Abstract

We perform simultaneous interferometric and fluorescent detection of molecular protein layers on a BioCD. The 488nm excitation wavelength of fluorescein also provides the interferometric detection channel that operates in a common-path in-line configuration in the condition of phase quadrature set by a thermal oxide on silicon. The simultaneous acquisition of both channels enables a direct correlation between bound mass and fluorescent surface density, which we compare in forward- and reverse-phase immunoassays. Scaling mass sensitivities for immunoassays measured in the interferometric and fluorescent channels are 15pg/mm and 1.5pg/mm, respectively, when applied to gel-printed periodic antibody patterns detected in the frequency domain from the spinning disc. These sensitivities are limited by the inhomogeneities of the print. While fluorescence is subject to bleaching, the interferometry signal is robust under long-term laser illumination.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3-15 (1999).
    [CrossRef]
  2. C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405 (2006).
    [CrossRef] [PubMed]
  3. L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, “Adaptive optical biocompact disk for molecular recognition,” Appl. Phys. Lett. 86, 183902-1-3 (2005).
    [CrossRef]
  4. L. Peng, M. M. Varma, W. Cho, F. E. Regnier, and D. D. Nolte, “Adaptive interferometry of protein on a BioCD,” Appl. Opt. 46, 5384-5395 (2007).
    [CrossRef] [PubMed]
  5. M. M. Varma and D. D. Nolte, “Spinning-disk self-referencing interferometry of antigen-antibody recognition,” Opt. Lett. 29, 950-952 (2004).
    [CrossRef] [PubMed]
  6. M. M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, “High-speed label-free detection by spinning-disk micro-interferometry,” Biosens. Bioelectron. 19, 1371-1376 (2004).
    [CrossRef] [PubMed]
  7. M. Zhao, L. L. Peng, W. Cho, F. Regnier, and D. D. Nolte, “Phase contrast BioCD: high-speed immunoassays at sub-picogram detection levels,” Proc. SPIE-Int. Soc. Opt. Eng. 6095, L950 (2006).
  8. M. Zhao, X. Wang, and D. Nolte, “The in-line-quadrature BioCD,” Proc. SPIE-Int. Soc. Opt. Eng. 6447, B4470 (2007).
  9. M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, “High-speed interferometric detection of label-free immunoassays on the biological compact disc,” J. Clin. Chem. Clin. Biochem. 52, 2135-2140 (2006).
  10. M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer, and T. O. Joos, “Protein microarray technology,” Trends Biotechnol. 20, 160-166 (2002).
    [CrossRef] [PubMed]
  11. S. Nagl, M. Schaeferling, and O. S. Wolfbeis, “Fluorescence analysis in microarray technology,” Microchimica Acta 151, 1-21 (2005).
    [CrossRef]
  12. H. G. Park, J. Y. Song, K. H. Park, and M. H. Kim, “Fluorescence-based assay formats and signal amplification strategies for DNA microarray analysis,” Chem. Eng. Sci. 61, 954-965 (2006).
    [CrossRef]
  13. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray,” Science 270, 467-470 (1995).
    [CrossRef] [PubMed]
  14. H. H. Szeto, P. W. Schiller, K. S. Zhao, and G. X. Luo, “Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides,” FASEB J. 18, 118-120 (2004).
  15. M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyard, and M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosens. Bioelectron. 20, 796 (2004).
    [CrossRef]
  16. H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7, 2263-2266 (2007).
    [CrossRef] [PubMed]
  17. V. Kiessling and L. K. Tamm, “Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins,” Biophys. J. 84, 408-418 (2003).
    [CrossRef] [PubMed]
  18. H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
    [CrossRef]
  19. X. F. Wang, M. Zhao, and D. D. Nolte, “Common-path interferometric detection of protein monolayer on the BioCD,” Appl. Opt. 46, 7836-7849 (2007).
    [CrossRef] [PubMed]
  20. M. Zhao, W. R. Cho, F. Regnier, and D. Nolte, “Differential phase-contrast BioCD biosensor,” Appl. Opt. 46, 6196-6209 (2007).
    [CrossRef] [PubMed]
  21. H. Leonhard, L. Gordon, and R. Livingst, “Acid-base equilibria of fluorescein and 2', 7'-dichlorofluorescein in their ground and fluorescent states,” J. Phys. Chem. 75, 245-249 (1971).
    [CrossRef]
  22. P. C. DeRose and G. W. Kramer, “Bias in the absorption coefficient determination of a fluorescent dye, standard reference material 1932 fluorescein solution,” J. Lumin. 113, 314-320 (2005).
    [CrossRef]
  23. G. P. Derbalian, N. Kameda, and G. L. Rowley, “Fluorescein labeling of fab while preserving single thiol,” Anal. Biochem. 173, 59-63 (1988).
    [CrossRef]
  24. D. D. Nolte and M. Zhao, “Scaling mass sensitivity of the BioCD at 0.25 pg/mm,” Proc. SPIE-Int. Soc. Opt. Eng. 6380, U127-U132 (2006).
    [CrossRef]
  25. E. K. L. Yeow, S. M. Melnikov, T. D. M. Bell, F. C. De Schryver, and J. Hofkens, “Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface,” J. Phys. Chem. A 110, 1726-1734 (2006).
    [CrossRef] [PubMed]
  26. M. Prummer and M. Weiss, “Bulk fluorescence measurements cannot probe the survival-time distribution of single molecules,” Phys. Rev. E 74, 021115 (2006).
    [CrossRef]

