Abstract

A hyperspectral Fourier transform spectrometer has been developed for studying biological material bound to optically reflecting surfaces. This instrument has two modes of operation: a white-light reflection mode and a spectral self-interference fluorescence mode. With the combined capability, information about the conformation of an ensemble of biomolecules may be determined. To the best of our knowledge, ours is the first report of this hybrid white-light reflection, spectral self-interference fluorescence measurement with any type of hyperspectral imager. The measurement technique is presented along with a full description of the system, including theoretical performance projections. Proof-of-principle measurements of artificial samples are shown, and the results are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. Moiseev, M. S. Ünlü, A. K. Swan, B. B. Goldberg, and C. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. USA 103, 2623-2628 (2006).
    [CrossRef] [PubMed]
  2. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
    [CrossRef]
  3. M. S. Ünlü, I. E. Özkumur, D. A. Bergstein, A. Yalcin, M. F. Ruane, and B. B. Goldberg, “Application of optical resonance to biological sensing and imaging II: resonant cavity biosensors,” in Biophotonics: Biological and Medical Physics, Biomedical Engineering, L. Pavesi and P. M. Fauchet, eds. (Springer, 2008).
  4. G. Gauglitz, “Multiple reflectance interference spectroscopy measurements made in parallel for binding studies,” Rev. Sci. Instrum. 76, 062224 (2005).
    [CrossRef]
  5. M. S. Ünlü, A. Yalcin, M. Dogan, L. Moiseev, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “Application of optical resonance to biological sensing and imaging I: spectral self-interference microscopy,” in Biophotonics: Biological and Medical Physics, Biomedical Engineering, L. Pavesi and P. M. Fauchet, eds. (Springer, 2008).
  6. P. Mourourlis, R. O. Green, and T. G. Crien, “Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,” Appl. Opt. 39, 2210-2220(2000).
    [CrossRef]
  7. C. Schwarze, J. Rentz, D. Carlson, R. Vaillancourt, G. Genetti, and J. Engel, “A tunable Fabry-Perot filter for imaging spectroscopy in the infrared,” Proc. SPIE 4574, 153-161 (2002).
    [CrossRef]
  8. N. Gupta and V. Voloshinov, “Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter,” Appl. Opt. 43, 2752-2759 (2004).
    [CrossRef] [PubMed]
  9. R. C. Lyon, D. S. Lester, E. N. Lewis, E. Lee, L. X. Yu, E. H. Jefferson, and A. S. Hussain, “Near-infrared spectral imaging for quality assurance of pharmaceutical products: analysis of tablets to assess powder blend homogeneity,” AAPS PharmSciTech 3, 17 (2002).
    [CrossRef]
  10. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50-64 (2000).
    [CrossRef]
  11. J. van der Weerd, H. Brammer, J. J. Boon, and R. M. A. Heeren, “Fourier transform infra-red microscopic imaging of an embedded paint cross-section,” Appl. Spectrosc. 56, 275-283 (2002).
    [CrossRef]
  12. E. N. Lewis, L. H. Kidder, J. F. Arens, M. C. Peck, and I. W. Levin, “Si:As focal-plane array detection for Fourier transform spectroscopic imaging in the infrared fingerprint region,” Appl. Spectrosc. 51, 563-567 (1997).
    [CrossRef]
  13. E. B. Brauns and R. B. Dyer, “Fourier transform hyperspectral visible imaging and the nondestructive analysis of potentially fraudulent documents,” Appl. Spectrosc. 60, 833-840 (2006).
    [CrossRef] [PubMed]
  14. L. Moiseev, C. R. Cantor, I. Aksun, M. Dogan, B. B. Goldberg, A. K. Swan, and M. S. Ünlü, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311-5315 (2004).
    [CrossRef]
  15. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).
  16. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 1986).

