Abstract

A hyperspectral Shack–Hartmann test bed has been developed to characterize the performance of miniature optics across a wide spectral range, a necessary first step in developing broadband achromatized all-polymer endomicroscopes. The Shack–Hartmann test bed was used to measure the chromatic focal shift (CFS) of a glass singlet lens and a glass achromatic lens, i.e., lenses representing the extrema of CFS magnitude in polymer elements to be found in endomicroscope systems. The lenses were tested from 500 to 700nm in 5 and 10nm steps, respectively. In both cases, we found close agreement between test results obtained from a ZEMAX model of the test bed and test lens and those obtained by experiment (maximum error of 12μm for the singlet lens and 5μm for the achromatic triplet lens). Future applications of the hyperspectral Shack–Hartmann test include measurements of aberrations as a function of wavelength, characterization of manufactured plastic endomicroscope elements and systems, and reverse optimization.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Liang, “Miniature microscope objective lens,” U.S. patent 7,023,622 (4 April 2006).
  2. B. P. McCall, G. Birch, M. R. Descour, and T. S. Tkaczyk, “Fabrication of microlens array by diamond milling with spherical shaped milling tools,” Proc. SPIE 7590, 75900A (2010). (SPIE).
    [CrossRef]
  3. R. T. Kester, T. Christenson, R. R. Kortum, and T. S. Tkaczyk, “Low cost, high performance, self-aligning miniature optical systems,” Appl. Opt. 48, 3375–3384 (2009).
    [CrossRef] [PubMed]
  4. C. Liang, M. R. Descour, K. B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in vivoimaging,” Opt. Express 9, 821–830 (2001).
    [CrossRef] [PubMed]
  5. “Photography—electronic still-picture cameras—resolution measurements,” International Organization for Standardization, ISO Standard 19012-2 (2009).
  6. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765–765 (2006).
    [CrossRef] [PubMed]
  7. K. B. Shi, P. Li, S. Z. Yin, and Z. W. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004).
    [CrossRef] [PubMed]
  8. H. J. Tiziani and H. M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt. 33, 1838–1843 (1994).
    [CrossRef] [PubMed]
  9. J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, and B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” Appl. Opt. 39, 4540–4546 (2000).
    [CrossRef]
  10. P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [CrossRef]
  11. D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann–Shack aberrometry,” J. Opt. Soc. Am. A 24, 2963–2973 (2007).
    [CrossRef]
  12. R. G. Lane and M. Tallon, “Wavefront reconstruction using a Shack–Hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992).
    [CrossRef] [PubMed]
  13. R. W. Wilson, “SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337, 103–108 (2002).
    [CrossRef]
  14. E. A. Orlenko, T. Y. Cherezova, Y. V. Sheldakova, A. L. Rukosuev, and A. V. Kudryashov, “Off-axis parabolic mirrors: A method of adjusting them and of measuring and correcting their aberrations,” J. Opt. Technol. 72, 306–312 (2005).
    [CrossRef]
  15. J. Pfund, N. Lindlein, and J. Schwider, “Non-null testing of rotationally symmetric aspheres: A systematic error assessment,” Appl. Opt. 40, 439–446 (2001).
    [CrossRef]
  16. I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions,” Appl. Optics 39, 2067–2070 (2000).
    [CrossRef]
  17. R. Kingslake, Lens Design Fundamentals (Academic, 1978).