2007 (5)

L. Peng, M. M. Varma, W. Cho, F. E. Regnier, and D. D. Nolte, “Adaptive interferometry of protein on a BioCD,” Appl. Opt. 46, 5384-5395 (2007).
[CrossRef] [PubMed]

M. Zhao, X. Wang, and D. Nolte, “The in-line-quadrature BioCD,” Proc. SPIE-Int. Soc. Opt. Eng. 6447, B4470 (2007).

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7, 2263-2266 (2007).
[CrossRef] [PubMed]

X. F. Wang, M. Zhao, and D. D. Nolte, “Common-path interferometric detection of protein monolayer on the BioCD,” Appl. Opt. 46, 7836-7849 (2007).
[CrossRef] [PubMed]

M. Zhao, W. R. Cho, F. Regnier, and D. Nolte, “Differential phase-contrast BioCD biosensor,” Appl. Opt. 46, 6196-6209 (2007).
[CrossRef] [PubMed]

2006 (7)

D. D. Nolte and M. Zhao, “Scaling mass sensitivity of the BioCD at 0.25 pg/mm,” Proc. SPIE-Int. Soc. Opt. Eng. 6380, U127-U132 (2006).
[CrossRef]

E. K. L. Yeow, S. M. Melnikov, T. D. M. Bell, F. C. De Schryver, and J. Hofkens, “Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface,” J. Phys. Chem. A 110, 1726-1734 (2006).
[CrossRef] [PubMed]

M. Prummer and M. Weiss, “Bulk fluorescence measurements cannot probe the survival-time distribution of single molecules,” Phys. Rev. E 74, 021115 (2006).
[CrossRef]

H. G. Park, J. Y. Song, K. H. Park, and M. H. Kim, “Fluorescence-based assay formats and signal amplification strategies for DNA microarray analysis,” Chem. Eng. Sci. 61, 954-965 (2006).
[CrossRef]

M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, “High-speed interferometric detection of label-free immunoassays on the biological compact disc,” J. Clin. Chem. Clin. Biochem. 52, 2135-2140 (2006).

M. Zhao, L. L. Peng, W. Cho, F. Regnier, and D. D. Nolte, “Phase contrast BioCD: high-speed immunoassays at sub-picogram detection levels,” Proc. SPIE-Int. Soc. Opt. Eng. 6095, L950 (2006).

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405 (2006).
[CrossRef] [PubMed]

2005 (4)

L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, “Adaptive optical biocompact disk for molecular recognition,” Appl. Phys. Lett. 86, 183902-1-3 (2005).
[CrossRef]

S. Nagl, M. Schaeferling, and O. S. Wolfbeis, “Fluorescence analysis in microarray technology,” Microchimica Acta 151, 1-21 (2005).
[CrossRef]

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

P. C. DeRose and G. W. Kramer, “Bias in the absorption coefficient determination of a fluorescent dye, standard reference material 1932 fluorescein solution,” J. Lumin. 113, 314-320 (2005).
[CrossRef]

2004 (4)

H. H. Szeto, P. W. Schiller, K. S. Zhao, and G. X. Luo, “Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides,” FASEB J. 18, 118-120 (2004).

M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyard, and M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosens. Bioelectron. 20, 796 (2004).
[CrossRef]

M. M. Varma and D. D. Nolte, “Spinning-disk self-referencing interferometry of antigen-antibody recognition,” Opt. Lett. 29, 950-952 (2004).
[CrossRef] [PubMed]

M. M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, “High-speed label-free detection by spinning-disk micro-interferometry,” Biosens. Bioelectron. 19, 1371-1376 (2004).
[CrossRef] [PubMed]

2003 (1)

V. Kiessling and L. K. Tamm, “Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins,” Biophys. J. 84, 408-418 (2003).
[CrossRef] [PubMed]

2002 (1)

M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer, and T. O. Joos, “Protein microarray technology,” Trends Biotechnol. 20, 160-166 (2002).
[CrossRef] [PubMed]

1999 (1)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3-15 (1999).
[CrossRef]

1995 (1)

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray,” Science 270, 467-470 (1995).
[CrossRef] [PubMed]

1988 (1)

G. P. Derbalian, N. Kameda, and G. L. Rowley, “Fluorescein labeling of fab while preserving single thiol,” Anal. Biochem. 173, 59-63 (1988).
[CrossRef]

1971 (1)

H. Leonhard, L. Gordon, and R. Livingst, “Acid-base equilibria of fluorescein and 2', 7'-dichlorofluorescein in their ground and fluorescent states,” J. Phys. Chem. 75, 245-249 (1971).
[CrossRef]

Bell, T. D. M.

