Abstract

Nanoparticle-based photonic explorers have been developed for intracellular sensing and photodynamic therapy (PDT). The design employs nanoparticles made of various matrices as multifunctional nanoplatforms, loading active components by encapsulation or covalent attachment. The nanoplatform for biosensing has been successfully applied to intracellular measurements of important ionic and molecular species. The nanoplatform for PDT has shown high therapeutic efficacy in a rat 9L gliosarcoma model. Specifically, a multifunctional nanoplatform that encompasses magnetic resonance imaging (MRI) and PDT agents inside, as well as targeting ligands on the surface, has been developed and applied in vivo, resulting in much improved MRI contrast enhancement and PDT efficacy.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Haugland, The Handbook: A Guide to Fluorescent Probes and Labeling Technologies (Molecular Probes, 2005).
  2. B. M. Cullum and T. Vo-Dinh, "The development of optical nanosensors for biological measurements," Trends Biotechnol. 18, 388-393 (2000).
    [CrossRef] [PubMed]
  3. S. M. Buck, H. Xu, M. Brasuel, M. A. Philbert, and R. Kopelman, "Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells," Special Issue, E. Bakker and E. Pretsch, eds., Talanta 63, 41-59 (2004).
    [CrossRef]
  4. H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
    [CrossRef]
  5. H. A. Clark, M. Hoyer, M. A. Philbert, and R. Kopelman, "Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors," Anal. Chem. 71, 4831-4836 (1999).
    [CrossRef] [PubMed]
  6. H. A. Clark, R. Kopelman, R. Tjalkens, and M. A. Philbert, "Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors," Anal. Chem. 71, 4837-4843 (1999).
    [CrossRef] [PubMed]
  7. H. Xu, J. W. Aylott, and R. Kopelman, "Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging," Analyst 127, 1471-1477 (2002).
    [CrossRef] [PubMed]
  8. J. P. Sumner, J. W. Aylott, E. Monson, and R. Kopelman, "A fluorescent PEBBLE nanosensor for intracellular free zinc," Analyst 127, 11-16 (2002).
    [CrossRef] [PubMed]
  9. E. J. Park, M. Brasuel, C. Behrend, M. A. Philbert, and R. Kopelman, "Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells," Anal. Chem. 75, 3784-3791 (2003).
    [CrossRef] [PubMed]
  10. M. King and R. Kopelman, "Development of a hydroxyl radical ratiometric nanoprobe," Sens. Actuators B 90, 76-81 (2003).
    [CrossRef]
  11. J. Sumner and R. Kopelman, "Alexa Fluor 488 as an iron sensitive indicator and its application in PEBBLE nanosensors," Analyst 130, 528-533 (2005).
    [CrossRef] [PubMed]
  12. J. P. Sumner, N. Westerberg, A. K. Stoddard, C. A. Fierke, and R. Kopelman, "Cu+ and Cu2+ sensitive PEBBLE fluorescent nanosensors using Ds red as the recognition element," Sens. Actuators B 113, 760-767 (2005).
    [CrossRef]
  13. H. Xu, J. W. Aylott, R. Kopelman, T. J. Miller, and M. A. Philbert, "A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma," Anal. Chem. 73, 4124-4133 (2001).
    [CrossRef] [PubMed]
  14. Y.-E. L. Koo, Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel, and M. A. Philbert, "Real-time measurements of dissolved oxygen inside live cells by Ormosil (organically modified silicate) fluorescent PEBBLE nanosensors," Anal. Chem. 76, 2498-2505 (2004).
    [CrossRef] [PubMed]
  15. Y. Cao, Y.-E. L. Koo, S. Koo, and R. Kopelman, "Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms," Photochem. Photobiol. 81, 1489-1498 (2005).
    [CrossRef] [PubMed]
  16. Y. Cao, Y.-E. L. Koo, and R. Kopelman, "Poly (Decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples," Analyst 129, 745-750 (2004).
    [CrossRef] [PubMed]
  17. M. Brasuel, R. Kopelman, T. J. Miller, R. Tjalkens, and M. A. Philbert, "Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells," Anal. Chem. 73, 2221-2228 (2001).
    [CrossRef] [PubMed]
  18. M. Brasuel, R. Kopelman, I. Kasman, T. J. Miller, and M. A. Philbert, "Ion concentrations in live cells from highly selective ion correlations fluorescent nanosensors for sodium," in Proceedings of IEEE Conference on Sensors (IEEE, 2002) pp. 288-292.
