CrossRef]

J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. C. Moore, “Analysis of in-situ spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
[CrossRef]

Kou, L. H.

Labrie, D.

Langford, V. S.

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921(2001).
[CrossRef]

Lavender, S. J.

Leathers, R. A.

Loisel, H.

H. Loisel, X. Mériaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
[CrossRef]

Macdonald, J. B.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142(2001).
[CrossRef]

McKee, D.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54, 1257–1271(2009).
[CrossRef]

D. McKee, M. Chami, I. Brown, V. Sanjuan Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48, 4663–4675 (2009).
[CrossRef] [PubMed]

D. McKee, J. Piskozub, and I. Brown, “Scattering error corrections for in situ absorption and attenuation measurements,” Opt. Express 16, 19480–19492 (2008).
[CrossRef] [PubMed]

D. McKee and A. Cunningham, “Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci. 68, 305–316 (2006).
[CrossRef]

D. McKee, A. Cunningham, and S. Craig, “Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom,” Appl. Opt. 42, 4369–4374 (2003).
[CrossRef] [PubMed]

McKinley, A. J.

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921(2001).
[CrossRef]

Melville, W. K.

Mériaux, X.

H. Loisel, X. Mériaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
[CrossRef]

Mobley, C. D.

Moore, C. C.

J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. C. Moore, “Analysis of in-situ spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
[CrossRef]

Moore, C. M.

Morel, A.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficient of natural phytoplankton: analysis and parametrization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

S. Sathyendranath, L. Prieur, and A. Morel, “A 3 component model of ocean color and its application to remote-sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

A. Morel, “Light scattering by seawater. Experimental results and theoretical approach,” in Optics of the Sea, AGARD Lecture Series (NATO, 1973), pp. 3.1.1–3.1.76.

H. R. Gordon and A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery, a review,” Lecture Notes on Coastal and Estuarine Studies (Springer Verlag, 1983), Vol. 4.

A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N.G.Jerlov and E.S.Nielsen, eds. (Academic, 1974), pp. 1–24.

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211–3230 (2003).
[CrossRef]

Pegau, S.

Pegau, W. S.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142(2001).
[CrossRef]

Perry, M. J.

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Petzold, T. J.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” Contract No. N62269-71-C-0676, UCSD, SIO Ref. 72–78 (Scripps Institution of Oceanography, 1972).

Piskozub, J.

Pope, R. M.

Poteau, A.

H. Loisel, X. Mériaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
[CrossRef]

Prieur, L.

S. Sathyendranath, L. Prieur, and A. Morel, “A 3 component model of ocean color and its application to remote-sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Quickenden, T. I.

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921(2001).
[CrossRef]

Reinersman, P.

Rhoades, B.

Roesler, C. S.

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Röttgers, R.

R. Röttgers, A. Bracher, S. Gehnke, B. Schmitt, and S. Wozniak, “Light absorption by natural aquatic particles in the near-infrared (700–900nm) spectral region,” presented at Ocean Optics XIX conference, Barga, Italy, 6 October 2008.

R. Röttgers, Institute for Coastal Research, GKSS Research Center Geesthacht, Max-Planck-Strasse 1, D-21502 (personal communication, 2010).

Ruddick, K.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54, 1257–1271(2009).
[CrossRef]

Sanjuan Calzado, V.

Sathyendranath, S.

S. Sathyendranath, L. Prieur, and A. Morel, “A 3 component model of ocean color and its application to remote-sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Schmitt, B.

R. Röttgers, A. Bracher, S. Gehnke, B. Schmitt, and S. Wozniak, “Light absorption by natural aquatic particles in the near-infrared (700–900nm) spectral region,” presented at Ocean Optics XIX conference, Barga, Italy, 6 October 2008.

Scott, A. J.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

Slade, W. H.

Stamnes, K.

Stavn, R. H.

Stramski, D.

J. Piskozub, D. Stramski, E. Terril, and W. K. Melville, “Influence of forward and multiple light scatter on the measurements of beam attenuation in highly scattering marine environments,” Appl. Opt. 43, 4723–4731 (2004).
[CrossRef] [PubMed]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211–3230 (2003).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

Sullivan, J. M.