  18. M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Optics 45, 2545–2554 (2006).
    [CrossRef]
  19. R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15, 2409–2420 (2007).
    [CrossRef] [PubMed]
  20. J. D. Rogers, S. Landau, T. S. Tkaczyk, M. R. Descour, M. S. Rahman, R. Richards-Kortum, A. H. O. Karkainen, and T. Christenson, “Imaging performance of a miniature integrated microendoscope,” J. Biomed. Opt. 13, 054020 (2008).
    [CrossRef] [PubMed]
  21. J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three-dimensional microscope point spread function using a Shack–Hartmann wavefront sensor,” J. Microsc. 205, 61–75 (2002).
    [CrossRef] [PubMed]
  22. H. Tsuchida, S. Noda, T. Nagaoka, and K. Yamamoto, “Chromatic properties of SiO2-BaO-TiO2-K2O series radial gradient-index material,” Opt. Rev. 8, 81–84 (2001).
    [CrossRef]
  23. H. Tsuchida, S. Ogasawara, and K. Yamamoto, “Characteristics of a lens system using low-dispersive radial gradient-index material,” Opt. Rev. 7, 337–340 (2000).
    [CrossRef]
  24. J. W. Lee, R. V. Shack, and M. R. Descour, “Sorting method to extend the dynamic range of the Shack–Hartmann wavefront sensor,” Appl. Opt. 44, 4838–4845 (2005).
    [CrossRef] [PubMed]
  25. International Organization for Standardization, “Photography–electronic still-picture cameras–resolution measurements,” ISO 12233 (2000).
  26. J. Lee, “The development of a miniature imaging system: Design, fabrication, and metrology,” Ph.D. thesis (The University of Arizona, 2003), p. 198.
  27. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009).
    [CrossRef] [PubMed]
  28. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
    [CrossRef] [PubMed]
  29. P. Jain and J. Schwiegerling, “RGB Shack–Hartmann wavefront sensor,” J. Mod. Opt. 55, 737–748 (2008).
    [CrossRef]
  30. S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16, 7748–7755 (2008).
    [CrossRef] [PubMed]
  31. E. J. Fernandez, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
    [CrossRef] [PubMed]
  32. M. A. Lundgren and W. L. Wolfe, “Alignment of a three-mirror off-axis telescope by reverse optimization,” Opt. Eng. 30, 307–311 (1991).
    [CrossRef]
  33. I. Powell, “Employment of reverse optimization to relax manufacturing tolerances imposed on system constructional parameters associated with complex optical systems,” Appl. Opt. 39, 2174–2183 (2000).
    [CrossRef]
  34. J. A. Sakamoto, H. H. Barrett, and A. V. Goncharov, “Inverse optical design of the human eye using likelihood methods and wavefront sensing,” Opt. Express 16, 304–314 (2008).
    [CrossRef] [PubMed]
  35. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16, 1692–1703(2008).
    [CrossRef] [PubMed]
  36. H. J. Jeong and G. N. Lawrence, “Simultaneous determination of misalignment and mirror surface figure error of a three mirror off-axis telescope by end-to-end measurements and reverse optimization: numerical analysis and simulation, Proc. SPIE 966, 341–351 (1988).
  37. P. Cheng and C. K. Sun, “Nonlinear (harmonic generation) optical microscopy,” in Handbook of Confocal Microscopy, J.Pawley, ed. (Springer, 2006), Chap. 40.
    [CrossRef]
  38. S. W. Hell, K. I. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, “Nanoscale resolution with focused light: Stimulated emission depletion and other reversible saturable optical fluorescence transitions microscopy concepts,” in Handbook of Biological Confocal Microscopy, J.P.Pawley, ed. (Springer Science+Business Media, 2006), pp. 571–579.
    [CrossRef]

