Abstract

Photoacoustic (more precisely, photothermoacoustic) signals generated by the absorption of photons can be related to the incident laser fluence rate. The dependence of frequency domain photoacoustic (FD-PA) signals on the optical absorption coefficient (μa) and the effective attenuation coefficient (μeff) of a turbid medium [polyvinyl chloride-plastisol (PVCP)] with tissuelike optical properties was measured, and empirical relationships between these optical properties and the photoacoustic (PA) signal amplitude and the laser fluence rate were derived for the water (PVCP system with and without optical scatterers). The measured relationships between these sample optical properties and the PA signal amplitude were found to be linear, consistent with FD-PA theory: μa=a(A/Φ)b and μeff=c(A/Φ)+d, where Φ is the laser fluence, A is the FD-PA amplitude, and a,,d are empirical coefficients determined from the experiment using linear frequency-swept modulation and a lock-in heterodyne detection technique. This quantitative technique can easily be used to measure the optical properties of general turbid media using FD-PAs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 34.1-34.34.
  2. A. A. Karabutov and A. A. Oraevsky, “Time-resolved detection of optoacoustic profiles for measurement of optical energy distribution in tissues,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, 2002), pp. 587-646.
  3. W. M. Star, B. C. Wilson, A. J. Welch, and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), Chaps. 1 and 2.
  4. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).
  5. Y. Fan, A. Mandelis, G. M. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116, 3523-3533 (2004).
    [CrossRef]
  6. X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739-1741 (2003).
    [CrossRef] [PubMed]
  7. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J Biomed. Opt. 9, 1327-1335 (2004).
    [CrossRef] [PubMed]
  8. R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Lasers Surg. Med. 35, 354-362 (2004).
    [CrossRef] [PubMed]
  9. G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
    [CrossRef]
  10. Y. Fan, A. Mandelis, G. M. Spirou, I. A. Vitkin, and W. M. Whelan, “Laser photothermoacoustic frequency swept heterodyned lock-in depth profilometry in turbid tissue phantoms,” Phys. Rev. E 72, 051908 (2005).
    [CrossRef]
  11. G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770-775 (2005).
    [CrossRef] [PubMed]
  12. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543-2557 (2005).
    [CrossRef] [PubMed]
  13. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Robert E. Krieger, 1990).
  14. S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt. 11, 044006 (2006).
    [CrossRef] [PubMed]
  15. E. C. Farnett and G. H. Stevens, Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, 1990).
  16. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  17. G. Hausler and M. W. Lindner, “'Coherence radar' and 'spectral radar'--new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  18. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  19. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  20. A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976).
    [CrossRef]
  21. P. Helander, “Theoretical aspects of photoacoustic spectroscopy with light scattering samples,” J. Appl. Phys. 54, 3410-3414 (1983).
    [CrossRef]
  22. B. C. Wilson, Encyclopedia of Human Biology, R. Dulbecco, ed. (Academic, 1991), pp. 587-597.
  23. A. Roggar, K. Dorelschel, O. Minet, D. Wölf, and G. Müller, Laser-Induced Interstitial Thermotherapy, G. J. Muller and A. Roggan, eds. (SPIE, 1995), Chap. 10.
  24. A. Mandelis and B. S. H. Royce, “Relaxation time measurements in frequency and time-domain photoacoustic spectroscopy of condensed phases,” J. Opt. Soc. Am. 70, 474-480 (1980).
    [CrossRef]
  25. V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1383-1390 (2003).
    [CrossRef] [PubMed]
  26. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172-1181 (2004).
    [CrossRef] [PubMed]
  27. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402-415 (1997).
    [CrossRef] [PubMed]
  28. P. Fish, Physics and instrumentation of diagnostic medical ultrasound (Wiley, 1990).
  29. G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50, N141-N153 (2005).
    [CrossRef] [PubMed]
  30. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall, 1993).
  31. J. R. Taylor, An Introduction to Error Analysis, 2nd ed.(University Science, 1982).
  32. T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Elsevier, 2004).
  33. G. M. Spirou, A. Mandelis, I. A. Vitkin, and W. M. Whelan, “A calibration technique for frequency domain photothermoacoustics,” Euro. Phys J. Spec. Top. 153, 491-495 (2008).
    [CrossRef]
  34. L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
    [CrossRef]