Sundman, L. K.

Tailliez, D.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54, 1257–1271(2009).
[CrossRef]

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

Tassan, S.

Terril, E.

Twardowski, M. S.

Voss, K. J.

K. J. Voss and R. W. Austin, “Beam attenuation measurement error due to small-angle scattering acceptance,” J. Atmos. Ocean. Technol. 10, 113–121 (1993).
[CrossRef]

Wozniak, S.

R. Röttgers, A. Bracher, S. Gehnke, B. Schmitt, and S. Wozniak, “Light absorption by natural aquatic particles in the near-infrared (700–900nm) spectral region,” presented at Ocean Optics XIX conference, Barga, Italy, 6 October 2008.

Zaneveld, J. R. V.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependence of absorption by water and heavy water in the 450–750nm spectral range,” Appl. Opt. 45, 5294–5309 (2006).
[CrossRef] [PubMed]

J. Piskozub, P. J. Flatau, and J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Ocean. Technol. 18, 438–445 (2001).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142(2001).
[CrossRef]

S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046(1997).
[CrossRef] [PubMed]

J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).
[CrossRef]

J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. C. Moore, “Analysis of in-situ spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
[CrossRef]

J. R. V. Zaneveld and R. Bartz, “Beam attenuation and absorption meters,” Proc. SPIE 489, 318–324 (1984).

Zhang, X.

Appl. Opt. (17)

S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046(1997).
[CrossRef] [PubMed]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependence of absorption by water and heavy water in the 450–750nm spectral range,” Appl. Opt. 45, 5294–5309 (2006).
[CrossRef] [PubMed]

J. Piskozub, D. Stramski, E. Terril, and W. K. Melville, “Influence of forward and multiple light scatter on the measurements of beam attenuation in highly scattering marine environments,” Appl. Opt. 43, 4723–4731 (2004).
[CrossRef] [PubMed]

J. T. O. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modelling,” Appl. Opt. 36, 6123–6128 (1997).
[CrossRef] [PubMed]

R. A. Leathers, T. V. Downes, and C. O. Davis, “Analysis of a point-source integrating-cavity absorption meter,” Appl. Opt. 39, 6118–6127 (2000).
[CrossRef]

J. T. O. Kirk, “Monte Carlo modeling of the performance of a reflective tube absorption meter,” Appl. Opt. 31, 6463–6468(1992).
[CrossRef] [PubMed]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700nm) of pure water,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

L. H. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65 to 2.5μm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
[CrossRef] [PubMed]

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44, 412–422 (2005).
[CrossRef] [PubMed]

D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Appl. Opt. 45, 2310–2324 (2006).
[CrossRef] [PubMed]

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[CrossRef] [PubMed]

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
[CrossRef] [PubMed]

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001).
[CrossRef]

D. McKee, A. Cunningham, and S. Craig, “Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom,” Appl. Opt. 42, 4369–4374 (2003).
[CrossRef] [PubMed]

S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42, 4802–4810 (2003).
[CrossRef] [PubMed]

D. McKee, M. Chami, I. Brown, V. Sanjuan Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48, 4663–4675 (2009).
[CrossRef] [PubMed]

Estuar. Coast. Shelf Sci. (1)

D. McKee and A. Cunningham, “Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci. 68, 305–316 (2006).
[CrossRef]

Int. J. Remote Sens. (1)

S. Sathyendranath, L. Prieur, and A. Morel, “A 3 component model of ocean color and its application to remote-sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

J. Atmos. Ocean. Technol. (2)

J. Piskozub, P. J. Flatau, and J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Ocean. Technol. 18, 438–445 (2001).
[CrossRef]

K. J. Voss and R. W. Austin, “Beam attenuation measurement error due to small-angle scattering acceptance,” J. Atmos. Ocean. Technol. 10, 113–121 (1993).
[CrossRef]

J. Geophys. Res. (5)

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211–3230 (2003).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficient of natural phytoplankton: analysis and parametrization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142(2001).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