2010 (1)

B. P. McCall, G. Birch, M. R. Descour, and T. S. Tkaczyk, “Fabrication of microlens array by diamond milling with spherical shaped milling tools,” Proc. SPIE 7590, 75900A (2010). (SPIE).
[CrossRef]

2009 (2)

2008 (5)

2007 (2)

2006 (3)

E. J. Fernandez, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
[CrossRef] [PubMed]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765–765 (2006).
[CrossRef] [PubMed]

M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Optics 45, 2545–2554 (2006).
[CrossRef]

2005 (2)

2004 (1)

2003 (1)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
[CrossRef] [PubMed]

2002 (2)

R. W. Wilson, “SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337, 103–108 (2002).
[CrossRef]

J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three-dimensional microscope point spread function using a Shack–Hartmann wavefront sensor,” J. Microsc. 205, 61–75 (2002).
[CrossRef] [PubMed]

2001 (3)

2000 (5)

1994 (1)

1992 (1)

1991 (1)

M. A. Lundgren and W. L. Wolfe, “Alignment of a three-mirror off-axis telescope by reverse optimization,” Opt. Eng. 30, 307–311 (1991).
[CrossRef]

1988 (1)

H. J. Jeong and G. N. Lawrence, “Simultaneous determination of misalignment and mirror surface figure error of a three mirror off-axis telescope by end-to-end measurements and reverse optimization: numerical analysis and simulation, Proc. SPIE 966, 341–351 (1988).

Artal, P.

Atchison, D. A.

Barrett, H. H.

Beverage, J. L.

J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three-dimensional microscope point spread function using a Shack–Hartmann wavefront sensor,” J. Microsc. 205, 61–75 (2002).
[CrossRef] [PubMed]

Birch, G.

B. P. McCall, G. Birch, M. R. Descour, and T. S. Tkaczyk, “Fabrication of microlens array by diamond milling with spherical shaped milling tools,” Proc. SPIE 7590, 75900A (2010). (SPIE).
[CrossRef]

Bliss, E. S.

Bouma, B. E.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765–765 (2006).
[CrossRef] [PubMed]

Brady, D. J.

Canovas, C.

Carlson, K. D.

M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Optics 45, 2545–2554 (2006).
[CrossRef]

Charman, W. N.

Cheng, P.

P. Cheng and C. K. Sun, “Nonlinear (harmonic generation) optical microscopy,” in Handbook of Confocal Microscopy, J.Pawley, ed. (Springer, 2006), Chap. 40.
[CrossRef]

Cherezova, T. Y.

Chidley, M. D.

M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Optics 45, 2545–2554 (2006).
[CrossRef]

Christenson, T.

Dailey, M. J.

Dainty, C.

Descour, M. R.

B. P. McCall, G. Birch, M. R. Descour, and T. S. Tkaczyk, “Fabrication of microlens array by diamond milling with spherical shaped milling tools,” Proc. SPIE 7590, 75900A (2010). (SPIE).
[CrossRef]

J. D. Rogers, S. Landau, T. S. Tkaczyk, M. R. Descour, M. S. Rahman, R. Richards-Kortum, A. H. O. Karkainen, and T. Christenson, “Imaging performance of a miniature integrated microendoscope,” J. Biomed. Opt. 13, 054020 (2008).
[CrossRef] [PubMed]

R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15, 2409–2420 (2007).
[CrossRef] [PubMed]

M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Optics 45, 2545–2554 (2006).
[CrossRef]

J. W. Lee, R. V. Shack, and M. R. Descour, “Sorting method to extend the dynamic range of the Shack–Hartmann wavefront sensor,” Appl. Opt. 44, 4838–4845 (2005).
[CrossRef] [PubMed]

J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three-dimensional microscope point spread function using a Shack–Hartmann wavefront sensor,” J. Microsc. 205, 61–75 (2002).
[CrossRef] [PubMed]

C. Liang, M. R. Descour, K. B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in vivoimaging,” Opt. Express 9, 821–830 (2001).
[CrossRef] [PubMed]

Diaz-Santana, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
[CrossRef] [PubMed]

Drexler, W.

Dyba, M.

S. W. Hell, K. I. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, “Nanoscale resolution with focused light: Stimulated emission depletion and other reversible saturable optical fluorescence transitions microscopy concepts,” in Handbook of Biological Confocal Microscopy, J.P.Pawley, ed. (Springer Science+Business Media, 2006), pp. 571–579.
[CrossRef]

Feldman, M.

Fernandez, E. J.

Goelz, S.

Goncharov, A. V.