2006 (2)

L. Moiseev, M. S. Ünlü, A. K. Swan, B. B. Goldberg, and C. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. USA 103, 2623-2628 (2006).
[CrossRef] [PubMed]

E. B. Brauns and R. B. Dyer, “Fourier transform hyperspectral visible imaging and the nondestructive analysis of potentially fraudulent documents,” Appl. Spectrosc. 60, 833-840 (2006).
[CrossRef] [PubMed]

2005 (1)

G. Gauglitz, “Multiple reflectance interference spectroscopy measurements made in parallel for binding studies,” Rev. Sci. Instrum. 76, 062224 (2005).
[CrossRef]

2004 (3)

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
[CrossRef]

N. Gupta and V. Voloshinov, “Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter,” Appl. Opt. 43, 2752-2759 (2004).
[CrossRef] [PubMed]

L. Moiseev, C. R. Cantor, I. Aksun, M. Dogan, B. B. Goldberg, A. K. Swan, and M. S. Ünlü, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311-5315 (2004).
[CrossRef]

2002 (3)

C. Schwarze, J. Rentz, D. Carlson, R. Vaillancourt, G. Genetti, and J. Engel, “A tunable Fabry-Perot filter for imaging spectroscopy in the infrared,” Proc. SPIE 4574, 153-161 (2002).
[CrossRef]

R. C. Lyon, D. S. Lester, E. N. Lewis, E. Lee, L. X. Yu, E. H. Jefferson, and A. S. Hussain, “Near-infrared spectral imaging for quality assurance of pharmaceutical products: analysis of tablets to assess powder blend homogeneity,” AAPS PharmSciTech 3, 17 (2002).
[CrossRef]

J. van der Weerd, H. Brammer, J. J. Boon, and R. M. A. Heeren, “Fourier transform infra-red microscopic imaging of an embedded paint cross-section,” Appl. Spectrosc. 56, 275-283 (2002).
[CrossRef]

2000 (2)

1997 (1)

AAPS PharmSciTech (1)

R. C. Lyon, D. S. Lester, E. N. Lewis, E. Lee, L. X. Yu, E. H. Jefferson, and A. S. Hussain, “Near-infrared spectral imaging for quality assurance of pharmaceutical products: analysis of tablets to assess powder blend homogeneity,” AAPS PharmSciTech 3, 17 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (3)

J. Appl. Phys. (1)

L. Moiseev, C. R. Cantor, I. Aksun, M. Dogan, B. B. Goldberg, A. K. Swan, and M. S. Ünlü, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311-5315 (2004).
[CrossRef]

Langmuir (1)

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

L. Moiseev, M. S. Ünlü, A. K. Swan, B. B. Goldberg, and C. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. USA 103, 2623-2628 (2006).
[CrossRef] [PubMed]

Proc. SPIE (2)

C. Schwarze, J. Rentz, D. Carlson, R. Vaillancourt, G. Genetti, and J. Engel, “A tunable Fabry-Perot filter for imaging spectroscopy in the infrared,” Proc. SPIE 4574, 153-161 (2002).
[CrossRef]

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50-64 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Gauglitz, “Multiple reflectance interference spectroscopy measurements made in parallel for binding studies,” Rev. Sci. Instrum. 76, 062224 (2005).
[CrossRef]

Other (4)

M. S. Ünlü, A. Yalcin, M. Dogan, L. Moiseev, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “Application of optical resonance to biological sensing and imaging I: spectral self-interference microscopy,” in Biophotonics: Biological and Medical Physics, Biomedical Engineering, L. Pavesi and P. M. Fauchet, eds. (Springer, 2008).

M. S. Ünlü, I. E. Özkumur, D. A. Bergstein, A. Yalcin, M. F. Ruane, and B. B. Goldberg, “Application of optical resonance to biological sensing and imaging II: resonant cavity biosensors,” in Biophotonics: Biological and Medical Physics, Biomedical Engineering, L. Pavesi and P. M. Fauchet, eds. (Springer, 2008).