E. K. L. Yeow, S. M. Melnikov, T. D. M. Bell, F. C. De Schryver, and J. Hofkens, “Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface,” J. Phys. Chem. A 110, 1726-1734 (2006).
[CrossRef] [PubMed]

Benisty, H.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Bessueille, F.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyard, and M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosens. Bioelectron. 20, 796 (2004).
[CrossRef]

Boozer, C.

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405 (2006).
[CrossRef] [PubMed]

Bras, M.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyard, and M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosens. Bioelectron. 20, 796 (2004).
[CrossRef]

Brown, P. O.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray,” Science 270, 467-470 (1995).
[CrossRef] [PubMed]

Cabrera, M.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyard, and M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosens. Bioelectron. 20, 796 (2004).
[CrossRef]

Cerovic, G.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Chardon, A.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Chauvet, J. P.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyard, and M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosens. Bioelectron. 20, 796 (2004).
[CrossRef]

Cho, W.

L. Peng, M. M. Varma, W. Cho, F. E. Regnier, and D. D. Nolte, “Adaptive interferometry of protein on a BioCD,” Appl. Opt. 46, 5384-5395 (2007).
[CrossRef] [PubMed]

M. Zhao, L. L. Peng, W. Cho, F. Regnier, and D. D. Nolte, “Phase contrast BioCD: high-speed immunoassays at sub-picogram detection levels,” Proc. SPIE-Int. Soc. Opt. Eng. 6095, L950 (2006).

Cho, W. R.

M. Zhao, W. R. Cho, F. Regnier, and D. Nolte, “Differential phase-contrast BioCD biosensor,” Appl. Opt. 46, 6196-6209 (2007).
[CrossRef] [PubMed]

M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, “High-speed interferometric detection of label-free immunoassays on the biological compact disc,” J. Clin. Chem. Clin. Biochem. 52, 2135-2140 (2006).

Choumane, H.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Cloarec, J. P.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyard, and M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosens. Bioelectron. 20, 796 (2004).
[CrossRef]

Cong, S. X.

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405 (2006).
[CrossRef] [PubMed]

Davis, R. W.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray,” Science 270, 467-470 (1995).
[CrossRef] [PubMed]

De Schryver, F. C.

E. K. L. Yeow, S. M. Melnikov, T. D. M. Bell, F. C. De Schryver, and J. Hofkens, “Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface,” J. Phys. Chem. A 110, 1726-1734 (2006).
[CrossRef] [PubMed]

Derbalian, G. P.

G. P. Derbalian, N. Kameda, and G. L. Rowley, “Fluorescein labeling of fab while preserving single thiol,” Anal. Biochem. 173, 59-63 (1988).
[CrossRef]

DeRose, P. C.

P. C. DeRose and G. W. Kramer, “Bias in the absorption coefficient determination of a fluorescent dye, standard reference material 1932 fluorescein solution,” J. Lumin. 113, 314-320 (2005).
[CrossRef]

Dugas, V.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyard, and M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosens. Bioelectron. 20, 796 (2004).
[CrossRef]

Ewers, H.

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7, 2263-2266 (2007).
[CrossRef] [PubMed]

Garrigues, M.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyard, and M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosens. Bioelectron. 20, 796 (2004).
[CrossRef]

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3-15 (1999).
[CrossRef]

Gordon, L.

H. Leonhard, L. Gordon, and R. Livingst, “Acid-base equilibria of fluorescein and 2', 7'-dichlorofluorescein in their ground and fluorescent states,” J. Phys. Chem. 75, 245-249 (1971).
[CrossRef]

Goutel, C.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Guan, H. W.

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405 (2006).
[CrossRef] [PubMed]

Ha, N.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Helenius, A.

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7, 2263-2266 (2007).
[CrossRef] [PubMed]

Hofkens, J.

E. K. L. Yeow, S. M. Melnikov, T. D. M. Bell, F. C. De Schryver, and J. Hofkens, “Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface,” J. Phys. Chem. A 110, 1726-1734 (2006).
[CrossRef] [PubMed]

Homola, J.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3-15 (1999).
[CrossRef]

Inerowicz, H. D.

M. M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, “High-speed label-free detection by spinning-disk micro-interferometry,” Biosens. Bioelectron. 19, 1371-1376 (2004).
[CrossRef] [PubMed]

Jacobsen, V.

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7, 2263-2266 (2007).
[CrossRef] [PubMed]

Joos, T. O.

M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer, and T. O. Joos, “Protein microarray technology,” Trends Biotechnol. 20, 160-166 (2002).
[CrossRef] [PubMed]

Kameda, N.