Grey, A. A.

Hagen, N.

Hasan, T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765–765 (2006).
[CrossRef] [PubMed]

Hell, S. W.

S. W. Hell, K. I. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, “Nanoscale resolution with focused light: Stimulated emission depletion and other reversible saturable optical fluorescence transitions microscopy concepts,” in Handbook of Biological Confocal Microscopy, J.P.Pawley, ed. (Springer Science+Business Media, 2006), pp. 571–579.
[CrossRef]

Hermann, B.

Holdener, F. R.

Ivanov, C. D.

I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions,” Appl. Optics 39, 2067–2070 (2000).
[CrossRef]

Jain, P.

P. Jain and J. Schwiegerling, “RGB Shack–Hartmann wavefront sensor,” J. Mod. Opt. 55, 737–748 (2008).
[CrossRef]

Jakobs, S.

S. W. Hell, K. I. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, “Nanoscale resolution with focused light: Stimulated emission depletion and other reversible saturable optical fluorescence transitions microscopy concepts,” in Handbook of Biological Confocal Microscopy, J.P.Pawley, ed. (Springer Science+Business Media, 2006), pp. 571–579.
[CrossRef]

Jeong, H. J.

H. J. Jeong and G. N. Lawrence, “Simultaneous determination of misalignment and mirror surface figure error of a three mirror off-axis telescope by end-to-end measurements and reverse optimization: numerical analysis and simulation, Proc. SPIE 966, 341–351 (1988).

Karkainen, A. H. O.

J. D. Rogers, S. Landau, T. S. Tkaczyk, M. R. Descour, M. S. Rahman, R. Richards-Kortum, A. H. O. Karkainen, and T. Christenson, “Imaging performance of a miniature integrated microendoscope,” J. Biomed. Opt. 13, 054020 (2008).
[CrossRef] [PubMed]

Kastrup, L.

S. W. Hell, K. I. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, “Nanoscale resolution with focused light: Stimulated emission depletion and other reversible saturable optical fluorescence transitions microscopy concepts,” in Handbook of Biological Confocal Microscopy, J.P.Pawley, ed. (Springer Science+Business Media, 2006), pp. 571–579.
[CrossRef]

Kester, R. T.

Kingslake, R.

R. Kingslake, Lens Design Fundamentals (Academic, 1978).

Koch, J. A.

Kortum, R. R.

Kudryashov, A. V.

Landau, S.

J. D. Rogers, S. Landau, T. S. Tkaczyk, M. R. Descour, M. S. Rahman, R. Richards-Kortum, A. H. O. Karkainen, and T. Christenson, “Imaging performance of a miniature integrated microendoscope,” J. Biomed. Opt. 13, 054020 (2008).
[CrossRef] [PubMed]

Lane, R. G.

Lara-Saucedo, D.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
[CrossRef] [PubMed]

Lawrence, G. N.

H. J. Jeong and G. N. Lawrence, “Simultaneous determination of misalignment and mirror surface figure error of a three mirror off-axis telescope by end-to-end measurements and reverse optimization: numerical analysis and simulation, Proc. SPIE 966, 341–351 (1988).

Lee, J.

J. Lee, “The development of a miniature imaging system: Design, fabrication, and metrology,” Ph.D. thesis (The University of Arizona, 2003), p. 198.

Lee, J. W.

Li, P.

Liang, C.

Lindlein, N.

Liu, Z. W.

Llorente, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
[CrossRef] [PubMed]

Lundgren, M. A.

M. A. Lundgren and W. L. Wolfe, “Alignment of a three-mirror off-axis telescope by reverse optimization,” Opt. Eng. 30, 307–311 (1991).
[CrossRef]

Manzanera, S.

Marcos, S.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
[CrossRef] [PubMed]

McCall, B. P.

