Abstract

We study the level of image artifacts in optical tomography associated with measurement uncertainty under three reconstruction configurations, namely, by using only direct-current (DC), DC-excluded frequency-domain, and DC-included frequency-domain data. Analytic and synthetic studies demonstrate that, at the same level of measurement uncertainty typical to optical tomography, the ratio of the standard deviation of μa over μa reconstructed by DC only is at least 1.4 times lower than that by frequency-domain methods. The ratio of standard deviations of D (or μs) over D (or μs) reconstructed by DC only are slightly lower than those by frequency-domain methods. Frequency-domain reconstruction including DC generally outperforms that excluding DC, but as the amount of measurements increases, the difference between the two diminishes. Under the condition of a priori structural information, the performances of three reconstruction configurations are seemingly equivalent.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  2. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
    [CrossRef] [PubMed]
  3. H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
    [PubMed]
  4. T. Tanifuji and M. Hijikata, “Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imaging 21, 181–184 (2002).
    [CrossRef] [PubMed]
  5. W. Mo and N. Chen, “Fast time-domain diffuse optical tomography using pseudorandom bit sequences,” Opt. Express 16, 13643–13650 (2008).
    [CrossRef] [PubMed]
  6. B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729(1995).
    [CrossRef] [PubMed]
  7. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
    [CrossRef]
  8. J. Wang, S. Jiang, K. D. Paulsen, and B. W. Pogue, “Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser,” Appl. Opt. 48, D198–D207(2009).
    [CrossRef] [PubMed]
  9. D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
    [CrossRef] [PubMed]
  10. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
    [CrossRef] [PubMed]
  11. N. G. Chen, M. Huang, H. Xia, D. Piao, E. Cronin, and Q. Zhu, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
    [CrossRef] [PubMed]
  12. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000).
    [CrossRef] [PubMed]
  13. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
    [CrossRef] [PubMed]
  14. E. S. Papazoglou, M. S. Weingarten, L. Zubkov, L. Zhu, S. Tyagi, and K. Pourezaei, “Near infrared diffuse optical tomography: improving the quality of care in chronic wounds of patients with diabetes,” Biomed. Instrum. Technol. 41, 83–87 (2007).
    [CrossRef] [PubMed]
  15. G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5, 351–363 (2006).
    [PubMed]
  16. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
    [CrossRef] [PubMed]
  17. H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Hielscher, “Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes,” Opt. Express 16, 18082–18101 (2008).
    [CrossRef] [PubMed]
  18. N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000).
    [CrossRef]
  19. A. M. Siegel, J. J. A. Marota, and D. A. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express 4, 287–298 (1999).
    [CrossRef] [PubMed]
  20. Y. Xu, X. Gu, T. Khan, and H. Jiang, “Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427–5437 (2002).
    [CrossRef] [PubMed]
  21. Z. Yuan and H. Jiang, “Image reconstruction scheme that combines modified Newton method and efficient initial guess estimation for optical tomography of finger joints,” Appl. Opt. 46, 2757–2768 (2007).
    [CrossRef] [PubMed]
  22. H. Jiang, K. D. Paulsen, U. L. Osterbergy, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
    [CrossRef] [PubMed]
  23. Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001).
    [CrossRef] [PubMed]
  24. Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part II: Experimental demonstration,” Opt. Express 16, 17505–17520 (2008).
    [CrossRef] [PubMed]
  25. A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “ Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).
    [CrossRef] [PubMed]
  26. K. K. Wang and T. C. Zhu, “Reconstruction of in-vivo optical properties for human prostate using interstitial diffuse optical tomography,” Opt. Express 17, 11665–11672 (2009).
    [CrossRef] [PubMed]
  27. M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt. 46, 2743–2756 (2007).
    [CrossRef] [PubMed]
  28. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
    [CrossRef] [PubMed]
  29. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieriand, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213(1994).
    [CrossRef] [PubMed]
  30. D. Boas, T. Gaudette, and S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 263–270 (2001).
    [CrossRef] [PubMed]
  31. S. L. Jacques, “Reflectance spectroscopy with optical fiber devices and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A.M.Verga Scheggi, S.Martellucci, A.N.Chester, and R.Pratesi, eds. (Kluwer Academic, 1996), pp. 83–94.
  32. F. Fabbri, M. A. Franceschini, and S. Fantini, “Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging,” Appl. Opt. 42, 3063–3072 (2003).
    [CrossRef] [PubMed]
  33. The original derivation in for σμs′/μs′ has ρ in the equation, which is inconsistent with that obtained for σμa/μa. Equation corrected this inconsistency.
  34. B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).
    [CrossRef]
  35. G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part I: simulation,” Opt. Express 16, 17484–17504 (2008).
    [CrossRef] [PubMed]
  36. H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128(2003).
    [CrossRef] [PubMed]
  37. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Meth. Eng. 25, 711–732 (2009).
    [CrossRef]
  38. P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).
    [CrossRef] [PubMed]
  39. M. Huang and Q. Zhu, “A dual-mesh optical tomography reconstruction method with depth correction using a prioriultrasound information,” Appl. Opt. 43, 1654–1662 (2004).
    [CrossRef] [PubMed]
  40. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884(1998).
    [CrossRef]
  41. B. Harrach, “On uniqueness in diffuse optical tomography,” Inverse Probl. 25, 055010 (2009).
    [CrossRef]
  42. Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound coupled near-infrared optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14, 030506 (2009).
    [CrossRef] [PubMed]