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

WLRS and SSFM concepts. In WLRS mode, the two interfering waves are created by the first and second surface reflections from the substrate of an external source. In SSFM mode, the two waves are created by the fluorescence emitted upward and that emitted downward and subsequently reflected at the second surface of the substrate. The subtle but significant difference between the two measurements is that the WLRS signal is proportional to the optical thickness of the biological material, which is proportional to mass per unit area, while the SSFM signal is proportional to the physical height of the fluorophores above the surface.

Fig. 2
Fig. 2

HS-FTS in WLRS configuration.

Fig. 3
Fig. 3

HS-FTS in SSFM configuration.

Fig. 4
Fig. 4

Photograph of HS-FTS setup.

Fig. 5
Fig. 5

Data reduction flow. The interferogram captured by each pixel as a function of interferometer mirror position is corrected for offset and slope, apodized, and Fourier transformed. The resulting spectra is fitted to the thin film interference equation, and the SiO 2 thickness value of the best fit is reported in a two-dimensional height image.

Fig. 6
Fig. 6

(a) HS-FTS raw image of 30 nm stripe sample, obtained using WLRS. The stripes are visible owing to a difference in reflectivity; however, the hyperspectral cube is necessary to de termine their height. (b) HS-FTS surface plot of 30 nm stripe sample using WLRS. (c) HS-FTS cross section of 30 nm stripe sample using WLRS.

Fig. 7
Fig. 7

(a) WLI surface plot of 30 nm stripe sample taken with Zygo Newview 6300. (b) WLI cross section of 30 nm stripe sample.

Fig. 8
Fig. 8

(a) HS-FTS surface plot of 15 nm stripe sample using WLRS. (b) HS-FTS cross section of 15 nm stripe sample using WLRS.

Fig. 9
Fig. 9

(a) WLI surface plot of 15 nm stripe sample taken with Zygo Newview 6300. (b) WLI cross section of 15 nm stripe sample.

Fig. 10
Fig. 10

(a) HS-FTS raw image of 30 nm stripe sample using SSFM. Only the fluorescence intensity distribution is visible in the SSFM raw images. (b) HS-FTS surface plot of 30 nm stripe sample using SSFM. (c) HS-FTS cross section of 30 nm stripe sample using SSFM.

Fig. 11
Fig. 11

(a) HS-FTS surface plot of 15 nm stripe sample using SSFM. (b) HS-FTS cross section of 15 nm stripe sample using SSFM.

Tables (2)

Tables Icon

Table 1 HS-FTS Parameters a

Tables Icon

Table 2 Q-Imaging Rolera CCD Camera Parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( σ ) = I 2 + I 3 + 2 I 2 I 3 cos ( 4 π n 2 σ t ) 1 + I 2 I 3 + 2 I 2 I 3 cos ( 4 π n 2 σ t ) ,
I with bio matl ( σ ) = I 2 + I 3 + 2 I 2 I 3 cos [ 4 π n 2 σ ( t + δ t ) ] 1 + I 2 I 3 + 2 I 2 I 3 cos [ 4 π n 2 σ ( t + δ t ) ] .
I tag abovesurface ( σ ) = I 2 + I 3 + 2 I 2 I 3 cos [ 4 π σ ( n 2 t + δ t ) ] 1 + I 2 I 3 + 2 I 2 I 3 cos [ 4 π σ ( n 2 t + δ t ) ] .
N pe _ WLR = P lamp η HS - FTS A pixel A spot 1 M 2 QE CCD h ν τ ,
SNR igram _ WLI = N pe _ FWC = 150.
N pe _ SSFM = P e h ν e σ fl ρ fl A pixel A spot 1 M 2 QY fl η HS - FTS η col η filter QE CCD τ .
SNR spectral = SNR igram ME N σ FF N points .
I ( x ) = σ I thin film ( σ ) cos [ 2 π σ B ( x ) ] d σ ,
B ( x ) = B o ( x ) ± Δ B .

Metrics