B. P. McCall, G. Birch, M. R. Descour, and T. S. Tkaczyk, “Fabrication of microlens array by diamond milling with spherical shaped milling tools,” Proc. SPIE 7590, 75900A (2010). (SPIE).
[CrossRef]

Motz, J. T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765–765 (2006).
[CrossRef] [PubMed]

Nagaoka, T.

H. Tsuchida, S. Noda, T. Nagaoka, and K. Yamamoto, “Chromatic properties of SiO2-BaO-TiO2-K2O series radial gradient-index material,” Opt. Rev. 8, 81–84 (2001).
[CrossRef]

Nikolov, I. D.

I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions,” Appl. Optics 39, 2067–2070 (2000).
[CrossRef]

Noda, S.

H. Tsuchida, S. Noda, T. Nagaoka, and K. Yamamoto, “Chromatic properties of SiO2-BaO-TiO2-K2O series radial gradient-index material,” Opt. Rev. 8, 81–84 (2001).
[CrossRef]

Nowakowski, M.

Ogasawara, S.

H. Tsuchida, S. Ogasawara, and K. Yamamoto, “Characteristics of a lens system using low-dispersive radial gradient-index material,” Opt. Rev. 7, 337–340 (2000).
[CrossRef]

Orlenko, E. A.

Pfund, J.

Povazay, B.

Powell, I.

Presta, R. W.

Prieto, P. M.

Rahman, M. S.

J. D. Rogers, S. Landau, T. S. Tkaczyk, M. R. Descour, M. S. Rahman, R. Richards-Kortum, A. H. O. Karkainen, and T. Christenson, “Imaging performance of a miniature integrated microendoscope,” J. Biomed. Opt. 13, 054020 (2008).
[CrossRef] [PubMed]

Richards-Kortum, R.

Richards-Kortum, R. R.

M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Optics 45, 2545–2554 (2006).
[CrossRef]

Rizvi, I.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765–765 (2006).
[CrossRef] [PubMed]

Rogers, J. D.

J. D. Rogers, S. Landau, T. S. Tkaczyk, M. R. Descour, M. S. Rahman, R. Richards-Kortum, A. H. O. Karkainen, and T. Christenson, “Imaging performance of a miniature integrated microendoscope,” J. Biomed. Opt. 13, 054020 (2008).
[CrossRef] [PubMed]

Rukosuev, A. L.

Sacks, R. A.

Sakamoto, J. A.

Salmon, J. T.

Schwider, J.

Schwiegerling, J.

P. Jain and J. Schwiegerling, “RGB Shack–Hartmann wavefront sensor,” J. Mod. Opt. 55, 737–748 (2008).
[CrossRef]

Scott, D. H.

Seppala, L. G.

Shack, R. V.

J. W. Lee, R. V. Shack, and M. R. Descour, “Sorting method to extend the dynamic range of the Shack–Hartmann wavefront sensor,” Appl. Opt. 44, 4838–4845 (2005).
[CrossRef] [PubMed]

J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three-dimensional microscope point spread function using a Shack–Hartmann wavefront sensor,” J. Microsc. 205, 61–75 (2002).
[CrossRef] [PubMed]

Sheehan, M. T.

Sheldakova, Y. V.

Shi, K. B.

Sun, C. K.

P. Cheng and C. K. Sun, “Nonlinear (harmonic generation) optical microscopy,” in Handbook of Confocal Microscopy, J.Pawley, ed. (Springer, 2006), Chap. 40.
[CrossRef]

Sung, K. B.

Tallon, M.

Tearney, G. J.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765–765 (2006).
[CrossRef] [PubMed]

Tiziani, H. J.

Tkaczyk, T. S.