2009 (5)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Meth. Eng. 25, 711–732 (2009).
[CrossRef]

B. Harrach, “On uniqueness in diffuse optical tomography,” Inverse Probl. 25, 055010 (2009).
[CrossRef]

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound coupled near-infrared optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14, 030506 (2009).
[CrossRef] [PubMed]

J. Wang, S. Jiang, K. D. Paulsen, and B. W. Pogue, “Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser,” Appl. Opt. 48, D198–D207(2009).
[CrossRef] [PubMed]

K. K. Wang and T. C. Zhu, “Reconstruction of in-vivo optical properties for human prostate using interstitial diffuse optical tomography,” Opt. Express 17, 11665–11672 (2009).
[CrossRef] [PubMed]

2008 (5)

2007 (3)

2006 (2)

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).
[CrossRef] [PubMed]

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5, 351–363 (2006).
[PubMed]

2005 (1)

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
[PubMed]

2004 (4)

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
[CrossRef] [PubMed]

N. G. Chen, M. Huang, H. Xia, D. Piao, E. Cronin, and Q. Zhu, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

M. Huang and Q. Zhu, “A dual-mesh optical tomography reconstruction method with depth correction using a prioriultrasound information,” Appl. Opt. 43, 1654–1662 (2004).
[CrossRef] [PubMed]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “ Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).
[CrossRef] [PubMed]

2003 (3)

F. Fabbri, M. A. Franceschini, and S. Fantini, “Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging,” Appl. Opt. 42, 3063–3072 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128(2003).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

2002 (2)

T. Tanifuji and M. Hijikata, “Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imaging 21, 181–184 (2002).
[CrossRef] [PubMed]

Y. Xu, X. Gu, T. Khan, and H. Jiang, “Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427–5437 (2002).
[CrossRef] [PubMed]

2001 (5)

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

D. Boas, T. Gaudette, and S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 263–270 (2001).
[CrossRef] [PubMed]

Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001).
[CrossRef] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

2000 (2)

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000).
[CrossRef] [PubMed]

N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000).
[CrossRef]

1999 (3)

1998 (2)

H. Jiang, K. D. Paulsen, U. L. Osterbergy, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884(1998).
[CrossRef]

1997 (1)

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

1995 (1)

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729(1995).
[CrossRef] [PubMed]

1994 (1)

Arridge, S. R.

Backhaus, M.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “ Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Ballesteros, J. R.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Barbieriand, B.

Barbour, R. L.

Bartels, K. E.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound coupled near-infrared optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14, 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part II: Experimental demonstration,” Opt. Express 16, 17505–17520 (2008).
[CrossRef] [PubMed]

Beuthan, J.

H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Hielscher, “Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes,” Opt. Express 16, 18082–18101 (2008).
[CrossRef] [PubMed]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “ Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Birgul, O.