J. Phys. Chem. A (1)

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921(2001).
[CrossRef]

Limnol. Oceanogr. (9)

L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54, 1257–1271(2009).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

H. Loisel, X. Mériaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
[CrossRef]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
[CrossRef]

Opt. Express (3)

Proc. SPIE (4)

J. R. V. Zaneveld and R. Bartz, “Beam attenuation and absorption meters,” Proc. SPIE 489, 318–324 (1984).

J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994).
[CrossRef]

J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. C. Moore, “Analysis of in-situ spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992).
[CrossRef]

G. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
[CrossRef]

Other (6)

A. Morel, “Light scattering by seawater. Experimental results and theoretical approach,” in Optics of the Sea, AGARD Lecture Series (NATO, 1973), pp. 3.1.1–3.1.76.

H. R. Gordon and A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery, a review,” Lecture Notes on Coastal and Estuarine Studies (Springer Verlag, 1983), Vol. 4.

A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N.G.Jerlov and E.S.Nielsen, eds. (Academic, 1974), pp. 1–24.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” Contract No. N62269-71-C-0676, UCSD, SIO Ref. 72–78 (Scripps Institution of Oceanography, 1972).

R. Röttgers, A. Bracher, S. Gehnke, B. Schmitt, and S. Wozniak, “Light absorption by natural aquatic particles in the near-infrared (700–900nm) spectral region,” presented at Ocean Optics XIX conference, Barga, Italy, 6 October 2008.

R. Röttgers, Institute for Coastal Research, GKSS Research Center Geesthacht, Max-Planck-Strasse 1, D-21502 (personal communication, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic modeling of the absorption and attenuation tubes including the light sources and detectors.

Fig. 2
Fig. 2

Modeled IOP dataset used as inputs for Monte Carlo simulations. Absorption coefficients are cut at 767 nm because of null value at 870 nm (in log scale).

Fig. 3
Fig. 3

Spectral variations of k c in (a) NAP-dominated, (b) CDOM-dominated, (c) Chl-dominated, and (d) Mixed natural waters. For each water type, results are presented for sample1 to sample4. The AC-9 tube length is 10 cm , and the VSF used is FF-183.

Fig. 4
Fig. 4

Spectral errors associated with attenuation coefficients (c, in m 1 ) measured in (a) NAP-dominated, (b) CDOM-dominated, (c) Chl-dominated, and (d) Mixed natural waters. For each water type, results are presented for sample1 to sample4. The AC-9 tube length is 10 cm , and the VSF used is FF-183.

Fig. 5
Fig. 5

Spectral variations of k a in (a) NAP-dominated, (b) CDOM-dominated, (c) Chl-dominated, and (d) Mixed natural waters. For each water type, results are presented for sample1 to sample4. The AC-9 tube length is 10 cm , and the VSF used is FF-183.

Fig. 6
Fig. 6

Spectral errors associated with absorption coefficients (a, in m 1 ) measured in (a) NAP-dominated, (b) CDOM- dominated, (c) Chl-dominated, and (d) Mixed natural waters. For each water type, results are presented for sample1 to sample4. Results are presented when using 715 nm (dashed curves) or 870 nm (solid curves) as the reference near-IR wavelength. The AC-9 tube length is 10 cm , and the VSF used is FF-183.

Fig. 7
Fig. 7

Spectral errors associated with absorption coefficients (a, in m 1 ) depending on the length of the AC-9 tubes (10 or 25 cm ). The errors are compared for the first two modeled samples of (a) NAP-dominated, (c) CDOM-dominated, (e) Chl-dominated, and (g) Mixed natural waters when using 715 nm as the reference near-IR wavelength. The corresponding spectral variations of k a normalized at 715 nm are presented for each considered water type [(b), (d), (f), and (h), respectively]. The VSF used is FF-183.