2008 (1)

G. M. Spirou, A. Mandelis, I. A. Vitkin, and W. M. Whelan, “A calibration technique for frequency domain photothermoacoustics,” Euro. Phys J. Spec. Top. 153, 491-495 (2008).
[CrossRef]

2007 (1)

L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
[CrossRef]

2006 (1)

S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt. 11, 044006 (2006).
[CrossRef] [PubMed]

2005 (4)

Y. Fan, A. Mandelis, G. M. Spirou, I. A. Vitkin, and W. M. Whelan, “Laser photothermoacoustic frequency swept heterodyned lock-in depth profilometry in turbid tissue phantoms,” Phys. Rev. E 72, 051908 (2005).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50, N141-N153 (2005).
[CrossRef] [PubMed]

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770-775 (2005).
[CrossRef] [PubMed]

2004 (5)

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172-1181 (2004).
[CrossRef] [PubMed]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J Biomed. Opt. 9, 1327-1335 (2004).
[CrossRef] [PubMed]

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Lasers Surg. Med. 35, 354-362 (2004).
[CrossRef] [PubMed]

G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
[CrossRef]

Y. Fan, A. Mandelis, G. M. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116, 3523-3533 (2004).
[CrossRef]

2003 (4)

1998 (1)

G. Hausler and M. W. Lindner, “'Coherence radar' and 'spectral radar'--new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

1997 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1983 (1)

P. Helander, “Theoretical aspects of photoacoustic spectroscopy with light scattering samples,” J. Appl. Phys. 54, 3410-3414 (1983).
[CrossRef]

1980 (1)

1976 (1)

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976).
[CrossRef]

Andreev, V. G.

V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1383-1390 (2003).
[CrossRef] [PubMed]

Chin, L. C. L.

L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
[CrossRef]

Choma, M. A.

de Mul, F. F. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J Biomed. Opt. 9, 1327-1335 (2004).
[CrossRef] [PubMed]

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Lasers Surg. Med. 35, 354-362 (2004).
[CrossRef] [PubMed]

Dorelschel, K.

A. Roggar, K. Dorelschel, O. Minet, D. Wölf, and G. Müller, Laser-Induced Interstitial Thermotherapy, G. J. Muller and A. Roggan, eds. (SPIE, 1995), Chap. 10.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fan, Y.

Y. Fan, A. Mandelis, G. M. Spirou, I. A. Vitkin, and W. M. Whelan, “Laser photothermoacoustic frequency swept heterodyned lock-in depth profilometry in turbid tissue phantoms,” Phys. Rev. E 72, 051908 (2005).
[CrossRef]

Y. Fan, A. Mandelis, G. M. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116, 3523-3533 (2004).
[CrossRef]

Farnett, E. C.

E. C. Farnett and G. H. Stevens, Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, 1990).

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fish, P.

P. Fish, Physics and instrumentation of diagnostic medical ultrasound (Wiley, 1990).

Gersho, A.

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976).
[CrossRef]

Gusev, V. E.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).

Hausler, G.

G. Hausler and M. W. Lindner, “'Coherence radar' and 'spectral radar'--new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Helander, P.

P. Helander, “Theoretical aspects of photoacoustic spectroscopy with light scattering samples,” J. Appl. Phys. 54, 3410-3414 (1983).
[CrossRef]

Henrichs, P. M.

G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
[CrossRef]

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hondebrink, E.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J Biomed. Opt. 9, 1327-1335 (2004).
[CrossRef] [PubMed]

Huisjes, A.

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Lasers Surg. Med. 35, 354-362 (2004).
[CrossRef] [PubMed]

Izatt, J. A.

Jacques, S. L.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Karabutov, A. A.

V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1383-1390 (2003).
[CrossRef] [PubMed]

A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 34.1-34.34.

A. A. Karabutov and A. A. Oraevsky, “Time-resolved detection of optoacoustic profiles for measurement of optical energy distribution in tissues,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, 2002), pp. 587-646.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).

