Abstract

Laser-induced breakdown spectroscopy (LIBS), which is an excellent tool for trace elemental analysis, was studied as a method of detecting sub-part-per-106 (ppm) concentrations of aluminum in surrogates of human tissue. Tissue was modeled using a 2% agarose gelatin doped with an Al2O3 nanoparticle suspension. A calibration curve created with standard reference samples of known Al concentrations was used to determine the limit of detection, which was less than 1 ppm. Rates of false negative and false positive detection results for a much more realistic sampling methodology were also studied, suggesting that LIBS could be a candidate for the real-time in vivo detection of metal contamination in human soft tissue.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Wayne State University, Smart Sensors and Integrated Microsystems, "Neurological Implants," http://www.ssim.eng.wayne.edu/index.asp.
  2. T. L. Walraven, R. Iezzi, J. P. McAllister, G. Auner, R. Givens, and G. Abrams, "Biocompatibility of a neurotransmitter based retinal and cortical visual prosthesis," Invest. Ophthalmol. Visual Sci. 43 (Suppl. 2), 4453 (2002).
  3. C. A. Jaboro, A. R. Safadi, A. L. Lagman, R. Naik, V. Naik, G. W. Abrams, R. Iezzi, P. McAllister, and G. W. Auner, "A biocompatible study of chronic implants for electrical stimulation and chemical drug delivery to vision," Invest. Ophthalmol. Visual Sci. 43 (Suppl. 2), 4476 (2002).
  4. R. Iezzi, N. P. Cottaris, S. D. Elfar, T. L. Walraven, T. M. Raza, R. Moncrieff, J. P. McAllister, G. W. Auner, R. R. Johnson, and G. W. Abrams, "Neurotransmitter-based retinal prosthesis modulation of retinal ganglion cell responses in vivo," Invest. Ophthalmol. Visual Sci. 44 (Suppl. 2), 5083 (2003).
  5. T. M. Raza, R. Iezzi, G. W. Auner, P. Siy, J. P. McAllister, N. P. Cottaris, S. D. Elfar, and G. W. Abrams, "Design of a high-channel-count current source for use in retinal and cortical visual prostheses," Invest. Ophthalmol. Visual Sci. 44 (Suppl. 2), 5086 (2003).
  6. J. P. McAllister, J. Li, K. Deren, P. G. Finlayson, C. Jaboro, G. W. Auner, R. Baird, A. Lagman, R. Iezzi, and G. W. Abrams, "Chronic in vivo biocompatibility testing of materials used for visual prostheses," Invest. Ophthalmol. Visual Sci. 45 (Suppl. 2), 4214 (2004).
  7. A. Kumar, F.-Y. Yueh, J. P. Singh, and S. Burgess, "Characterization of malignant tissue cells by laser-induced breakdown spectroscopy," Appl. Opt. 43, 5399-5403 (2004).
    [CrossRef] [PubMed]
  8. O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. Gonzales Urena, "Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples," Spectrochim. Acta Part B 56, 865-875 (2001).
    [CrossRef]
  9. R. L. Vander Wal, T. M. Ticich, J. R. West, and P. A. Householder, "Trace metal detection by laser-induced breakdown spectroscopy," Appl. Spectrosc. 53, 1226-1236 (1999).
    [CrossRef]
  10. C. M. John and R. W. Odom, "Static secondary ion mass spectrometry (SSIMS) of biological compounds in tissue and tissue-like matrices," Int. J. Mass Spectrom. Ion Processes 161, 47-67 (1997).
    [CrossRef]
  11. B. MacMillan, B. Burke, B. Balcom, and G. Ziegler, "Phantom materials for single point imaging pulse sequences," Solid State Nucl. Magn. Reson. 28, 106-110 (2005).
    [CrossRef] [PubMed]
  12. H. Kato, M. Kuroda, K. Yoshimura, A. Yoshida, K. Hanamoto, S. Kawasaki, K. Shibuya, and S. Kanazawa, "Composition of MRI phantom equivalent to human tissues," Med. Phys. 32, 3199-3208 (2005).
    [CrossRef] [PubMed]
  13. Q. Chen, B. Suki, and K.-N. An, "Dynamic mechanical properties of agarose gels modeled by a fractional derivative model," Trans. ASME 126, 666-671 (2004).
    [CrossRef]
  14. M. P. Mateo, L. M. Cabalin, J. M. Baena, and J. J. Laserna, "Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam," Spectrochim. Acta Part B 57, 601-608 (2002).
    [CrossRef]
  15. M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse are preparing a manuscript called "Broadband laser-induced breakdown spectroscopy at a water-gas interface: a study of bath gas-dependent molecular species."
  16. S. Koch, W. Garen, M. Müller, and W. Neu, "Detection of chromium in liquids by laser induced breakdown spectroscopy (LIBS)," Appl. Phys. A 79, 1071-1073 (2004).
    [CrossRef]
  17. A. Kumar, F. Y. Yueh, T. Miller, and J. Singh, "Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a Meinhard nebulizer," Appl. Opt. 40, 6040-6046 (2003).
    [CrossRef]
  18. J. Ingle, Jr., and S. Crouch, Spectrochemical Analysis (Prentice Hall, 1988).
  19. S. J. Mason and N. E. Graham, "Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation," Q. J. R. Meteorol. Soc. 128, 2145-2166 (2002).
    [CrossRef]