  19. M. G. Brasuel, T. J. Miller, R. Kopelman, and M. A. Philbert, "Liquid polymer nano-PEBBLES for Cl analysis and biological applications," Analyst 128, 1262-1267 (2003).
    [CrossRef] [PubMed]
  20. J. A. Harrell and R. Kopelman, "Biocompatible probes measure intracellular activity," Biophotonics Int. 7, 22-24 (2000).
  21. J. N. Anker, C. Behrend, and R. Kopelman, "Aspherical magnetically modulated optical nanoprobes (MagMOONs)," J. Appl. Phys. 93, 6698-6700 (2003).
    [CrossRef]
  22. J. N. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. Phys. Lett. 82, 1102-1104 (2003).
    [CrossRef]
  23. C. J. Behrend, J. N. Anker, and R. Kopelman, "Brownian modulated optical nanoprobes," Appl. Phys. Lett. 84, 154-156 (2004).
    [CrossRef]
  24. B. H. McNaughton, K. A. Kehbein, J. N. Anker, and R. Kopelman, "Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing," J. Phys. Chem. B 110, 18958-18964 (2006).
    [CrossRef] [PubMed]
  25. N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006).
    [CrossRef]
  26. M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, and R. Kopelman, "Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES," Sens. Actuators B 90, 82-89 (2003).
    [CrossRef]
  27. F. Yan and R. Kopelman, "The Embedding of meta-Tetra (hydroxyphenyl) Chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH dependent optical properties," Photochem. Photobiol. 78, 587-591 (2003).
    [CrossRef]
  28. I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003).
    [CrossRef] [PubMed]
  29. W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, "Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms," Photochem. Photobiol. 81, 242-249 (2005).
    [CrossRef]
  30. A. Samia, S. Dayal, and C. Burda, "Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy," Photochem. Photobiol. 82, 617-625 (2006).
    [CrossRef] [PubMed]
  31. S. Wang, R. Gao, F. Zhou, and M. Selke, "Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy," J. Mater. Chem. 14, 487-493 (2004).
    [CrossRef]
  32. D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, and D. A. Russell, "Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy," Langmuir 18, 2985-2987 (2002).
    [CrossRef]
  33. Y. N. Konan, R. Gurny, and E. Allémann, "State of the art in the delivery of photosensitizers for photodynamic therapy," J. Photochem. Photobiol. , B 66, 89-106 (2002).
    [CrossRef]
  34. H. Li, D. E. Marotta, S. Kim, T. M. Busch, E. P. Wileyto, and G. Zheng, "High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles," J. Biomed. Opt. 10, 041203-1-041203-7 (2005).
  35. R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
    [CrossRef]
  36. B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).
  37. B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
    [CrossRef]
  38. G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
    [CrossRef] [PubMed]
  39. M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder, and L. Josephson, "A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation," Cancer Res. 63, 8122-8125 (2003).
    [PubMed]
  40. S. M. Moghimi, A. C. Hunter, and J. C. Murray, "Long circulating and target-specific nanoparticles: theory to practice," Pharmacol. Rev. 53, 283-318 (2001).
    [PubMed]
  41. R. J. Schneider II, "Characterization of polyacrylamide nanoparticles for biomedical applications: toxicology, pharmacology, and therapy," Ph.D. dissertation (University of Michigan, Ann Arbor, 2005).
  42. J. Denekamp, "Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy," Br. J. Radiol. 66, 181-96 (1993).
    [CrossRef] [PubMed]
  43. Q. Peng and J. M. Nesland, "Effects of photodynamic therapy on tumor stroma," Ultrastruct. Pathol. 28, 333-340 (2004).
    [CrossRef]
  44. P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
    [PubMed]
  45. H. Hah, W. Fan, Y, Koo, H. Xu, D. Orringer, M. Philbert, and R. Kopelman (Department of Chemistry, University of Michigan, Ann Arbor, MI 48109) are preparing a paper to be called "Blue dye loaded silica nanoparticle for visual delineation of tumor margin and PDT."