Kharine, A.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172-1181 (2004).
[CrossRef] [PubMed]

Kolkman, R. G. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J Biomed. Opt. 9, 1327-1335 (2004).
[CrossRef] [PubMed]

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Lasers Surg. Med. 35, 354-362 (2004).
[CrossRef] [PubMed]

Ku, G.

Leitgeb, R.

Lindner, M. W.

G. Hausler and M. W. Lindner, “'Coherence radar' and 'spectral radar'--new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Mandelis, A.

G. M. Spirou, A. Mandelis, I. A. Vitkin, and W. M. Whelan, “A calibration technique for frequency domain photothermoacoustics,” Euro. Phys J. Spec. Top. 153, 491-495 (2008).
[CrossRef]

S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt. 11, 044006 (2006).
[CrossRef] [PubMed]

Y. Fan, A. Mandelis, G. M. Spirou, I. A. Vitkin, and W. M. Whelan, “Laser photothermoacoustic frequency swept heterodyned lock-in depth profilometry in turbid tissue phantoms,” Phys. Rev. E 72, 051908 (2005).
[CrossRef]

Y. Fan, A. Mandelis, G. M. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116, 3523-3533 (2004).
[CrossRef]

A. Mandelis and B. S. H. Royce, “Relaxation time measurements in frequency and time-domain photoacoustic spectroscopy of condensed phases,” J. Opt. Soc. Am. 70, 474-480 (1980).
[CrossRef]

Manohar, S.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172-1181 (2004).
[CrossRef] [PubMed]

Meador, J.

G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
[CrossRef]

Mehta, K.

G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
[CrossRef]

Miller, T.

G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
[CrossRef]

Minet, O.

A. Roggar, K. Dorelschel, O. Minet, D. Wölf, and G. Müller, Laser-Induced Interstitial Thermotherapy, G. J. Muller and A. Roggan, eds. (SPIE, 1995), Chap. 10.

Müller, G.

A. Roggar, K. Dorelschel, O. Minet, D. Wölf, and G. Müller, Laser-Induced Interstitial Thermotherapy, G. J. Muller and A. Roggan, eds. (SPIE, 1995), Chap. 10.

Oraevsky, A. A.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50, N141-N153 (2005).
[CrossRef] [PubMed]

G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
[CrossRef]

V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1383-1390 (2003).
[CrossRef] [PubMed]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402-415 (1997).
[CrossRef] [PubMed]

A. A. Karabutov and A. A. Oraevsky, “Time-resolved detection of optoacoustic profiles for measurement of optical energy distribution in tissues,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, 2002), pp. 587-646.

A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 34.1-34.34.

Pang, Y.

Pedrotti, F. L.

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall, 1993).

Pedrotti, L. S.

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall, 1993).

Pilatou, M. C.

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Lasers Surg. Med. 35, 354-362 (2004).
[CrossRef] [PubMed]

Roggar, A.

A. Roggar, K. Dorelschel, O. Minet, D. Wölf, and G. Müller, Laser-Induced Interstitial Thermotherapy, G. J. Muller and A. Roggan, eds. (SPIE, 1995), Chap. 10.

Rosencwaig, A.

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976).
[CrossRef]

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Robert E. Krieger, 1990).

Royce, B. S. H.

Sarunic, M. V.

Siphanto, R. I.

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Lasers Surg. Med. 35, 354-362 (2004).
[CrossRef] [PubMed]

Spirou, G. M.

G. M. Spirou, A. Mandelis, I. A. Vitkin, and W. M. Whelan, “A calibration technique for frequency domain photothermoacoustics,” Euro. Phys J. Spec. Top. 153, 491-495 (2008).
[CrossRef]

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50, N141-N153 (2005).
[CrossRef] [PubMed]

Y. Fan, A. Mandelis, G. M. Spirou, I. A. Vitkin, and W. M. Whelan, “Laser photothermoacoustic frequency swept heterodyned lock-in depth profilometry in turbid tissue phantoms,” Phys. Rev. E 72, 051908 (2005).
[CrossRef]

G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
[CrossRef]

Y. Fan, A. Mandelis, G. M. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116, 3523-3533 (2004).
[CrossRef]

Star, W. M.

W. M. Star, B. C. Wilson, A. J. Welch, and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), Chaps. 1 and 2.

Steenbergen, W.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Lasers Surg. Med. 35, 354-362 (2004).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172-1181 (2004).
[CrossRef] [PubMed]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J Biomed. Opt. 9, 1327-1335 (2004).
[CrossRef] [PubMed]

Stevens, G. H.

E. C. Farnett and G. H. Stevens, Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, 1990).

Stoica, G.

Szabo, T. L.

T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Elsevier, 2004).

Taylor, J. R.

J. R. Taylor, An Introduction to Error Analysis, 2nd ed.(University Science, 1982).

Telenkov, S. A.

S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt. 11, 044006 (2006).
[CrossRef] [PubMed]

Tittel, F. K.

van Adrichem, L. N. A.

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Lasers Surg. Med. 35, 354-362 (2004).
[CrossRef] [PubMed]

van Gemert, M. J. C.

W. M. Star, B. C. Wilson, A. J. Welch, and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), Chaps. 1 and 2.

van Hespen, J. C. G.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172-1181 (2004).
[CrossRef] [PubMed]

van Leeuwen, T. G.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172-1181 (2004).
[CrossRef] [PubMed]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J Biomed. Opt. 9, 1327-1335 (2004).
[CrossRef] [PubMed]

Vitkin, I. A.

G. M. Spirou, A. Mandelis, I. A. Vitkin, and W. M. Whelan, “A calibration technique for frequency domain photothermoacoustics,” Euro. Phys J. Spec. Top. 153, 491-495 (2008).
[CrossRef]

L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
[CrossRef]

Y. Fan, A. Mandelis, G. M. Spirou, I. A. Vitkin, and W. M. Whelan, “Laser photothermoacoustic frequency swept heterodyned lock-in depth profilometry in turbid tissue phantoms,” Phys. Rev. E 72, 051908 (2005).
[CrossRef]

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50, N141-N153 (2005).
[CrossRef] [PubMed]

Y. Fan, A. Mandelis, G. M. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116, 3523-3533 (2004).
[CrossRef]

G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
[CrossRef]

Wang, L. V.

Wang, X.

Welch, A. J.

W. M. Star, B. C. Wilson, A. J. Welch, and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), Chaps. 1 and 2.

Whelan, W. M.

G. M. Spirou, A. Mandelis, I. A. Vitkin, and W. M. Whelan, “A calibration technique for frequency domain photothermoacoustics,” Euro. Phys J. Spec. Top. 153, 491-495 (2008).
[CrossRef]

L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
[CrossRef]

Y. Fan, A. Mandelis, G. M. Spirou, I. A. Vitkin, and W. M. Whelan, “Laser photothermoacoustic frequency swept heterodyned lock-in depth profilometry in turbid tissue phantoms,” Phys. Rev. E 72, 051908 (2005).
[CrossRef]

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50, N141-N153 (2005).
[CrossRef] [PubMed]

G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
[CrossRef]

Wilson, B. C.

G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
[CrossRef]

W. M. Star, B. C. Wilson, A. J. Welch, and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), Chaps. 1 and 2.

B. C. Wilson, Encyclopedia of Human Biology, R. Dulbecco, ed. (Academic, 1991), pp. 587-597.

Wölf, D.

A. Roggar, K. Dorelschel, O. Minet, D. Wölf, and G. Müller, Laser-Induced Interstitial Thermotherapy, G. J. Muller and A. Roggan, eds. (SPIE, 1995), Chap. 10.

Worthington, A. E.

L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
[CrossRef]

Xie, X.

Yang, C.

Yee, A.

G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
[CrossRef]

Appl. Opt. (2)

Euro. Phys J. Spec. Top. (1)

G. M. Spirou, A. Mandelis, I. A. Vitkin, and W. M. Whelan, “A calibration technique for frequency domain photothermoacoustics,” Euro. Phys J. Spec. Top. 153, 491-495 (2008).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1383-1390 (2003).
[CrossRef] [PubMed]

J Biomed. Opt. (1)

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J Biomed. Opt. 9, 1327-1335 (2004).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

Y. Fan, A. Mandelis, G. M. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116, 3523-3533 (2004).
[CrossRef]

J. Appl. Phys. (2)

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976).
[CrossRef]

P. Helander, “Theoretical aspects of photoacoustic spectroscopy with light scattering samples,” J. Appl. Phys. 54, 3410-3414 (1983).
[CrossRef]

J. Biomed. Opt. (4)

S. A. Telenkov and A. Mandelis, “Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue,” J. Biomed. Opt. 11, 044006 (2006).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172-1181 (2004).
[CrossRef] [PubMed]

L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
[CrossRef]

G. Hausler and M. W. Lindner, “'Coherence radar' and 'spectral radar'--new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

Lasers Surg. Med. (1)

R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Lasers Surg. Med. 35, 354-362 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (2)

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50, N141-N153 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The twente photoacoustic mammoscope: system overview and performance,” Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

Phys. Rev. E (1)

Y. Fan, A. Mandelis, G. M. Spirou, I. A. Vitkin, and W. M. Whelan, “Laser photothermoacoustic frequency swept heterodyned lock-in depth profilometry in turbid tissue phantoms,” Phys. Rev. E 72, 051908 (2005).
[CrossRef]

Proc. SPIE (1)

G. M. Spirou, I. A. Vitkin, B. C. Wilson, W. M. Whelan, P. M. Henrichs, K. Mehta, T. Miller, A. Yee, J. Meador, and A. A. Oraevsky, “Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies,” Proc. SPIE 5320, 44-56 (2004).
[CrossRef]

Other (12)

A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 34.1-34.34.

A. A. Karabutov and A. A. Oraevsky, “Time-resolved detection of optoacoustic profiles for measurement of optical energy distribution in tissues,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, 2002), pp. 587-646.

W. M. Star, B. C. Wilson, A. J. Welch, and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), Chaps. 1 and 2.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Robert E. Krieger, 1990).

E. C. Farnett and G. H. Stevens, Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, 1990).

B. C. Wilson, Encyclopedia of Human Biology, R. Dulbecco, ed. (Academic, 1991), pp. 587-597.

A. Roggar, K. Dorelschel, O. Minet, D. Wölf, and G. Müller, Laser-Induced Interstitial Thermotherapy, G. J. Muller and A. Roggan, eds. (SPIE, 1995), Chap. 10.

P. Fish, Physics and instrumentation of diagnostic medical ultrasound (Wiley, 1990).

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall, 1993).

J. R. Taylor, An Introduction to Error Analysis, 2nd ed.(University Science, 1982).

T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Elsevier, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of PA imaging system experimental setup: AOM modulator, transducer (T), sample (S), FG , signal processing unit (SP), and mirror (M). The dotted boxes outline the three sections of the experimental setup: optical delivery, acoustic transducer, and signal generation.

Fig. 2
Fig. 2

Signal processing setup: AOM modulator, FG, DG, M1, M2, preamplifiers (PAmps), LPF, and LIA. S 1 is the PA waves detected by transducer, S 2 is the function-generated chirp signal, S LPF is the low-pass-filtered signal, and S R is the reference signal.

Fig. 3
Fig. 3

(a) Block diagram of the procedure used to acquire the FD-PA signal intensity detected by the LIA. (b) Display of PA signal intensity of a sample as a function of τ obtained by the algorithm shown in (a). An example of the FD-PA amplitude A is shown in (b).

Fig. 4
Fig. 4

A signal amplitude in mV (a) as a function of Φ and (b) as a function of μ a for the four different absorbing samples ( Sa 1 , Sa 2 , Sa 3 , and Sa 4 in Table 1). In (a) the lines of best fit for each sample are represented by A = ( 7.0 ± 0.6 ) Φ + ( 0.5 ± 2.1 ) , A = ( 3.8 ± 0.9 ) Φ + ( 1.0 ± 1.3 ) , A = ( 1.9 ± 0.4 ) Φ + ( 0.4 ± 0.6 ) , and A = ( 0.8 ± 0.3 ) Φ + ( 0.5 ± 0.5 ) for absorbing samples Sa 1 , Sa 2 , Sa 3 , and Sa 4 , respectively.

Fig. 5
Fig. 5

Relationship between ( A / Φ ) ( mV cm 2 / W ) and μ a ( cm 1 ) . The solid line is a weighted fit to the data points and is expressed by Eq. (17). The R 2 value is an indicator of the goodness of fit.

Fig. 6
Fig. 6

A (mV) as a function of absorption and scattering coefficients. The straight line fits were obtained by fitting the data to a weighted fit for a straight line error analysis model. (a) The data for samples A, B, and C in Table 1 with similar scattering ( μ s 9.3 cm 1 ) are displayed. (b) The data for samples A, D, E, and Sa 2 are displayed (see Table 1 for optical properties). The lines of best fit for all the samples in (a) are A = ( 10.6 ± 2.5 ) Φ + ( 1.1 ± 3.5 ) , A = ( 6.2 ± 1.5 ) Φ + ( 0.6 ± 2.1 ) , and A = ( 2.9 ± 0.8 ) Φ + ( 0.4 ± 1.1 ) for samples A, B, and C, respectively. The lines of best fit for all the samples in (b) are A = ( 3.8 ± 0.9 ) Φ + ( 1.0 ± 1.3 ) , A = ( 10.6 ± 2.5 ) Φ + ( 1.1 ± 3.5 ) , A = ( 6.5 ± 1.5 ) Φ + ( 0.4 ± 2.0 ) , and A = ( 5.7 ± 1.3 ) Φ + ( 0.2 ± 1.7 ) for samples Sa 2 , A, D, and E, respectively.

Fig. 7
Fig. 7

Relationship between μ eff ( cm 1 ) and ( A / Φ ) ( mV cm 2 / W ). The solid line is a weighted fit to the data points and is expressed by Eq. (17). The R 2

Tables (1)

Tables Icon

Table 1 Optical Properties of Absorbing Samples ( Μ A ) and Turbid Samples ( Μ A and Μ S ) and the Thickness L of the Samples

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

μ s = μ s ( 1 g ) .
μ eff = 3 μ a ( μ a + μ s ) .
P ( ω ) Φ μ a .
I ( z ) = I o exp ( α z ) ,
r total = ( r TE 2 + r TM 2 ) / 2 ,
r TE 2 = cos θ n 2 sin 2 θ cos θ + n 2 sin 2 θ , r TM 2 = n 2 cos θ n 2 sin 2 θ n 2 cos θ + n 2 sin 2 θ ,
P ( ω ; t ) = iωρ f C 1 ( ω ) e [ t ( d / c f ) ] ,
C 1 ( ω ) = K μ a Ψ .
FS FWHM = 0.7047 λ s F a / a ,
DOF = 1.85 F a 2 λ s / a 2 ,
Chirp = C sin ( ω t + ϕ ) , ω ( t ) = 2 π f s ( t ) = 2 π ( a f + b t ) ,
S 1 = C ( z ) sin { [ a f + b ( t z / c s ) ] t + ϕ 1 } ,
S LPF = C ( z ) cos { [ b ( τ z / c s ) t ] + Δ ϕ 12 } ,
S LPF = C ( z ) cos [ Δ ϕ 12 ( z ) ] .
δ z = Δ tc s , Δ t > 0.1 μs , δ z = ( 0.1 μ s ) c s , Δ t 0.1 μ s ,
A = | P ( ω ) | | C 1 ( ω ) | Φ μ a .
μ a A / Φ .
μ a = ( 0.25 ± 0.05 ) ( A / Φ ) ( 0.03 ± 0.10 ) [ cm 1 ] .
A = | P ( ω ) | | G 7 ( ω ) | Φ μ eff ,
μ eff A / Φ .
μ eff = ( 0.39 ± 0.12 ) ( A / Φ ) + ( 0.99 ± 0.63 ) [ cm 1 ] .

Metrics