G. P. Derbalian, N. Kameda, and G. L. Rowley, “Fluorescein labeling of fab while preserving single thiol,” Anal. Biochem. 173, 59-63 (1988).
[CrossRef]

Kiessling, V.

V. Kiessling and L. K. Tamm, “Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins,” Biophys. J. 84, 408-418 (2003).
[CrossRef] [PubMed]

Kim, G.

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405 (2006).
[CrossRef] [PubMed]

Kim, M. H.

H. G. Park, J. Y. Song, K. H. Park, and M. H. Kim, “Fluorescence-based assay formats and signal amplification strategies for DNA microarray analysis,” Chem. Eng. Sci. 61, 954-965 (2006).
[CrossRef]

Klotzsch, E.

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7, 2263-2266 (2007).
[CrossRef] [PubMed]

Kramer, G. W.

P. C. DeRose and G. W. Kramer, “Bias in the absorption coefficient determination of a fluorescent dye, standard reference material 1932 fluorescein solution,” J. Lumin. 113, 314-320 (2005).
[CrossRef]

Lawrence, G.

M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, “High-speed interferometric detection of label-free immunoassays on the biological compact disc,” J. Clin. Chem. Clin. Biochem. 52, 2135-2140 (2006).

Leonhard, H.

H. Leonhard, L. Gordon, and R. Livingst, “Acid-base equilibria of fluorescein and 2', 7'-dichlorofluorescein in their ground and fluorescent states,” J. Phys. Chem. 75, 245-249 (1971).
[CrossRef]

Livingst, R.

H. Leonhard, L. Gordon, and R. Livingst, “Acid-base equilibria of fluorescein and 2', 7'-dichlorofluorescein in their ground and fluorescent states,” J. Phys. Chem. 75, 245-249 (1971).
[CrossRef]

Londergan, T.

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405 (2006).
[CrossRef] [PubMed]

Luo, G. X.

H. H. Szeto, P. W. Schiller, K. S. Zhao, and G. X. Luo, “Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides,” FASEB J. 18, 118-120 (2004).

Martin, J. R.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyard, and M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosens. Bioelectron. 20, 796 (2004).
[CrossRef]

Melnikov, S. M.

E. K. L. Yeow, S. M. Melnikov, T. D. M. Bell, F. C. De Schryver, and J. Hofkens, “Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface,” J. Phys. Chem. A 110, 1726-1734 (2006).
[CrossRef] [PubMed]

Nagl, S.

S. Nagl, M. Schaeferling, and O. S. Wolfbeis, “Fluorescence analysis in microarray technology,” Microchimica Acta 151, 1-21 (2005).
[CrossRef]

Nelep, C.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Nolte, D.

M. Zhao, X. Wang, and D. Nolte, “The in-line-quadrature BioCD,” Proc. SPIE-Int. Soc. Opt. Eng. 6447, B4470 (2007).

M. Zhao, W. R. Cho, F. Regnier, and D. Nolte, “Differential phase-contrast BioCD biosensor,” Appl. Opt. 46, 6196-6209 (2007).
[CrossRef] [PubMed]

Nolte, D. D.

X. F. Wang, M. Zhao, and D. D. Nolte, “Common-path interferometric detection of protein monolayer on the BioCD,” Appl. Opt. 46, 7836-7849 (2007).
[CrossRef] [PubMed]

L. Peng, M. M. Varma, W. Cho, F. E. Regnier, and D. D. Nolte, “Adaptive interferometry of protein on a BioCD,” Appl. Opt. 46, 5384-5395 (2007).
[CrossRef] [PubMed]

D. D. Nolte and M. Zhao, “Scaling mass sensitivity of the BioCD at 0.25 pg/mm,” Proc. SPIE-Int. Soc. Opt. Eng. 6380, U127-U132 (2006).
[CrossRef]

M. Zhao, L. L. Peng, W. Cho, F. Regnier, and D. D. Nolte, “Phase contrast BioCD: high-speed immunoassays at sub-picogram detection levels,” Proc. SPIE-Int. Soc. Opt. Eng. 6095, L950 (2006).

M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, “High-speed interferometric detection of label-free immunoassays on the biological compact disc,” J. Clin. Chem. Clin. Biochem. 52, 2135-2140 (2006).

L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, “Adaptive optical biocompact disk for molecular recognition,” Appl. Phys. Lett. 86, 183902-1-3 (2005).
[CrossRef]

M. M. Varma and D. D. Nolte, “Spinning-disk self-referencing interferometry of antigen-antibody recognition,” Opt. Lett. 29, 950-952 (2004).
[CrossRef] [PubMed]

M. M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, “High-speed label-free detection by spinning-disk micro-interferometry,” Biosens. Bioelectron. 19, 1371-1376 (2004).
[CrossRef] [PubMed]

Park, H. G.