2005 (2)

B. MacMillan, B. Burke, B. Balcom, and G. Ziegler, "Phantom materials for single point imaging pulse sequences," Solid State Nucl. Magn. Reson. 28, 106-110 (2005).
[CrossRef] [PubMed]

H. Kato, M. Kuroda, K. Yoshimura, A. Yoshida, K. Hanamoto, S. Kawasaki, K. Shibuya, and S. Kanazawa, "Composition of MRI phantom equivalent to human tissues," Med. Phys. 32, 3199-3208 (2005).
[CrossRef] [PubMed]

2004 (4)

Q. Chen, B. Suki, and K.-N. An, "Dynamic mechanical properties of agarose gels modeled by a fractional derivative model," Trans. ASME 126, 666-671 (2004).
[CrossRef]

S. Koch, W. Garen, M. Müller, and W. Neu, "Detection of chromium in liquids by laser induced breakdown spectroscopy (LIBS)," Appl. Phys. A 79, 1071-1073 (2004).
[CrossRef]

J. P. McAllister, J. Li, K. Deren, P. G. Finlayson, C. Jaboro, G. W. Auner, R. Baird, A. Lagman, R. Iezzi, and G. W. Abrams, "Chronic in vivo biocompatibility testing of materials used for visual prostheses," Invest. Ophthalmol. Visual Sci. 45 (Suppl. 2), 4214 (2004).

A. Kumar, F.-Y. Yueh, J. P. Singh, and S. Burgess, "Characterization of malignant tissue cells by laser-induced breakdown spectroscopy," Appl. Opt. 43, 5399-5403 (2004).
[CrossRef] [PubMed]

2003 (3)

R. Iezzi, N. P. Cottaris, S. D. Elfar, T. L. Walraven, T. M. Raza, R. Moncrieff, J. P. McAllister, G. W. Auner, R. R. Johnson, and G. W. Abrams, "Neurotransmitter-based retinal prosthesis modulation of retinal ganglion cell responses in vivo," Invest. Ophthalmol. Visual Sci. 44 (Suppl. 2), 5083 (2003).

T. M. Raza, R. Iezzi, G. W. Auner, P. Siy, J. P. McAllister, N. P. Cottaris, S. D. Elfar, and G. W. Abrams, "Design of a high-channel-count current source for use in retinal and cortical visual prostheses," Invest. Ophthalmol. Visual Sci. 44 (Suppl. 2), 5086 (2003).

A. Kumar, F. Y. Yueh, T. Miller, and J. Singh, "Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a Meinhard nebulizer," Appl. Opt. 40, 6040-6046 (2003).
[CrossRef]

2002 (4)

S. J. Mason and N. E. Graham, "Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation," Q. J. R. Meteorol. Soc. 128, 2145-2166 (2002).
[CrossRef]

T. L. Walraven, R. Iezzi, J. P. McAllister, G. Auner, R. Givens, and G. Abrams, "Biocompatibility of a neurotransmitter based retinal and cortical visual prosthesis," Invest. Ophthalmol. Visual Sci. 43 (Suppl. 2), 4453 (2002).