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5, 351–363 (2006).
[PubMed]

Boas, D.

Boas, D. A.

Brooksby, B.

Bunting, C. F.

Butler, J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000).
[CrossRef] [PubMed]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Meth. Eng. 25, 711–732 (2009).
[CrossRef]

Cerussi, A. E.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[CrossRef] [PubMed]

Chance, B.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000).
[CrossRef] [PubMed]

Chen, N.

Chen, N. G.

N. G. Chen, M. Huang, H. Xia, D. Piao, E. Cronin, and Q. Zhu, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

Choe, R.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Cronin, E.

N. G. Chen, M. Huang, H. Xia, D. Piao, E. Cronin, and Q. Zhu, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

Culver, J. P.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Davis, S. C.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Meth. Eng. 25, 711–732 (2009).
[CrossRef]

Dehghani, H.

Durduran, T.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Meth. Eng. 25, 711–732 (2009).
[CrossRef]

Fabbri, F.

Fantini, S.

F. Fabbri, M. A. Franceschini, and S. Fantini, “Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging,” Appl. Opt. 42, 3063–3072 (2003).
[CrossRef] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieriand, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213(1994).
[CrossRef] [PubMed]

Fishkin, J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000).
[CrossRef] [PubMed]

Fishkin, J. B.

Franceschini, M. A.

F. Fabbri, M. A. Franceschini, and S. Fantini, “Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging,” Appl. Opt. 42, 3063–3072 (2003).
[CrossRef] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieriand, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213(1994).
[CrossRef] [PubMed]

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Gao, F.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
[CrossRef] [PubMed]

Gaudette, T.

Gebauer, B.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
[PubMed]

Geimer, S.

Graber, H. L.

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieriand, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213(1994).
[CrossRef] [PubMed]

Grosenick, D.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
[PubMed]

Gu, X.

Gulsen, G.

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5, 351–363 (2006).
[PubMed]

Harrach, B.

B. Harrach, “On uniqueness in diffuse optical tomography,” Inverse Probl. 25, 055010 (2009).
[CrossRef]

Hielscher, A. H.

H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Hielscher, “Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes,” Opt. Express 16, 18082–18101 (2008).
[CrossRef] [PubMed]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “ Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

Hijikata, M.

T. Tanifuji and M. Hijikata, “Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imaging 21, 181–184 (2002).
[CrossRef] [PubMed]

Holboke, M. J.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000).
[CrossRef] [PubMed]

Holyoak, G. R.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound coupled near-infrared optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14, 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part II: Experimental demonstration,” Opt. Express 16, 17505–17520 (2008).
[CrossRef] [PubMed]

Huang, M.

M. Huang and Q. Zhu, “A dual-mesh optical tomography reconstruction method with depth correction using a prioriultrasound information,” Appl. Opt. 43, 1654–1662 (2004).
[CrossRef] [PubMed]

N. G. Chen, M. Huang, H. Xia, D. Piao, E. Cronin, and Q. Zhu, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

Hueber, D. M.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Iftimia, N.

Jacques, S. L.

S. L. Jacques, “Reflectance spectroscopy with optical fiber devices and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A.M.Verga Scheggi, S.Martellucci, A.N.Chester, and R.Pratesi, eds. (Kluwer Academic, 1996), pp. 83–94.

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Jiang, H.

Jiang, S.

Jiang, Z.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound coupled near-infrared optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14, 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part II: Experimental demonstration,” Opt. Express 16, 17505–17520 (2008).
[CrossRef] [PubMed]

Kaschke, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Khan, T.

Kidney, D.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000).
[CrossRef] [PubMed]

Kim, H. K.

Klose, A. D.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “ Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Krasinski, J. S.

Li, X.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000).
[CrossRef] [PubMed]

Lionheart, W. R. B.

Ma, H. Y.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Mantulin, W. W.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Marota, J. J. A.

McBride, T. O.

Mo, W.

Moa-Anderson, B.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “ Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Moeller, M.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
[PubMed]

Moesta, K. T.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
[PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Mucke, J.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
[PubMed]

Musgrove, C. H.

Nalcioglu, O.