H. G. Park, J. Y. Song, K. H. Park, and M. H. Kim, “Fluorescence-based assay formats and signal amplification strategies for DNA microarray analysis,” Chem. Eng. Sci. 61, 954-965 (2006).
[CrossRef]

Park, K. H.

H. G. Park, J. Y. Song, K. H. Park, and M. H. Kim, “Fluorescence-based assay formats and signal amplification strategies for DNA microarray analysis,” Chem. Eng. Sci. 61, 954-965 (2006).
[CrossRef]

Pasqua, J.

M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, “High-speed interferometric detection of label-free immunoassays on the biological compact disc,” J. Clin. Chem. Clin. Biochem. 52, 2135-2140 (2006).

Peng, L.

L. Peng, M. M. Varma, W. Cho, F. E. Regnier, and D. D. Nolte, “Adaptive interferometry of protein on a BioCD,” Appl. Opt. 46, 5384-5395 (2007).
[CrossRef] [PubMed]

L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, “Adaptive optical biocompact disk for molecular recognition,” Appl. Phys. Lett. 86, 183902-1-3 (2005).
[CrossRef]

Peng, L. L.

M. Zhao, L. L. Peng, W. Cho, F. Regnier, and D. D. Nolte, “Phase contrast BioCD: high-speed immunoassays at sub-picogram detection levels,” Proc. SPIE-Int. Soc. Opt. Eng. 6095, L950 (2006).

Prummer, M.

M. Prummer and M. Weiss, “Bulk fluorescence measurements cannot probe the survival-time distribution of single molecules,” Phys. Rev. E 74, 021115 (2006).
[CrossRef]

Regnier, F.

M. Zhao, W. R. Cho, F. Regnier, and D. Nolte, “Differential phase-contrast BioCD biosensor,” Appl. Opt. 46, 6196-6209 (2007).
[CrossRef] [PubMed]

M. Zhao, L. L. Peng, W. Cho, F. Regnier, and D. D. Nolte, “Phase contrast BioCD: high-speed immunoassays at sub-picogram detection levels,” Proc. SPIE-Int. Soc. Opt. Eng. 6095, L950 (2006).

M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, “High-speed interferometric detection of label-free immunoassays on the biological compact disc,” J. Clin. Chem. Clin. Biochem. 52, 2135-2140 (2006).

Regnier, F. E.

L. Peng, M. M. Varma, W. Cho, F. E. Regnier, and D. D. Nolte, “Adaptive interferometry of protein on a BioCD,” Appl. Opt. 46, 5384-5395 (2007).
[CrossRef] [PubMed]

L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, “Adaptive optical biocompact disk for molecular recognition,” Appl. Phys. Lett. 86, 183902-1-3 (2005).
[CrossRef]

M. M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, “High-speed label-free detection by spinning-disk micro-interferometry,” Biosens. Bioelectron. 19, 1371-1376 (2004).
[CrossRef] [PubMed]

Reymond, G. O.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Rowley, G. L.

G. P. Derbalian, N. Kameda, and G. L. Rowley, “Fluorescein labeling of fab while preserving single thiol,” Anal. Biochem. 173, 59-63 (1988).
[CrossRef]

Sandoghdar, V.

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7, 2263-2266 (2007).
[CrossRef] [PubMed]

Schaeferling, M.

S. Nagl, M. Schaeferling, and O. S. Wolfbeis, “Fluorescence analysis in microarray technology,” Microchimica Acta 151, 1-21 (2005).
[CrossRef]

Schena, M.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray,” Science 270, 467-470 (1995).
[CrossRef] [PubMed]

Schiller, P. W.

H. H. Szeto, P. W. Schiller, K. S. Zhao, and G. X. Luo, “Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides,” FASEB J. 18, 118-120 (2004).

Schrenk, M.

M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer, and T. O. Joos, “Protein microarray technology,” Trends Biotechnol. 20, 160-166 (2002).
[CrossRef] [PubMed]

Shalon, D.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray,” Science 270, 467-470 (1995).
[CrossRef] [PubMed]

Smith, A. E.

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7, 2263-2266 (2007).
[CrossRef] [PubMed]

Song, J. Y.

H. G. Park, J. Y. Song, K. H. Park, and M. H. Kim, “Fluorescence-based assay formats and signal amplification strategies for DNA microarray analysis,” Chem. Eng. Sci. 61, 954-965 (2006).
[CrossRef]

Souteyard, E.

M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyard, and M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosens. Bioelectron. 20, 796 (2004).
[CrossRef]

Stoll, D.

M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer, and T. O. Joos, “Protein microarray technology,” Trends Biotechnol. 20, 160-166 (2002).
[CrossRef] [PubMed]

Szeto, H. H.

H. H. Szeto, P. W. Schiller, K. S. Zhao, and G. X. Luo, “Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides,” FASEB J. 18, 118-120 (2004).

Tamm, L. K.

V. Kiessling and L. K. Tamm, “Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins,” Biophys. J. 84, 408-418 (2003).
[CrossRef] [PubMed]

Templin, M. F.