2006 (4)

B. H. McNaughton, K. A. Kehbein, J. N. Anker, and R. Kopelman, "Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing," J. Phys. Chem. B 110, 18958-18964 (2006).
[CrossRef] [PubMed]

N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006).
[CrossRef]

A. Samia, S. Dayal, and C. Burda, "Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy," Photochem. Photobiol. 82, 617-625 (2006).
[CrossRef] [PubMed]

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

2005 (6)

H. Li, D. E. Marotta, S. Kim, T. M. Busch, E. P. Wileyto, and G. Zheng, "High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles," J. Biomed. Opt. 10, 041203-1-041203-7 (2005).

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, "Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms," Photochem. Photobiol. 81, 242-249 (2005).
[CrossRef]

J. Sumner and R. Kopelman, "Alexa Fluor 488 as an iron sensitive indicator and its application in PEBBLE nanosensors," Analyst 130, 528-533 (2005).
[CrossRef] [PubMed]

J. P. Sumner, N. Westerberg, A. K. Stoddard, C. A. Fierke, and R. Kopelman, "Cu+ and Cu2+ sensitive PEBBLE fluorescent nanosensors using Ds red as the recognition element," Sens. Actuators B 113, 760-767 (2005).
[CrossRef]

Y. Cao, Y.-E. L. Koo, S. Koo, and R. Kopelman, "Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms," Photochem. Photobiol. 81, 1489-1498 (2005).
[CrossRef] [PubMed]

2004 (7)

Y. Cao, Y.-E. L. Koo, and R. Kopelman, "Poly (Decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples," Analyst 129, 745-750 (2004).
[CrossRef] [PubMed]

Y.-E. L. Koo, Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel, and M. A. Philbert, "Real-time measurements of dissolved oxygen inside live cells by Ormosil (organically modified silicate) fluorescent PEBBLE nanosensors," Anal. Chem. 76, 2498-2505 (2004).
[CrossRef] [PubMed]

S. M. Buck, H. Xu, M. Brasuel, M. A. Philbert, and R. Kopelman, "Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells," Special Issue, E. Bakker and E. Pretsch, eds., Talanta 63, 41-59 (2004).
[CrossRef]

C. J. Behrend, J. N. Anker, and R. Kopelman, "Brownian modulated optical nanoprobes," Appl. Phys. Lett. 84, 154-156 (2004).
[CrossRef]

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

S. Wang, R. Gao, F. Zhou, and M. Selke, "Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy," J. Mater. Chem. 14, 487-493 (2004).
[CrossRef]

Q. Peng and J. M. Nesland, "Effects of photodynamic therapy on tumor stroma," Ultrastruct. Pathol. 28, 333-340 (2004).
[CrossRef]

2003 (10)

M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder, and L. Josephson, "A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation," Cancer Res. 63, 8122-8125 (2003).
[PubMed]

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
[CrossRef]

J. N. Anker, C. Behrend, and R. Kopelman, "Aspherical magnetically modulated optical nanoprobes (MagMOONs)," J. Appl. Phys. 93, 6698-6700 (2003).
[CrossRef]

J. N. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. Phys. Lett. 82, 1102-1104 (2003).
[CrossRef]

M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, and R. Kopelman, "Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES," Sens. Actuators B 90, 82-89 (2003).
[CrossRef]

F. Yan and R. Kopelman, "The Embedding of meta-Tetra (hydroxyphenyl) Chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH dependent optical properties," Photochem. Photobiol. 78, 587-591 (2003).
[CrossRef]

I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003).
[CrossRef] [PubMed]

E. J. Park, M. Brasuel, C. Behrend, M. A. Philbert, and R. Kopelman, "Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells," Anal. Chem. 75, 3784-3791 (2003).
[CrossRef] [PubMed]

M. King and R. Kopelman, "Development of a hydroxyl radical ratiometric nanoprobe," Sens. Actuators B 90, 76-81 (2003).
[CrossRef]

M. G. Brasuel, T. J. Miller, R. Kopelman, and M. A. Philbert, "Liquid polymer nano-PEBBLES for Cl analysis and biological applications," Analyst 128, 1262-1267 (2003).
[CrossRef] [PubMed]

2002 (4)

H. Xu, J. W. Aylott, and R. Kopelman, "Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging," Analyst 127, 1471-1477 (2002).
[CrossRef] [PubMed]

J. P. Sumner, J. W. Aylott, E. Monson, and R. Kopelman, "A fluorescent PEBBLE nanosensor for intracellular free zinc," Analyst 127, 11-16 (2002).
[CrossRef] [PubMed]

D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, and D. A. Russell, "Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy," Langmuir 18, 2985-2987 (2002).
[CrossRef]

Y. N. Konan, R. Gurny, and E. Allémann, "State of the art in the delivery of photosensitizers for photodynamic therapy," J. Photochem. Photobiol. , B 66, 89-106 (2002).
[CrossRef]