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5, 351–363 (2006).
[PubMed]

Netz, U.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “ Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Netz, U. J.

Nissilä, I.

Ntziachristos, V.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

Osterberg, U. L.

Osterbergy, U. L.

H. Jiang, K. D. Paulsen, U. L. Osterbergy, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

Papazoglou, E. S.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, L. Zhu, S. Tyagi, and K. Pourezaei, “Near infrared diffuse optical tomography: improving the quality of care in chronic wounds of patients with diabetes,” Biomed. Instrum. Technol. 41, 83–87 (2007).
[CrossRef] [PubMed]

Patterson, M. S.

H. Jiang, K. D. Paulsen, U. L. Osterbergy, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729(1995).
[CrossRef] [PubMed]

Paulsen, K. D.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Meth. Eng. 25, 711–732 (2009).
[CrossRef]

J. Wang, S. Jiang, K. D. Paulsen, and B. W. Pogue, “Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser,” Appl. Opt. 48, D198–D207(2009).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[CrossRef] [PubMed]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128(2003).
[CrossRef] [PubMed]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterbergy, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729(1995).
[CrossRef] [PubMed]

Pei, Y.

Piao, D.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound coupled near-infrared optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14, 030506 (2009).
[CrossRef] [PubMed]

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part I: simulation,” Opt. Express 16, 17484–17504 (2008).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part II: Experimental demonstration,” Opt. Express 16, 17505–17520 (2008).
[CrossRef] [PubMed]

N. G. Chen, M. Huang, H. Xia, D. Piao, E. Cronin, and Q. Zhu, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

Pogue, B. W.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Meth. Eng. 25, 711–732 (2009).
[CrossRef]

J. Wang, S. Jiang, K. D. Paulsen, and B. W. Pogue, “Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser,” Appl. Opt. 48, D198–D207(2009).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[CrossRef] [PubMed]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128(2003).
[CrossRef] [PubMed]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729(1995).
[CrossRef] [PubMed]

Pourezaei, K.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, L. Zhu, S. Tyagi, and K. Pourezaei, “Near infrared diffuse optical tomography: improving the quality of care in chronic wounds of patients with diabetes,” Biomed. Instrum. Technol. 41, 83–87 (2007).
[CrossRef] [PubMed]

Prewitt, J.

Rinneberg, H.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
[PubMed]

Ritchey, J. W.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound coupled near-infrared optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14, 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part II: Experimental demonstration,” Opt. Express 16, 17505–17520 (2008).
[CrossRef] [PubMed]

Scheel, A. K.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “ Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Schlag, P. M.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
[PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Schweiger, M.

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Shafiiha, R.

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5, 351–363 (2006).
[PubMed]

Shah, N.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000).
[CrossRef] [PubMed]

Siegel, A. M.

Slemp, A.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Slobodov, G.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound coupled near-infrared optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14, 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part II: Experimental demonstration,” Opt. Express 16, 17505–17520 (2008).
[CrossRef] [PubMed]

Srinivasan, S.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Meth. Eng. 25, 711–732 (2009).
[CrossRef]

Stroszczynski, C.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
[PubMed]

Tanifuji, T.

T. Tanifuji and M. Hijikata, “Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imaging 21, 181–184 (2002).
[CrossRef] [PubMed]

Tanikawa, Y.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
[CrossRef] [PubMed]

Tromberg, B. J.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000).
[CrossRef] [PubMed]

Tyagi, S.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, L. Zhu, S. Tyagi, and K. Pourezaei, “Near infrared diffuse optical tomography: improving the quality of care in chronic wounds of patients with diabetes,” Biomed. Instrum. Technol. 41, 83–87 (2007).
[CrossRef] [PubMed]

Unlu, M. B.

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5, 351–363 (2006).
[PubMed]

Wabnitz, H.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
[PubMed]

Wallace, D.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Wang, J.

Wang, K. K.

Wassermann, B.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
[PubMed]

Weingarten, M. S.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, L. Zhu, S. Tyagi, and K. Pourezaei, “Near infrared diffuse optical tomography: improving the quality of care in chronic wounds of patients with diabetes,” Biomed. Instrum. Technol. 41, 83–87 (2007).
[CrossRef] [PubMed]

Xia, H.