M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer, and T. O. Joos, “Protein microarray technology,” Trends Biotechnol. 20, 160-166 (2002).
[CrossRef] [PubMed]

Traub, P. C.

M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer, and T. O. Joos, “Protein microarray technology,” Trends Biotechnol. 20, 160-166 (2002).
[CrossRef] [PubMed]

Vallet, F.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Varma, M.

M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, “High-speed interferometric detection of label-free immunoassays on the biological compact disc,” J. Clin. Chem. Clin. Biochem. 52, 2135-2140 (2006).

Varma, M. M.

L. Peng, M. M. Varma, W. Cho, F. E. Regnier, and D. D. Nolte, “Adaptive interferometry of protein on a BioCD,” Appl. Opt. 46, 5384-5395 (2007).
[CrossRef] [PubMed]

L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, “Adaptive optical biocompact disk for molecular recognition,” Appl. Phys. Lett. 86, 183902-1-3 (2005).
[CrossRef]

M. M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, “High-speed label-free detection by spinning-disk micro-interferometry,” Biosens. Bioelectron. 19, 1371-1376 (2004).
[CrossRef] [PubMed]

M. M. Varma and D. D. Nolte, “Spinning-disk self-referencing interferometry of antigen-antibody recognition,” Opt. Lett. 29, 950-952 (2004).
[CrossRef] [PubMed]

Vohringer, C. F.

M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer, and T. O. Joos, “Protein microarray technology,” Trends Biotechnol. 20, 160-166 (2002).
[CrossRef] [PubMed]

Wang, X.

M. Zhao, X. Wang, and D. Nolte, “The in-line-quadrature BioCD,” Proc. SPIE-Int. Soc. Opt. Eng. 6447, B4470 (2007).

Wang, X. F.

Weisbuch, C.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Weiss, M.

M. Prummer and M. Weiss, “Bulk fluorescence measurements cannot probe the survival-time distribution of single molecules,” Phys. Rev. E 74, 021115 (2006).
[CrossRef]

Wolfbeis, O. S.

S. Nagl, M. Schaeferling, and O. S. Wolfbeis, “Fluorescence analysis in microarray technology,” Microchimica Acta 151, 1-21 (2005).
[CrossRef]

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3-15 (1999).
[CrossRef]

Yeow, E. K. L.

E. K. L. Yeow, S. M. Melnikov, T. D. M. Bell, F. C. De Schryver, and J. Hofkens, “Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface,” J. Phys. Chem. A 110, 1726-1734 (2006).
[CrossRef] [PubMed]

Zhao, K. S.

H. H. Szeto, P. W. Schiller, K. S. Zhao, and G. X. Luo, “Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides,” FASEB J. 18, 118-120 (2004).

Zhao, M.

M. Zhao, X. Wang, and D. Nolte, “The in-line-quadrature BioCD,” Proc. SPIE-Int. Soc. Opt. Eng. 6447, B4470 (2007).

X. F. Wang, M. Zhao, and D. D. Nolte, “Common-path interferometric detection of protein monolayer on the BioCD,” Appl. Opt. 46, 7836-7849 (2007).
[CrossRef] [PubMed]

M. Zhao, W. R. Cho, F. Regnier, and D. Nolte, “Differential phase-contrast BioCD biosensor,” Appl. Opt. 46, 6196-6209 (2007).
[CrossRef] [PubMed]

D. D. Nolte and M. Zhao, “Scaling mass sensitivity of the BioCD at 0.25 pg/mm,” Proc. SPIE-Int. Soc. Opt. Eng. 6380, U127-U132 (2006).
[CrossRef]

M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, “High-speed interferometric detection of label-free immunoassays on the biological compact disc,” J. Clin. Chem. Clin. Biochem. 52, 2135-2140 (2006).

M. Zhao, L. L. Peng, W. Cho, F. Regnier, and D. D. Nolte, “Phase contrast BioCD: high-speed immunoassays at sub-picogram detection levels,” Proc. SPIE-Int. Soc. Opt. Eng. 6095, L950 (2006).

Anal. Biochem. (1)

G. P. Derbalian, N. Kameda, and G. L. Rowley, “Fluorescein labeling of fab while preserving single thiol,” Anal. Biochem. 173, 59-63 (1988).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, “Adaptive optical biocompact disk for molecular recognition,” Appl. Phys. Lett. 86, 183902-1-3 (2005).
[CrossRef]

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, C. Weisbuch, and H. Benisty, “Double interference fluorescence enhancement from reflective slides: application to bicolor microarrays,” Appl. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Biophys. J. (1)

V. Kiessling and L. K. Tamm, “Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins,” Biophys. J. 84, 408-418 (2003).
[CrossRef] [PubMed]

Biosens. Bioelectron. (2)