B. P. McCall, G. Birch, M. R. Descour, and T. S. Tkaczyk, “Fabrication of microlens array by diamond milling with spherical shaped milling tools,” Proc. SPIE 7590, 75900A (2010). (SPIE).
[CrossRef]

R. T. Kester, T. Christenson, R. R. Kortum, and T. S. Tkaczyk, “Low cost, high performance, self-aligning miniature optical systems,” Appl. Opt. 48, 3375–3384 (2009).
[CrossRef] [PubMed]

J. D. Rogers, S. Landau, T. S. Tkaczyk, M. R. Descour, M. S. Rahman, R. Richards-Kortum, A. H. O. Karkainen, and T. Christenson, “Imaging performance of a miniature integrated microendoscope,” J. Biomed. Opt. 13, 054020 (2008).
[CrossRef] [PubMed]

R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15, 2409–2420 (2007).
[CrossRef] [PubMed]

Toeppen, J. S.

Tsuchida, H.

H. Tsuchida, S. Noda, T. Nagaoka, and K. Yamamoto, “Chromatic properties of SiO2-BaO-TiO2-K2O series radial gradient-index material,” Opt. Rev. 8, 81–84 (2001).
[CrossRef]

H. Tsuchida, S. Ogasawara, and K. Yamamoto, “Characteristics of a lens system using low-dispersive radial gradient-index material,” Opt. Rev. 7, 337–340 (2000).
[CrossRef]

Uhde, H. M.

Unterhuber, A.

Van Atta, L.

Van Wonterghem, B. M.

Vargas-Martin, F.

Westphal, V.

S. W. Hell, K. I. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, “Nanoscale resolution with focused light: Stimulated emission depletion and other reversible saturable optical fluorescence transitions microscopy concepts,” in Handbook of Biological Confocal Microscopy, J.P.Pawley, ed. (Springer Science+Business Media, 2006), pp. 571–579.
[CrossRef]

Whistler, W. T.

White, W. M.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765–765 (2006).
[CrossRef] [PubMed]

Willig, K. I.

S. W. Hell, K. I. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, “Nanoscale resolution with focused light: Stimulated emission depletion and other reversible saturable optical fluorescence transitions microscopy concepts,” in Handbook of Biological Confocal Microscopy, J.P.Pawley, ed. (Springer Science+Business Media, 2006), pp. 571–579.
[CrossRef]

Wilson, R. W.

R. W. Wilson, “SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337, 103–108 (2002).
[CrossRef]

Winters, S. E.

Wolfe, W. L.

M. A. Lundgren and W. L. Wolfe, “Alignment of a three-mirror off-axis telescope by reverse optimization,” Opt. Eng. 30, 307–311 (1991).
[CrossRef]

Woods, B. W.

Yamamoto, K.

H. Tsuchida, S. Noda, T. Nagaoka, and K. Yamamoto, “Chromatic properties of SiO2-BaO-TiO2-K2O series radial gradient-index material,” Opt. Rev. 8, 81–84 (2001).
[CrossRef]

H. Tsuchida, S. Ogasawara, and K. Yamamoto, “Characteristics of a lens system using low-dispersive radial gradient-index material,” Opt. Rev. 7, 337–340 (2000).
[CrossRef]

Yelin, D.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765–765 (2006).
[CrossRef] [PubMed]

Yin, S. Z.

Zacharias, R. A.

Appl. Opt. (7)

R. G. Lane and M. Tallon, “Wavefront reconstruction using a Shack–Hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992).
[CrossRef] [PubMed]

H. J. Tiziani and H. M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt. 33, 1838–1843 (1994).
[CrossRef] [PubMed]

I. Powell, “Employment of reverse optimization to relax manufacturing tolerances imposed on system constructional parameters associated with complex optical systems,” Appl. Opt. 39, 2174–2183 (2000).
[CrossRef]

J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, and B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” Appl. Opt. 39, 4540–4546 (2000).
[CrossRef]

J. Pfund, N. Lindlein, and J. Schwider, “Non-null testing of rotationally symmetric aspheres: A systematic error assessment,” Appl. Opt. 40, 439–446 (2001).
[CrossRef]