N. G. Chen, M. Huang, H. Xia, D. Piao, E. Cronin, and Q. Zhu, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

Xu, G.

Xu, Y.

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Meth. Eng. 25, 711–732 (2009).
[CrossRef]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).
[CrossRef] [PubMed]

Yamada, Y.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
[CrossRef] [PubMed]

Yodh, A. G.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000).
[CrossRef] [PubMed]

Yuan, Z.

Zhang, Q.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

Zhao, H.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
[CrossRef] [PubMed]

Zhu, L.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, L. Zhu, S. Tyagi, and K. Pourezaei, “Near infrared diffuse optical tomography: improving the quality of care in chronic wounds of patients with diabetes,” Biomed. Instrum. Technol. 41, 83–87 (2007).
[CrossRef] [PubMed]

Zhu, Q.

N. G. Chen, M. Huang, H. Xia, D. Piao, E. Cronin, and Q. Zhu, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

M. Huang and Q. Zhu, “A dual-mesh optical tomography reconstruction method with depth correction using a prioriultrasound information,” Appl. Opt. 43, 1654–1662 (2004).
[CrossRef] [PubMed]

Zhu, T. C.

Zubkov, L.

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, L. Zhu, S. Tyagi, and K. Pourezaei, “Near infrared diffuse optical tomography: improving the quality of care in chronic wounds of patients with diabetes,” Biomed. Instrum. Technol. 41, 83–87 (2007).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Appl. Opt. (11)

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieriand, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213(1994).
[CrossRef] [PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000).
[CrossRef]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

Y. Xu, X. Gu, T. Khan, and H. Jiang, “Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427–5437 (2002).
[CrossRef] [PubMed]

F. Fabbri, M. A. Franceschini, and S. Fantini, “Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging,” Appl. Opt. 42, 3063–3072 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128(2003).
[CrossRef] [PubMed]

M. Huang and Q. Zhu, “A dual-mesh optical tomography reconstruction method with depth correction using a prioriultrasound information,” Appl. Opt. 43, 1654–1662 (2004).
[CrossRef] [PubMed]

M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt. 46, 2743–2756 (2007).
[CrossRef] [PubMed]

Z. Yuan and H. Jiang, “Image reconstruction scheme that combines modified Newton method and efficient initial guess estimation for optical tomography of finger joints,” Appl. Opt. 46, 2757–2768 (2007).
[CrossRef] [PubMed]

J. Wang, S. Jiang, K. D. Paulsen, and B. W. Pogue, “Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser,” Appl. Opt. 48, D198–D207(2009).
[CrossRef] [PubMed]

Biomed. Instrum. Technol. (1)

E. S. Papazoglou, M. S. Weingarten, L. Zubkov, L. Zhu, S. Tyagi, and K. Pourezaei, “Near infrared diffuse optical tomography: improving the quality of care in chronic wounds of patients with diabetes,” Biomed. Instrum. Technol. 41, 83–87 (2007).
[CrossRef] [PubMed]

Commun. Numer. Meth. Eng. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Meth. Eng. 25, 711–732 (2009).
[CrossRef]

IEEE Trans. Med. Imaging (2)

T. Tanifuji and M. Hijikata, “Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imaging 21, 181–184 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

Inverse Probl. (2)

B. Harrach, “On uniqueness in diffuse optical tomography,” Inverse Probl. 25, 055010 (2009).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Biomed. Opt. (3)

N. G. Chen, M. Huang, H. Xia, D. Piao, E. Cronin, and Q. Zhu, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000).
[CrossRef] [PubMed]

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound coupled near-infrared optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14, 030506 (2009).
[CrossRef] [PubMed]

Med. Phys. (2)

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Opt. Express (9)

K. K. Wang and T. C. Zhu, “Reconstruction of in-vivo optical properties for human prostate using interstitial diffuse optical tomography,” Opt. Express 17, 11665–11672 (2009).
[CrossRef] [PubMed]

W. Mo and N. Chen, “Fast time-domain diffuse optical tomography using pseudorandom bit sequences,” Opt. Express 16, 13643–13650 (2008).
[CrossRef] [PubMed]