M. Bras, V. Dugas, F. Bessueille, J. P. Cloarec, J. R. Martin, M. Cabrera, J. P. Chauvet, E. Souteyard, and M. Garrigues, “Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray,” Biosens. Bioelectron. 20, 796 (2004).
[CrossRef]

M. M. Varma, H. D. Inerowicz, F. E. Regnier, and D. D. Nolte, “High-speed label-free detection by spinning-disk micro-interferometry,” Biosens. Bioelectron. 19, 1371-1376 (2004).
[CrossRef] [PubMed]

Chem. Eng. Sci. (1)

H. G. Park, J. Y. Song, K. H. Park, and M. H. Kim, “Fluorescence-based assay formats and signal amplification strategies for DNA microarray analysis,” Chem. Eng. Sci. 61, 954-965 (2006).
[CrossRef]

Curr. Opin. Biotechnol. (1)

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405 (2006).
[CrossRef] [PubMed]

FASEB J. (1)

H. H. Szeto, P. W. Schiller, K. S. Zhao, and G. X. Luo, “Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides,” FASEB J. 18, 118-120 (2004).

J. Clin. Chem. Clin. Biochem. (1)

M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, “High-speed interferometric detection of label-free immunoassays on the biological compact disc,” J. Clin. Chem. Clin. Biochem. 52, 2135-2140 (2006).

J. Lumin. (1)

P. C. DeRose and G. W. Kramer, “Bias in the absorption coefficient determination of a fluorescent dye, standard reference material 1932 fluorescein solution,” J. Lumin. 113, 314-320 (2005).
[CrossRef]

J. Phys. Chem. (1)

H. Leonhard, L. Gordon, and R. Livingst, “Acid-base equilibria of fluorescein and 2', 7'-dichlorofluorescein in their ground and fluorescent states,” J. Phys. Chem. 75, 245-249 (1971).
[CrossRef]

J. Phys. Chem. A (1)

E. K. L. Yeow, S. M. Melnikov, T. D. M. Bell, F. C. De Schryver, and J. Hofkens, “Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface,” J. Phys. Chem. A 110, 1726-1734 (2006).
[CrossRef] [PubMed]

Microchimica Acta (1)

S. Nagl, M. Schaeferling, and O. S. Wolfbeis, “Fluorescence analysis in microarray technology,” Microchimica Acta 151, 1-21 (2005).
[CrossRef]

Nano Lett. (1)

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7, 2263-2266 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. E (1)

M. Prummer and M. Weiss, “Bulk fluorescence measurements cannot probe the survival-time distribution of single molecules,” Phys. Rev. E 74, 021115 (2006).
[CrossRef]

Proc. SPIE-Int. Soc. Opt. Eng. (3)

D. D. Nolte and M. Zhao, “Scaling mass sensitivity of the BioCD at 0.25 pg/mm,” Proc. SPIE-Int. Soc. Opt. Eng. 6380, U127-U132 (2006).
[CrossRef]

M. Zhao, L. L. Peng, W. Cho, F. Regnier, and D. D. Nolte, “Phase contrast BioCD: high-speed immunoassays at sub-picogram detection levels,” Proc. SPIE-Int. Soc. Opt. Eng. 6095, L950 (2006).

M. Zhao, X. Wang, and D. Nolte, “The in-line-quadrature BioCD,” Proc. SPIE-Int. Soc. Opt. Eng. 6447, B4470 (2007).

Science (1)

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray,” Science 270, 467-470 (1995).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3-15 (1999).
[CrossRef]

Trends Biotechnol. (1)

M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer, and T. O. Joos, “Protein microarray technology,” Trends Biotechnol. 20, 160-166 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental layout using the 488 nm line from an argon laser incident at 30 ° and focused on the BioCD. The interferometric signal is detected in the reflection direction, while the fluorescence signal is collected by a lens situated above the disc. The oblique-incidence design spatially separates the two channels.

Fig. 2
Fig. 2

Reverse-phase immunoassay performed on backfilled antigen in the fluorescence and interferometry channels. The discs were printed with reference protein goat IgG using a gel stamp then backfilled with rabbit IgG. The areas were incubated with 10 μg / ml or 10 ng / ml antirabbit IgG-FITC. (a) Fluorescence response in reverse assay ( 10 μg / ml ). (b) Interferometry response in reverse assay ( 10 μg / ml ). (c) Fluorescence response in reverse assay ( 10 ng / ml ). (d) Interferometry response in reverse assay ( 10 ng / ml ).

Fig. 3
Fig. 3

Power spectra for (a) interferometric and (b) fluorescent responses of the periodic protein patterns of Fig. 2 from both channels at 10 μg / ml and 10 ng / ml incubation concentrations. The graphs are normalized by the 10 μg / ml first harmonic and related to the high-frequency noise floor.

Fig. 4
Fig. 4

Scatter plots between the interferometric and fluorescent responses at the incubation concentration of (a)  10 μg / ml and (b)  10 ng / ml in Fig. 2.