C. A. Jaboro, A. R. Safadi, A. L. Lagman, R. Naik, V. Naik, G. W. Abrams, R. Iezzi, P. McAllister, and G. W. Auner, "A biocompatible study of chronic implants for electrical stimulation and chemical drug delivery to vision," Invest. Ophthalmol. Visual Sci. 43 (Suppl. 2), 4476 (2002).

M. P. Mateo, L. M. Cabalin, J. M. Baena, and J. J. Laserna, "Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam," Spectrochim. Acta Part B 57, 601-608 (2002).
[CrossRef]

2001 (1)

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. Gonzales Urena, "Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples," Spectrochim. Acta Part B 56, 865-875 (2001).
[CrossRef]

1999 (1)

1997 (1)

C. M. John and R. W. Odom, "Static secondary ion mass spectrometry (SSIMS) of biological compounds in tissue and tissue-like matrices," Int. J. Mass Spectrom. Ion Processes 161, 47-67 (1997).
[CrossRef]

Appl. Opt. (2)

A. Kumar, F. Y. Yueh, T. Miller, and J. Singh, "Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a Meinhard nebulizer," Appl. Opt. 40, 6040-6046 (2003).
[CrossRef]

A. Kumar, F.-Y. Yueh, J. P. Singh, and S. Burgess, "Characterization of malignant tissue cells by laser-induced breakdown spectroscopy," Appl. Opt. 43, 5399-5403 (2004).
[CrossRef] [PubMed]

Appl. Phys. A (1)

S. Koch, W. Garen, M. Müller, and W. Neu, "Detection of chromium in liquids by laser induced breakdown spectroscopy (LIBS)," Appl. Phys. A 79, 1071-1073 (2004).
[CrossRef]

Appl. Spectrosc. (1)

Int. J. Mass Spectrom. Ion Processes (1)

C. M. John and R. W. Odom, "Static secondary ion mass spectrometry (SSIMS) of biological compounds in tissue and tissue-like matrices," Int. J. Mass Spectrom. Ion Processes 161, 47-67 (1997).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (5)

T. L. Walraven, R. Iezzi, J. P. McAllister, G. Auner, R. Givens, and G. Abrams, "Biocompatibility of a neurotransmitter based retinal and cortical visual prosthesis," Invest. Ophthalmol. Visual Sci. 43 (Suppl. 2), 4453 (2002).

C. A. Jaboro, A. R. Safadi, A. L. Lagman, R. Naik, V. Naik, G. W. Abrams, R. Iezzi, P. McAllister, and G. W. Auner, "A biocompatible study of chronic implants for electrical stimulation and chemical drug delivery to vision," Invest. Ophthalmol. Visual Sci. 43 (Suppl. 2), 4476 (2002).

R. Iezzi, N. P. Cottaris, S. D. Elfar, T. L. Walraven, T. M. Raza, R. Moncrieff, J. P. McAllister, G. W. Auner, R. R. Johnson, and G. W. Abrams, "Neurotransmitter-based retinal prosthesis modulation of retinal ganglion cell responses in vivo," Invest. Ophthalmol. Visual Sci. 44 (Suppl. 2), 5083 (2003).

T. M. Raza, R. Iezzi, G. W. Auner, P. Siy, J. P. McAllister, N. P. Cottaris, S. D. Elfar, and G. W. Abrams, "Design of a high-channel-count current source for use in retinal and cortical visual prostheses," Invest. Ophthalmol. Visual Sci. 44 (Suppl. 2), 5086 (2003).

J. P. McAllister, J. Li, K. Deren, P. G. Finlayson, C. Jaboro, G. W. Auner, R. Baird, A. Lagman, R. Iezzi, and G. W. Abrams, "Chronic in vivo biocompatibility testing of materials used for visual prostheses," Invest. Ophthalmol. Visual Sci. 45 (Suppl. 2), 4214 (2004).