J. W. Lee, R. V. Shack, and M. R. Descour, “Sorting method to extend the dynamic range of the Shack–Hartmann wavefront sensor,” Appl. Opt. 44, 4838–4845 (2005).
[CrossRef] [PubMed]

R. T. Kester, T. Christenson, R. R. Kortum, and T. S. Tkaczyk, “Low cost, high performance, self-aligning miniature optical systems,” Appl. Opt. 48, 3375–3384 (2009).
[CrossRef] [PubMed]

Appl. Optics (2)

M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Optics 45, 2545–2554 (2006).
[CrossRef]

I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions,” Appl. Optics 39, 2067–2070 (2000).
[CrossRef]

J. Biomed. Opt. (1)

J. D. Rogers, S. Landau, T. S. Tkaczyk, M. R. Descour, M. S. Rahman, R. Richards-Kortum, A. H. O. Karkainen, and T. Christenson, “Imaging performance of a miniature integrated microendoscope,” J. Biomed. Opt. 13, 054020 (2008).
[CrossRef] [PubMed]

J. Microsc. (1)

J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three-dimensional microscope point spread function using a Shack–Hartmann wavefront sensor,” J. Microsc. 205, 61–75 (2002).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

P. Jain and J. Schwiegerling, “RGB Shack–Hartmann wavefront sensor,” J. Mod. Opt. 55, 737–748 (2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Technol. (1)

Mon. Not. R. Astron. Soc. (1)

R. W. Wilson, “SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337, 103–108 (2002).
[CrossRef]

Nature (1)

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765–765 (2006).
[CrossRef] [PubMed]

Opt. Eng. (1)

M. A. Lundgren and W. L. Wolfe, “Alignment of a three-mirror off-axis telescope by reverse optimization,” Opt. Eng. 30, 307–311 (1991).
[CrossRef]

Opt. Express (8)

C. Liang, M. R. Descour, K. B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in vivoimaging,” Opt. Express 9, 821–830 (2001).
[CrossRef] [PubMed]

K. B. Shi, P. Li, S. Z. Yin, and Z. W. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004).
[CrossRef] [PubMed]

J. A. Sakamoto, H. H. Barrett, and A. V. Goncharov, “Inverse optical design of the human eye using likelihood methods and wavefront sensing,” Opt. Express 16, 304–314 (2008).
[CrossRef] [PubMed]

A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16, 1692–1703(2008).
[CrossRef] [PubMed]

S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16, 7748–7755 (2008).
[CrossRef] [PubMed]

D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009).
[CrossRef] [PubMed]

E. J. Fernandez, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
[CrossRef] [PubMed]

R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15, 2409–2420 (2007).
[CrossRef] [PubMed]

Opt. Rev. (2)

H. Tsuchida, S. Noda, T. Nagaoka, and K. Yamamoto, “Chromatic properties of SiO2-BaO-TiO2-K2O series radial gradient-index material,” Opt. Rev. 8, 81–84 (2001).
[CrossRef]

H. Tsuchida, S. Ogasawara, and K. Yamamoto, “Characteristics of a lens system using low-dispersive radial gradient-index material,” Opt. Rev. 7, 337–340 (2000).
[CrossRef]

Optom. Vis. Sci. (1)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
[CrossRef] [PubMed]

Proc. SPIE (2)

H. J. Jeong and G. N. Lawrence, “Simultaneous determination of misalignment and mirror surface figure error of a three mirror off-axis telescope by end-to-end measurements and reverse optimization: numerical analysis and simulation, Proc. SPIE 966, 341–351 (1988).

B. P. McCall, G. Birch, M. R. Descour, and T. S. Tkaczyk, “Fabrication of microlens array by diamond milling with spherical shaped milling tools,” Proc. SPIE 7590, 75900A (2010). (SPIE).
[CrossRef]

Other (7)

“Photography—electronic still-picture cameras—resolution measurements,” International Organization for Standardization, ISO Standard 19012-2 (2009).