Fig. 8
Fig. 8

Spectral errors associated with scattering coefficients (b, in m 1 ) in (a) NAP-dominated, (b) CDOM-dominated, (c) Chl-dominated, and (d) Mixed natural waters. For each water type, results are presented for sample1 to sample4. Results are presented when using 715 nm (dashed curves) then 870 nm (solid curves) as the reference near-IR wavelength. The AC-9 tube length is 10 cm , and the VSF used is FF-183.

Fig. 9
Fig. 9

Spectral errors associated with (a) k a , (b) a, (c) k c , and (d) c when considering a background for the NAP absorption coefficient. The AC-9 tube length is 10 cm , and the VSF used is FF-183.

Fig. 10
Fig. 10

Spectral errors associated with (a) k a , (b) a, (c) k c , and (d) c when considering different scattering phase functions in the case of NAP-dominated natural waters. The AC-9 tubes length is 10 cm .

Fig. 11
Fig. 11

Spectral errors associated with (a) k a , (b) a, (c) k c , and (d) c when considering different scattering phase functions in the case of Chl-dominated natural waters. The AC-9 tubes length is 10 cm .

Fig. 12
Fig. 12

Errors associated with the attenuation, absorption, and scattering spectral slopes modeled using a power-law function (for the scattering and attenuation coefficients) and an exponential function (for the absorption coefficient). Results are not presented for the water samples whose absorption spectra do not follow an exponential law as a function of wavelength (i.e., the cases of NAP background and Chl-dominated water samples are not considered here). Results from sample1 to sample4 are presented from the left to the right. The AC-9 tube length is 10 cm and 870 nm is used as the reference near-IR wavelength.

Fig. 13
Fig. 13

(a) Error on a (%) as a function of b c / c m , when using 870 nm as the reference near-IR wavelength in the correction for residual scattering. (b) Error on a (%) as a function of the error on a estimated using Eq. (17), when using 715 nm as the reference near-IR wavelength in the correction for residual scattering. The AC-9 tube length is 10 cm [(a) and (b)]. Results are presented only at wavelengths below 700 nm for samples with a null absorption coefficient at 870 nm (a) and for all samples (b).

Tables (2)

Tables Icon

Table 1 List of Symbols

Tables Icon

Table 2 List of Modeled Water Samples

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

x = 1 L ln ( S x I 0 ) ,
b = c a .
x m = 1 L ln ( S x I 0 ) + 1 L ln ( S x , w I 0 ) = x x w ,
a m ( λ ) = a t ( λ ) + k a ( λ ) × b t ( λ ) ,
c m ( λ ) = c t ( λ ) k c ( λ ) × b t ( λ ) ,
b m ( λ 1 ) b m ( λ 2 ) = b t ( λ 1 ) b t ( λ 2 ) .
a c ( λ ) = a m ( λ ) a m ( λ r ) × b m ( λ ) b m ( λ r ) .
x m ( λ ) = 1 L ln ( P a t , b t x ( λ ) P 0 , 0 x ( λ ) ) ,
E x ( λ ) = ( x m ( λ ) x t ( λ ) x t ( λ ) ) × 100 ,
a Chl ( λ ) = [ Chl ] × a Chl * ( λ ) ,
b Chl ( λ ) = 0.3 × [ Chl ] 0.62 × ( 550 / λ ) .
a CDOM ( λ ) = a CDOM ( 440 ) × exp ( 0.017 × ( λ 440 ) ) ,
a NAP ( λ ) = [ NAP ] × a NAP * ( 440 ) × exp ( 0.0123 × ( λ 440 ) ) ,
b NAP ( λ ) = [ NAP ] × b NAP * ( 555 ) × ( λ / 555 ) 0.5 ,
a t ( λ ) = a m ( λ ) [ a m ( λ r ) a t ( λ r ) ] b m ( λ ) b m ( λ r ) = a c ( λ ) + a t ( λ r ) b m ( λ ) b m ( λ r ) ,
a NAP ( λ ) = [ NAP ] × a NAP * ( 440 ) × ( exp ( 0.0123 × ( λ 440 ) ) + B ) .
a c ( λ ) a t ( λ ) a t ( λ ) = a t ( λ r ) a t ( λ ) b t ( λ ) b t ( λ r ) .

Metrics