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part I: simulation,” Opt. Express 16, 17484–17504 (2008).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part II: Experimental demonstration,” Opt. Express 16, 17505–17520 (2008).
[CrossRef] [PubMed]

H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Hielscher, “Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes,” Opt. Express 16, 18082–18101 (2008).
[CrossRef] [PubMed]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).
[CrossRef] [PubMed]

A. M. Siegel, J. J. A. Marota, and D. A. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express 4, 287–298 (1999).
[CrossRef] [PubMed]

D. Boas, T. Gaudette, and S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 263–270 (2001).
[CrossRef] [PubMed]

Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (5)

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729(1995).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterbergy, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “ Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).
[CrossRef] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001).
[CrossRef] [PubMed]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Technol. Cancer Res. Treat. (2)

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005).
[PubMed]

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5, 351–363 (2006).
[PubMed]

Other (2)

S. L. Jacques, “Reflectance spectroscopy with optical fiber devices and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A.M.Verga Scheggi, S.Martellucci, A.N.Chester, and R.Pratesi, eds. (Kluwer Academic, 1996), pp. 83–94.

The original derivation in for σμs′/μs′ has ρ in the equation, which is inconsistent with that obtained for σμa/μa. Equation corrected this inconsistency.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Imaging geometry for a homogeneous medium.

Fig. 2
Fig. 2

Contrast-to-noise-ratio (CNR) with respect to the measurement noise levels. (a), (b), (c) μ a / μ s / D distribution in the z = 0 plane of forward model; (d) μ a CNR comparison; (e) μ s CNR comparison; (f) D CNR comparison.

Fig. 3
Fig. 3

Simulation studies for reconstructing multiple targets in a three-dimensional cylindrical geometry with the optodes and targets located on one plane.

Fig. 4
Fig. 4

Simulation studies for reconstructing multiple targets in a three-dimensional cylindrical geometry with the optodes located on three different planes and targets located on the middle plane.

Fig. 5
Fig. 5

Region-based reconstruction for multiple targets in a three-dimensional cylindrical geometry with the optodes and targets located on one plane. (a) Imaging geometry and the regions of interest; (b) comparison of the results for DC, AC + PHS , and DC + AC + PHS .

Fig. 6
Fig. 6

Region-based reconstruction for multiple targets in a three-dimensional cylindrical geometry with the optodes located on three different planes and targets located on the middle plane. (a) Imaging geometry and the regions of interest; (b) comparison of the results for DC, AC + PHS , and DC + AC + PHS .

Tables (9)

Tables Icon

Table 1 Comparison of the Analytic Derivations in This Work with That in [29]

Tables Icon

Table 2 Comparison on PRUL of μ a ( σ μ a / μ a )

