Abstract

Nanoparticle-based photonic explorers have been developed for intracellular sensing and photodynamic therapy (PDT). The design employs nanoparticles made of various matrices as multifunctional nanoplatforms, loading active components by encapsulation or covalent attachment. The nanoplatform for biosensing has been successfully applied to intracellular measurements of important ionic and molecular species. The nanoplatform for PDT has shown high therapeutic efficacy in a rat 9L gliosarcoma model. Specifically, a multifunctional nanoplatform that encompasses magnetic resonance imaging (MRI) and PDT agents inside, as well as targeting ligands on the surface, has been developed and applied in vivo, resulting in much improved MRI contrast enhancement and PDT efficacy.

© 2007 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription