Abstract

The sensitivity of an integrated optical sensing device can be enhanced by coating it with a high refractive index layer, while both incoupled intensity and spatial resolution are maintained. The potential for enhanced sensing is demonstrated using titanium indiffused waveguiding structures in LiNbO3 coated with a TiO2 film. To the best of our knowledge, it could be measured for the first time that the outcoupled intensity at the surface was enhanced by a factor of 12–15 while keeping the penetration depth of the evanescent field constant of the order of only a few tens of nanometers. The evanescent fields of the guided modes were measured and characterized with a scanning near-field optical microscope and are in accordance with the numerical simulations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Boisdé and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, 1996).
  2. R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38, 13-28 (1997).
    [CrossRef]
  3. C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, “Planar optical waveguides for sensing applications,” Sens. Actuators B 69, 85-95 (2000).
    [CrossRef]
  4. M. P. Petrov, A. V. Chamrai, A. S. Kozlov, and I. V. Ilichev, “Electrically controlled integrated optical filter,” Tech. Phys. Lett. 30, 120-122 (2004).
    [CrossRef]
  5. P. Arora, A. S. Kozlov, I. V. Ilichev, A. V. Chamray, V. M. Petrov, J. Petter, M. P. Petrov, and T. Tschudi, “Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2007), paper CMG 5.
  6. C. R. Taitt, G. P. Anderson, and F. S. Ligler, “Evanescent wave fluorescence biosensors,” Biosens. Bioelectron. 20, 2470-2487 (2005).
    [CrossRef]
  7. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  8. F. de Fornel, Evanescent Waves (Springer, 2001).
  9. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145 (1981).
    [CrossRef]
  10. M. Oheim, “Quantitative high-resolution fluorescence microscopy using evanescent-wave excitation,” Ph.D. dissertation (Universität Göttingen, 1998).
  11. G. R. Quigley, R. D. Harris, and J. S. Wilkinson, “Sensitivity enhancement of integrated optical sensors by use of thin high-index films,” Appl. Opt. 38, 6036-6039 (1999).
  12. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150 (1998).
    [CrossRef]
  13. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in photorefractive lithium niobate channel waveguides,” J. Phys. D 36, R1-R16 (2003).
    [CrossRef]
  14. J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive-index profiles of LiNbO3-Ti waveguides,” Appl. Phys. A 32, 125-127 (1983).
    [CrossRef]
  15. U. Schlarp and K. Betzler, “Refractive index of lithium niobate as a function of temperature, wavelength and composition: a general fit,” Phys. Rev. B 48, 15613-15620 (1993).
    [CrossRef]
  16. P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72-79 (1994).
    [CrossRef]
  17. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842 (1995).
    [CrossRef]
  18. H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980-984 (1997).
    [CrossRef]
  19. D. P. Tsai and Y. Y. Lu, “Tapping-mode tuning fork force sensing for near-field scanning optical microscopy,” Appl. Phys. Lett. 73, 2724-2727 (1998).
    [CrossRef]
  20. L. Salomon, F. de Fornel, and J. P. Goudennet, “Sample-tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am. A 8, 2009-2015 (1991).
  21. S. Tascu, P. Moretti, S. Kostritskii, and B. Jacquier, “Optical near-field measurements of guided modes in various processed LiNbO3 and LiTaO3 channel waveguides,” Opt. Mater. 24, 297-302 (2003).
    [CrossRef]
  22. A. L. Campillo, J. W. P. Hsu, C. A. White, and C. D. W. Jones, “Direct measurement of the guided modes in LiNbO3 waveguides,” Appl. Phys. Lett. 80, 2239-2241 (2002).
    [CrossRef]

2007 (1)

P. Arora, A. S. Kozlov, I. V. Ilichev, A. V. Chamray, V. M. Petrov, J. Petter, M. P. Petrov, and T. Tschudi, “Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2007), paper CMG 5.

2005 (1)

C. R. Taitt, G. P. Anderson, and F. S. Ligler, “Evanescent wave fluorescence biosensors,” Biosens. Bioelectron. 20, 2470-2487 (2005).
[CrossRef]

2004 (1)

M. P. Petrov, A. V. Chamrai, A. S. Kozlov, and I. V. Ilichev, “Electrically controlled integrated optical filter,” Tech. Phys. Lett. 30, 120-122 (2004).
[CrossRef]

2003 (2)

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in photorefractive lithium niobate channel waveguides,” J. Phys. D 36, R1-R16 (2003).
[CrossRef]

S. Tascu, P. Moretti, S. Kostritskii, and B. Jacquier, “Optical near-field measurements of guided modes in various processed LiNbO3 and LiTaO3 channel waveguides,” Opt. Mater. 24, 297-302 (2003).
[CrossRef]

2002 (1)

A. L. Campillo, J. W. P. Hsu, C. A. White, and C. D. W. Jones, “Direct measurement of the guided modes in LiNbO3 waveguides,” Appl. Phys. Lett. 80, 2239-2241 (2002).
[CrossRef]

2001 (1)

F. de Fornel, Evanescent Waves (Springer, 2001).

2000 (1)

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, “Planar optical waveguides for sensing applications,” Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

1999 (1)

1998 (3)

D. P. Tsai and Y. Y. Lu, “Tapping-mode tuning fork force sensing for near-field scanning optical microscopy,” Appl. Phys. Lett. 73, 2724-2727 (1998).
[CrossRef]

M. Oheim, “Quantitative high-resolution fluorescence microscopy using evanescent-wave excitation,” Ph.D. dissertation (Universität Göttingen, 1998).

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

1997 (2)

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980-984 (1997).
[CrossRef]

R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38, 13-28 (1997).
[CrossRef]

1996 (1)

G. Boisdé and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, 1996).

1995 (1)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842 (1995).
[CrossRef]

1994 (1)

P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72-79 (1994).
[CrossRef]

1993 (1)

U. Schlarp and K. Betzler, “Refractive index of lithium niobate as a function of temperature, wavelength and composition: a general fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

1991 (2)

1983 (1)

J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive-index profiles of LiNbO3-Ti waveguides,” Appl. Phys. A 32, 125-127 (1983).
[CrossRef]

1981 (1)

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145 (1981).
[CrossRef]

Anderson, G. P.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, “Evanescent wave fluorescence biosensors,” Biosens. Bioelectron. 20, 2470-2487 (2005).
[CrossRef]

Arora, P.

P. Arora, A. S. Kozlov, I. V. Ilichev, A. V. Chamray, V. M. Petrov, J. Petter, M. P. Petrov, and T. Tschudi, “Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2007), paper CMG 5.

Axelrod, D.

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145 (1981).
[CrossRef]

Betzler, K.

U. Schlarp and K. Betzler, “Refractive index of lithium niobate as a function of temperature, wavelength and composition: a general fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

Boisdé, G.

G. Boisdé and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, 1996).

Campillo, A. L.

A. L. Campillo, J. W. P. Hsu, C. A. White, and C. D. W. Jones, “Direct measurement of the guided modes in LiNbO3 waveguides,” Appl. Phys. Lett. 80, 2239-2241 (2002).
[CrossRef]

Chamrai, A. V.

M. P. Petrov, A. V. Chamrai, A. S. Kozlov, and I. V. Ilichev, “Electrically controlled integrated optical filter,” Tech. Phys. Lett. 30, 120-122 (2004).
[CrossRef]

Chamray, A. V.

P. Arora, A. S. Kozlov, I. V. Ilichev, A. V. Chamray, V. M. Petrov, J. Petter, M. P. Petrov, and T. Tschudi, “Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2007), paper CMG 5.

de Fornel, F.

Duncan, W.

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980-984 (1997).
[CrossRef]

Edwards, H.

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980-984 (1997).
[CrossRef]

Goudennet, J. P.

Grober, R. D.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842 (1995).
[CrossRef]

Harmer, A.

G. Boisdé and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, 1996).

Harris, R. D.

Hertel, P.

J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive-index profiles of LiNbO3-Ti waveguides,” Appl. Phys. A 32, 125-127 (1983).
[CrossRef]

Hsu, J. W. P.

A. L. Campillo, J. W. P. Hsu, C. A. White, and C. D. W. Jones, “Direct measurement of the guided modes in LiNbO3 waveguides,” Appl. Phys. Lett. 80, 2239-2241 (2002).
[CrossRef]

Hukriede, J.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in photorefractive lithium niobate channel waveguides,” J. Phys. D 36, R1-R16 (2003).
[CrossRef]

Huppertz, M.

P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72-79 (1994).
[CrossRef]

Ilichev, I. V.

P. Arora, A. S. Kozlov, I. V. Ilichev, A. V. Chamray, V. M. Petrov, J. Petter, M. P. Petrov, and T. Tschudi, “Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2007), paper CMG 5.

M. P. Petrov, A. V. Chamrai, A. S. Kozlov, and I. V. Ilichev, “Electrically controlled integrated optical filter,” Tech. Phys. Lett. 30, 120-122 (2004).
[CrossRef]

Itoh, K.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, “Planar optical waveguides for sensing applications,” Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Jacquier, B.

S. Tascu, P. Moretti, S. Kostritskii, and B. Jacquier, “Optical near-field measurements of guided modes in various processed LiNbO3 and LiTaO3 channel waveguides,” Opt. Mater. 24, 297-302 (2003).
[CrossRef]

Jones, C. D. W.

A. L. Campillo, J. W. P. Hsu, C. A. White, and C. D. W. Jones, “Direct measurement of the guided modes in LiNbO3 waveguides,” Appl. Phys. Lett. 80, 2239-2241 (2002).
[CrossRef]

Karrai, K.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842 (1995).
[CrossRef]

Kip, D.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in photorefractive lithium niobate channel waveguides,” J. Phys. D 36, R1-R16 (2003).
[CrossRef]

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

Kostritskii, S.

S. Tascu, P. Moretti, S. Kostritskii, and B. Jacquier, “Optical near-field measurements of guided modes in various processed LiNbO3 and LiTaO3 channel waveguides,” Opt. Mater. 24, 297-302 (2003).
[CrossRef]

Kozlov, A. S.

P. Arora, A. S. Kozlov, I. V. Ilichev, A. V. Chamray, V. M. Petrov, J. Petter, M. P. Petrov, and T. Tschudi, “Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2007), paper CMG 5.

M. P. Petrov, A. V. Chamrai, A. S. Kozlov, and I. V. Ilichev, “Electrically controlled integrated optical filter,” Tech. Phys. Lett. 30, 120-122 (2004).
[CrossRef]

Krätzig, E.

J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive-index profiles of LiNbO3-Ti waveguides,” Appl. Phys. A 32, 125-127 (1983).
[CrossRef]

Kunz, R. E.

R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38, 13-28 (1997).
[CrossRef]

Lavers, C. R.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, “Planar optical waveguides for sensing applications,” Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Ligler, F. S.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, “Evanescent wave fluorescence biosensors,” Biosens. Bioelectron. 20, 2470-2487 (2005).
[CrossRef]

Löbl, P.

P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72-79 (1994).
[CrossRef]

Lu, Y. Y.

D. P. Tsai and Y. Y. Lu, “Tapping-mode tuning fork force sensing for near-field scanning optical microscopy,” Appl. Phys. Lett. 73, 2724-2727 (1998).
[CrossRef]

Mauchline, I.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, “Planar optical waveguides for sensing applications,” Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Melmed, A. J.

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980-984 (1997).
[CrossRef]

Mergel, D.

P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72-79 (1994).
[CrossRef]

Moretti, P.

S. Tascu, P. Moretti, S. Kostritskii, and B. Jacquier, “Optical near-field measurements of guided modes in various processed LiNbO3 and LiTaO3 channel waveguides,” Opt. Mater. 24, 297-302 (2003).
[CrossRef]

Murabayashi, M.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, “Planar optical waveguides for sensing applications,” Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Nisius, J. P.

J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive-index profiles of LiNbO3-Ti waveguides,” Appl. Phys. A 32, 125-127 (1983).
[CrossRef]

Oheim, M.

M. Oheim, “Quantitative high-resolution fluorescence microscopy using evanescent-wave excitation,” Ph.D. dissertation (Universität Göttingen, 1998).

Petrov, M. P.

P. Arora, A. S. Kozlov, I. V. Ilichev, A. V. Chamray, V. M. Petrov, J. Petter, M. P. Petrov, and T. Tschudi, “Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2007), paper CMG 5.

M. P. Petrov, A. V. Chamrai, A. S. Kozlov, and I. V. Ilichev, “Electrically controlled integrated optical filter,” Tech. Phys. Lett. 30, 120-122 (2004).
[CrossRef]

Petrov, V. M.

P. Arora, A. S. Kozlov, I. V. Ilichev, A. V. Chamray, V. M. Petrov, J. Petter, M. P. Petrov, and T. Tschudi, “Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2007), paper CMG 5.

Petter, J.

P. Arora, A. S. Kozlov, I. V. Ilichev, A. V. Chamray, V. M. Petrov, J. Petter, M. P. Petrov, and T. Tschudi, “Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2007), paper CMG 5.

Quigley, G. R.

Runde, D.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in photorefractive lithium niobate channel waveguides,” J. Phys. D 36, R1-R16 (2003).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Salomon, L.

Schlarp, U.

U. Schlarp and K. Betzler, “Refractive index of lithium niobate as a function of temperature, wavelength and composition: a general fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

Stewart, G.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, “Planar optical waveguides for sensing applications,” Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Stout, T.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, “Planar optical waveguides for sensing applications,” Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Taitt, C. R.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, “Evanescent wave fluorescence biosensors,” Biosens. Bioelectron. 20, 2470-2487 (2005).
[CrossRef]

Tascu, S.

S. Tascu, P. Moretti, S. Kostritskii, and B. Jacquier, “Optical near-field measurements of guided modes in various processed LiNbO3 and LiTaO3 channel waveguides,” Opt. Mater. 24, 297-302 (2003).
[CrossRef]

Taylor, L.

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980-984 (1997).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Tsai, D. P.

D. P. Tsai and Y. Y. Lu, “Tapping-mode tuning fork force sensing for near-field scanning optical microscopy,” Appl. Phys. Lett. 73, 2724-2727 (1998).
[CrossRef]

Tschudi, T.

P. Arora, A. S. Kozlov, I. V. Ilichev, A. V. Chamray, V. M. Petrov, J. Petter, M. P. Petrov, and T. Tschudi, “Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2007), paper CMG 5.

Vollmer, J.

J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive-index profiles of LiNbO3-Ti waveguides,” Appl. Phys. A 32, 125-127 (1983).
[CrossRef]

White, C. A.

A. L. Campillo, J. W. P. Hsu, C. A. White, and C. D. W. Jones, “Direct measurement of the guided modes in LiNbO3 waveguides,” Appl. Phys. Lett. 80, 2239-2241 (2002).
[CrossRef]

Wilkinson, J. S.

Wu, S. C.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, “Planar optical waveguides for sensing applications,” Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive-index profiles of LiNbO3-Ti waveguides,” Appl. Phys. A 32, 125-127 (1983).
[CrossRef]

Appl. Phys. B (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842 (1995).
[CrossRef]

D. P. Tsai and Y. Y. Lu, “Tapping-mode tuning fork force sensing for near-field scanning optical microscopy,” Appl. Phys. Lett. 73, 2724-2727 (1998).
[CrossRef]

A. L. Campillo, J. W. P. Hsu, C. A. White, and C. D. W. Jones, “Direct measurement of the guided modes in LiNbO3 waveguides,” Appl. Phys. Lett. 80, 2239-2241 (2002).
[CrossRef]

Biosens. Bioelectron. (1)

C. R. Taitt, G. P. Anderson, and F. S. Ligler, “Evanescent wave fluorescence biosensors,” Biosens. Bioelectron. 20, 2470-2487 (2005).
[CrossRef]

J. Appl. Phys. (1)

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980-984 (1997).
[CrossRef]

J. Cell Biol. (1)

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145 (1981).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in photorefractive lithium niobate channel waveguides,” J. Phys. D 36, R1-R16 (2003).
[CrossRef]

Opt. Mater. (1)

S. Tascu, P. Moretti, S. Kostritskii, and B. Jacquier, “Optical near-field measurements of guided modes in various processed LiNbO3 and LiTaO3 channel waveguides,” Opt. Mater. 24, 297-302 (2003).
[CrossRef]

Phys. Rev. B (1)

U. Schlarp and K. Betzler, “Refractive index of lithium niobate as a function of temperature, wavelength and composition: a general fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

Sens. Actuators B (2)

R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38, 13-28 (1997).
[CrossRef]

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, “Planar optical waveguides for sensing applications,” Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Tech. Phys. Lett. (1)

M. P. Petrov, A. V. Chamrai, A. S. Kozlov, and I. V. Ilichev, “Electrically controlled integrated optical filter,” Tech. Phys. Lett. 30, 120-122 (2004).
[CrossRef]

Thin Solid Films (1)

P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72-79 (1994).
[CrossRef]

Other (5)

P. Arora, A. S. Kozlov, I. V. Ilichev, A. V. Chamray, V. M. Petrov, J. Petter, M. P. Petrov, and T. Tschudi, “Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2007), paper CMG 5.

M. Oheim, “Quantitative high-resolution fluorescence microscopy using evanescent-wave excitation,” Ph.D. dissertation (Universität Göttingen, 1998).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

F. de Fornel, Evanescent Waves (Springer, 2001).

G. Boisdé and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental geometry of the SNOM setup.

Fig. 2
Fig. 2

Height (z) dependence of the evanescent field intensity collected with the SNOM for coated and uncoated regions of the waveguide.

Fig. 3
Fig. 3

Lateral (y) scan of the evanescent field intensity in contact with both coated and uncoated regions of the waveguide.

Fig. 4
Fig. 4

Measured and calculated intensity distribution in contact with the coated waveguide.

Fig. 5
Fig. 5

Measured and calculated intensity distribution in contact with the uncoated waveguide.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E = E 0 exp ( z / d p ) ,
n e ( z ) = n e + Δ n e exp ( z 2 / σ 2 ) ,

Metrics