Tables Icon

Table 3 Comparison on PRUL of D

Tables Icon

Table 4 Comparison on PRUL of μ s

Tables Icon

Table 5 Mean Value and Standard Deviation Reconstructed for Homogeneous Medium

Tables Icon

Table 6 Standard Deviation of Background Optical Properties in Fig. 3

Tables Icon

Table 7 Comparison of the Accuracy of Recovered Optical Properties in Fig. 3

Tables Icon

Table 8 Standard Deviation of Background Optical Properties in Fig. 4

Tables Icon

Table 9 Comparison of the Accuracy of Recovered Optical Properties in Fig. 4

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

( μ a ( r ) D ( r ) + i ω v D ( r ) ) U FD ( r , ω ) + 2 U FD ( r , ω ) = S ( r , ω ) D ( r ) ,
U FD ( r , ω ) = U DC ( r ) + | U AC ( r , ω ) | exp ( i Φ AC ) = S DC ( r ) 4 π D d exp ( k DC d ) + S AC ( r , ω ) 4 π D d exp ( k AC d ) · exp ( i k PHS d ) ,
k DC = μ a D , k AC = μ a 2 D ( 1 + ω 2 v 2 μ a 2 + 1 ) , k PHS = μ a 2 D ( 1 + ω 2 v 2 μ a 2 1 ) .
δ = ln ( d 2 d 1 U DC ( d 2 ) U DC ( d 1 ) ) = ρ · k DC = ρ · μ a D , α = ln ( d 2 d 1 U AC ( d 2 ) U AC ( d 1 ) ) = ρ · k AC = ρ · μ a 2 D ( 1 + ω 2 v 2 μ a 2 + 1 ) , ϕ = Φ ( d 2 ) Φ ( d 1 ) = ρ · k PHS = ρ · μ a 2 D ( 1 + ω 2 v 2 μ a 2 1 ) .
μ a | DC = D · ( δ ρ ) 2 .
μ a | DC = K ( R ) ρ · δ ,
σ μ a μ a | DC = 1 μ a [ μ a δ σ δ ] = σ δ δ or ( σ δ 2 δ 2 ) 1 / 2 .
μ a | AC + PHS = ω 2 v ( ϕ α α ϕ ) ,
σ μ a μ a | AC + PHS = 1 μ a [ ( μ a α ) 2 σ α 2 + ( μ a ϕ ) 2 σ ϕ 2 ] 1 / 2 = α 2 + ϕ 2 α 2 ϕ 2 ( σ α 2 α 2 + σ ϕ 2 ϕ 2 ) 1 / 2 .
μ a | DC + AC + P H S = ω v · δ 2 2 α ϕ
σ μ a μ a | DC + AC + PHS = 1 μ a [ ( μ a δ ) 2 σ δ 2 + ( μ a α ) 2 σ α 2 + ( μ a ϕ ) 2 σ ϕ 2 ] 1 / 2 = ( 4 σ δ 2 δ 2 + σ α 2 α 2 + σ ϕ 2 ϕ 2 ) 1 / 2 .
σ μ μ = η · ( ξ ) 1 / 2 ,
D | DC = K ( R ) · ( ρ δ ) ,
σ D D | DC = 1 D [ D δ σ δ ] = σ δ δ or ( σ δ 2 δ 2 ) 1 / 2 .
D | AC + PHS = D | DC + AC + PHS = ω ρ 2 2 v · 1 α ϕ .
σ D D | AC + PHS = σ D D | DC + AC + PHS = 1 D [ ( D α ) 2 σ α 2 + ( D ϕ ) 2 σ ϕ 2 ] 1 / 2 = ( σ α 2 α 2 + σ ϕ 2 ϕ 2 ) 1 / 2 .
σ μ s μ s = 1 μ s [ ( μ s D ) 2 σ D 2 + ( μ s μ a ) 2 σ μ a 2 ] 1 / 2 = [ 1 3 D μ a ] 1 · [ ( 1 3 D ) 2 ( σ D D ) 2 + ( μ a ) 2 ( σ μ a μ a ) 2 ] 1 / 2 ,
σ μ s μ s | DC = [ 1 3 D μ a ] 1 [ ( 1 3 D ) 2 · ( σ δ 2 δ 2 ) + μ a 2 · ( σ δ 2 δ 2 ) ] 1 / 2 .
σ μ s μ s | AC + Phs = [ 1 3 D μ a ] 1 · [ ( 1 3 D ) 2 ( σ α 2 α 2 + σ ϕ 2 ϕ 2 ) + μ a 2 · ( α 2 + ϕ 2 α 2 ϕ 2 ) 2 · ( σ α 2 α 2 + σ ϕ 2 ϕ 2 ) ] 1 / 2 ,
σ μ s μ s | DC + AC + Phs = [ 1 3 D μ a ] 1 · [ ( 1 3 D ) 2 ( σ α 2 α 2 + σ ϕ 2 ϕ 2 ) + μ a 2 · ( 4 σ δ 2 δ 2 + σ α 2 α 2 + σ ϕ 2 ϕ 2 ) ] 1 / 2 .
U ( r 0 , ω ) 2 D A n ^ 0 · U ( r 0 , ω ) = 0 ,
J = [ DC AC PHS ] = [ ln U DC μ a ln U DC D ln | U AC | μ a ln | U AC | D Φ AC μ a Φ AC D ] ,
x k + 1 = x k + α · [ J T ( x k ) J ( x k ) + λ I ] 1 J T ( x k ) Δ v ( x k ) ,

Metrics