Med. Phys. (1)

H. Kato, M. Kuroda, K. Yoshimura, A. Yoshida, K. Hanamoto, S. Kawasaki, K. Shibuya, and S. Kanazawa, "Composition of MRI phantom equivalent to human tissues," Med. Phys. 32, 3199-3208 (2005).
[CrossRef] [PubMed]

Q. J. R. Meteorol. Soc. (1)

S. J. Mason and N. E. Graham, "Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation," Q. J. R. Meteorol. Soc. 128, 2145-2166 (2002).
[CrossRef]

Solid State Nucl. Magn. Reson. (1)

B. MacMillan, B. Burke, B. Balcom, and G. Ziegler, "Phantom materials for single point imaging pulse sequences," Solid State Nucl. Magn. Reson. 28, 106-110 (2005).
[CrossRef] [PubMed]

Spectrochim. Acta Part B (2)

M. P. Mateo, L. M. Cabalin, J. M. Baena, and J. J. Laserna, "Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam," Spectrochim. Acta Part B 57, 601-608 (2002).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. Gonzales Urena, "Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples," Spectrochim. Acta Part B 56, 865-875 (2001).
[CrossRef]

Trans. ASME (1)

Q. Chen, B. Suki, and K.-N. An, "Dynamic mechanical properties of agarose gels modeled by a fractional derivative model," Trans. ASME 126, 666-671 (2004).
[CrossRef]

Other (3)

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse are preparing a manuscript called "Broadband laser-induced breakdown spectroscopy at a water-gas interface: a study of bath gas-dependent molecular species."

J. Ingle, Jr., and S. Crouch, Spectrochemical Analysis (Prentice Hall, 1988).

Wayne State University, Smart Sensors and Integrated Microsystems, "Neurological Implants," http://www.ssim.eng.wayne.edu/index.asp.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental diagram of the LIBS apparatus used in this study.

Fig. 2
Fig. 2

Typical LIBS spectrum of a 60   ppm Al-doped agarose model tissue. LIBS parameters were τ d = 6   μs , τ w = 20   μs , 80   mJ / pulse , 38 accumulations of three OCA. (a) Broadband optical spectrum, 200 834   nm . (b) Closeup of the region of the spectrum containing the Al and Ca emission lines used in this study.

Fig. 3
Fig. 3

LOD calibration curves showing emission intensity versus sample concentration. Lines are weighted linear fits to the data obtained from nine Al-doped 2% agarose model tissues. The fits are not constrained to pass through the origin. (a) Emission intensity of the Al 396   nm line has been normalized by the Ca 393   nm line. (b) Emission intensity of the Al 396 nm line has not been normalized. In both graphs, data from a 2 ppm sample (not included in the construction of the linear fit) are shown as an open circle.

Fig. 4
Fig. 4

Effect of (a) delay time and (b) laser energy on the noise of the background, σ, of the LIBS measurements. (a) Delay time study was performed with a laser energy of 120   mJ / pulse . (b) Pulse energy study was performed at a delay time of 6   μs .

Fig. 5
Fig. 5

Percentage of yes and no results from 40 single accumulation measurements on Al-doped model tissues with different concentrations. A yes result indicates the test was positive for Al. A no result indicates the test was negative for Al. (a) A 1 σ criterion was used as the cutoff for detecting Al. (b) A 3 σ criterion was used as the cutoff for detecting Al. (c) A 10 σ criterion was used as the cutoff for detecting Al.

Fig. 6
Fig. 6

(a) Percentage of yes and no results from 40 measurements on 2 ppm Al-doped model tissue utilizing either one, two, three, or four accumulations to make the measurement. (b) Percentage of yes and no results from 40 measurements on a blank, 0 ppm sample.

Fig. 7
Fig. 7

ROC curve for one accumulation and two accumulation LIBS measurements on the 0 ppm sample (specificity) and the 2 ppm Al-doped model tissue (sensitivity). The noise cutoff criterion used in each measurement is decreasing from left to right. Also shown are the theoretical extrema for such ROC curves: a worthless test and a perfect test. The area under the curve is the figure of merit for determining the quality of the diagnostic accuracy of the test.

Tables (1)

Tables Icon

Table 1 Al LOD in Model Tissue

Metrics