C. Liang, “Miniature microscope objective lens,” U.S. patent 7,023,622 (4 April 2006).

International Organization for Standardization, “Photography–electronic still-picture cameras–resolution measurements,” ISO 12233 (2000).

J. Lee, “The development of a miniature imaging system: Design, fabrication, and metrology,” Ph.D. thesis (The University of Arizona, 2003), p. 198.

P. Cheng and C. K. Sun, “Nonlinear (harmonic generation) optical microscopy,” in Handbook of Confocal Microscopy, J.Pawley, ed. (Springer, 2006), Chap. 40.
[CrossRef]

S. W. Hell, K. I. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, “Nanoscale resolution with focused light: Stimulated emission depletion and other reversible saturable optical fluorescence transitions microscopy concepts,” in Handbook of Biological Confocal Microscopy, J.P.Pawley, ed. (Springer Science+Business Media, 2006), pp. 571–579.
[CrossRef]

R. Kingslake, Lens Design Fundamentals (Academic, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectrum of applications and the associated wavelength ranges. Blue bars denote the approximate excitation waveband, and gray bars denote the approximate emission waveband. Acronyms: CLSM, confocal laser scanning microscopy [4]; (SHG), second harmonic generation [37]; LED, light emitting diode; STED, stimulated emission depletion [38]; 2PEF, two-photon excited fluorescence.

Fig. 2
Fig. 2

PMMA and polystyrene doublet. See text for details.

Fig. 3
Fig. 3

Best-performing achromatic doublet designed using optical-polymer materials (PMMA and PS). The lens diameter is 3 mm and the total lens thickness is 4.1 mm . A.S., aperture stop. Part (b) shows the chromatic focal shift for the doublet design of (a). See text for details.

Fig. 4
Fig. 4

Schematic representation of the hyperspectral Shack–Hartmann test bed. The inset illustrates how wavefront deformations in the exit pupil of the lens (or system) under test are converted to lenslet focal-spot displacements.

Fig. 5
Fig. 5

Axial scale factors measured for singlet (a) and doublet (b) test lenses. The axial scale factor is determined in 25 nm increments of wavelength.

Fig. 6
Fig. 6

Black box representing the size of a single pixel ( 5.2 μm × 5.2 μm ) in our camera. Blue crosses represent the focal-spot centroids calculated for a series of 200 sequential measurements from a single lenslet at a fixed test-lens position and fixed wavelength. Noise in the system contributes to reduced precision of the centroid calculation. These centroids are averaged together to produce a single centroid location for this lenslet at this wavelength, which will then be processed with the Shack– Hartmann analysis software.

Fig. 7
Fig. 7

Predicted and measured hyperspectral Shack–Hartmann test results. Part (a) compares the predicted spectral change in focal length for a singlet lens to experimental measurements with the hyperspectral Shack–Hartmann test. Part (b) compares the predicted spectral change in focal length for a triplet achromatic lens to experimental measurements with the hyperspectral Shack–Hartmann test. Note the change in the ordinate-axis scale between Parts (a) and (b). See text for details.

Fig. 8
Fig. 8

ZEMAX predicted axial chromatic focal shift for PMMA/polystyrene achromatized doublet. Blue regions denote shifts in focal length that are larger than the smallest focal length shift experimentally detected in the triplet achromat below 20% relative error. Yellow regions denote shifts in focal length that are smaller than the smallest focal length shift experimentally detected from the triplet achromat above 20% relative error.

Tables (3)

Tables Icon

Table 1 Design Parameters for the PMMA and Polystyrene (PS) Doublet (See Text for Details)

Tables Icon

Table 2 Optical and Mechanical Properties of PMMA and Polystyrene Used to Create the Achromatized Doublet a

Tables Icon

Table 3 Overview of Verification Method Trade-Offs (See Text for Details)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( W 020 W 040 ) = ( B T B ) - 1 B T Δ ,

Metrics