Fig. 5
Fig. 5

Two-channel scans performed continuously on the same track consisting of antibody conjugated with fluorescein after a reverse-phase assay. The time-course scanning results on (a) the fluorescence channel and (b) the interferometry channel as a function of position and time. The fluorescence becomes weaker with time (increasing downward) due to bleaching. (c) Signal intensity variation of the two channels as a function of time.

Fig. 6
Fig. 6

Sandwich assay of rabbit IgG. The panels are after printing antirabbit IgG (Scan 1), incubation with 0, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10 μg / ml rabbit IgG, respectively, in 7 mg / ml rat lysate (Scan 2), and incubation with 20 μg / ml antirabbit IgG-biotin (Scan 3). The fluorescence scan is acquired after incubation with the antiavidin FITC.

Fig. 7
Fig. 7

Concentration response curves for Fig. 6 fitted with four-parameter Langmuir functions. The detection limits of both channels reach 10 ng / ml in a 7 mg / ml protein background.

Fig. 8
Fig. 8

Simultaneous forward- and reverse-phase assays compared in the two channels. In each well, upper-left to lower-right, spots are antigoat IgG spots, while the other two spots are rabbit IgG antigen spots. The eight wells are incubated with 0, 0.03, 0.1, 0.3, 1, 3, 10, and 30 μg / ml antirabbit-FITC IgG cultured in goat, respectively.

Fig. 9
Fig. 9

The concentration response curves for Fig. 8 fitted with four-parameter Langmuir functions. In both channels the reverse-phase assay has stronger responses than the forward-phase assay when the incubation concentration is above 3 μg / ml , whereas the forward-phase assay is stronger when the incubation concentration is below 1 μg / ml .

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

δ 0 , p = 2 π n 0 , p cos θ 0 , p λ d .
r = ( e i δ p e i δ p ) r p + r ( e i δ p r p 2 e i δ p ) ( e i δ p r p 2 e i δ p ) + r ( e i δ p e i δ p ) r p e 2 i tan θ p tan θ 0 δ p ,
r = r + i P ( r ) δ p ,
P ( r ) = 2 ( r p r ) ( 1 r r p ) ( 1 r p 2 ) + 2 r ( tan θ p tan θ 0 ) .
E ( x , y ) = [ r + i P ( r ) δ p ] g ( x , y ) = r [ 1 + i φ ( r ) h ( x v t , y ) ] g ( x , y ) ,
ϕ ( r ) = P ( r ) r 2 π n p cos θ p λ = [ ( r p r ) ( 1 r r p ) r ( 1 r p 2 ) + tan θ p tan θ 0 ] 4 π n p cos θ p λ .
E ( k x , k y ) = r { G ( k x , k y ) + i φ ( r ) FT [ g ( x , y ) h ( x + η , y ) ] } ,
ϕ ( r ) = { 0 nodal 4 π ( 1 n p 2 ) λ anti-nodal ,
I ( k x , k y ; η ) = | r { G ( k x , k y ) + i ϕ ( r ) FT [ g ( x , y ) h ( x + η , y ) ] } | 2 | r | 2 { | G ( k x , k y ) | 2 2 G ( k x , k y ) Im [ FT ( ϕ ( r ) g ( x , y ) h ( x + η , y ) ) ] } .
i d ( η ) = R ( k x , k y ) I ( k x , k y , η ) d 2 k = 2 | r | 2 R ( k x ) G ( k x ) Im [ ϕ FT ( g ( x ) h ( x + η ) ) ] d k x ,
R ( k x ) = { 1 For IL channel sgn ( x ) For DPC channel ,
i d ( η ) = 2 | r | 2 Im { ϕ R ( k x ) G ( k x ) FT [ g ( x ) h ( x + η ) ] d k x } .
i d IL ( η ) = 2 | r | 2 Im { ϕ [ g ( x ) ( g ( x ) · h ( x + η ) ) ] | x = 0 } , i d DPC ( η ) = 2 | r | 2 Im { i ϕ [ d ( x ) ( g ( x ) · h ( x + η ) ) ] | x = 0 } ,
i IL ( x ) = 2 ϕ Im | r | 2 [ g 2 ( x ) h ( x ) ] , i DPC ( x ) = 2 ϕ Re | r | 2 [ ( d ( x ) · g ( x ) ) h ( x ) ] ,
ϕ Re = 4 π n p cos θ p λ Re ( ( r p r ) ( 1 r r p ) r ( 1 r p 2 ) + tan θ p tan θ 0 ) , ϕ Im = 4 π n p cos θ p λ Im ( ( r p r ) ( 1 r r p ) r ( 1 r p 2 ) ) .
i IL ( x ) = 2 ϕ Im | r | 2 ( g 2 h ) , i DPC ( x ) = ϕ Re | r | 2 σ [ g 2 d h d x ] ,
P fluo = ln ( 10 ) λ laser λ fluo κ α A P Laser ,
S scal = ρ Δ h Detection Area ,

Metrics