2001 (3)

M. Brasuel, R. Kopelman, T. J. Miller, R. Tjalkens, and M. A. Philbert, "Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells," Anal. Chem. 73, 2221-2228 (2001).
[CrossRef] [PubMed]

H. Xu, J. W. Aylott, R. Kopelman, T. J. Miller, and M. A. Philbert, "A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma," Anal. Chem. 73, 4124-4133 (2001).
[CrossRef] [PubMed]

S. M. Moghimi, A. C. Hunter, and J. C. Murray, "Long circulating and target-specific nanoparticles: theory to practice," Pharmacol. Rev. 53, 283-318 (2001).
[PubMed]

2000 (2)

B. M. Cullum and T. Vo-Dinh, "The development of optical nanosensors for biological measurements," Trends Biotechnol. 18, 388-393 (2000).
[CrossRef] [PubMed]

J. A. Harrell and R. Kopelman, "Biocompatible probes measure intracellular activity," Biophotonics Int. 7, 22-24 (2000).

1999 (3)

H. A. Clark, M. Hoyer, M. A. Philbert, and R. Kopelman, "Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors," Anal. Chem. 71, 4831-4836 (1999).
[CrossRef] [PubMed]

H. A. Clark, R. Kopelman, R. Tjalkens, and M. A. Philbert, "Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors," Anal. Chem. 71, 4837-4843 (1999).
[CrossRef] [PubMed]

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

1998 (1)

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

1993 (1)

J. Denekamp, "Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy," Br. J. Radiol. 66, 181-96 (1993).
[CrossRef] [PubMed]

Ade, A.

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Albright, A. L.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Allémann, E.

Y. N. Konan, R. Gurny, and E. Allémann, "State of the art in the delivery of photosensitizers for photodynamic therapy," J. Photochem. Photobiol. , B 66, 89-106 (2002).
[CrossRef]

Allen, J. C.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Anker, J. N.

B. H. McNaughton, K. A. Kehbein, J. N. Anker, and R. Kopelman, "Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing," J. Phys. Chem. B 110, 18958-18964 (2006).
[CrossRef] [PubMed]

C. J. Behrend, J. N. Anker, and R. Kopelman, "Brownian modulated optical nanoprobes," Appl. Phys. Lett. 84, 154-156 (2004).
[CrossRef]

J. N. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. Phys. Lett. 82, 1102-1104 (2003).
[CrossRef]

J. N. Anker, C. Behrend, and R. Kopelman, "Aspherical magnetically modulated optical nanoprobes (MagMOONs)," J. Appl. Phys. 93, 6698-6700 (2003).
[CrossRef]

Athey, B.

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Aylott, J. W.

J. P. Sumner, J. W. Aylott, E. Monson, and R. Kopelman, "A fluorescent PEBBLE nanosensor for intracellular free zinc," Analyst 127, 11-16 (2002).
[CrossRef] [PubMed]

H. Xu, J. W. Aylott, and R. Kopelman, "Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging," Analyst 127, 1471-1477 (2002).
[CrossRef] [PubMed]

H. Xu, J. W. Aylott, R. Kopelman, T. J. Miller, and M. A. Philbert, "A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma," Anal. Chem. 73, 4124-4133 (2001).
[CrossRef] [PubMed]

Barker, S. L. R.

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Beeby, A.

D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, and D. A. Russell, "Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy," Langmuir 18, 2985-2987 (2002).
[CrossRef]

Behrend, C.

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

J. N. Anker, C. Behrend, and R. Kopelman, "Aspherical magnetically modulated optical nanoprobes (MagMOONs)," J. Appl. Phys. 93, 6698-6700 (2003).
[CrossRef]

E. J. Park, M. Brasuel, C. Behrend, M. A. Philbert, and R. Kopelman, "Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells," Anal. Chem. 75, 3784-3791 (2003).
[CrossRef] [PubMed]

Behrend, C. J.

C. J. Behrend, J. N. Anker, and R. Kopelman, "Brownian modulated optical nanoprobes," Appl. Phys. Lett. 84, 154-156 (2004).
[CrossRef]

Bergey, E. J.

I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003).
[CrossRef] [PubMed]

Bhojani, M.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

Bhojani, M. S.

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

Boyett, J. M.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Brasuel, M.

Y.-E. L. Koo, Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel, and M. A. Philbert, "Real-time measurements of dissolved oxygen inside live cells by Ormosil (organically modified silicate) fluorescent PEBBLE nanosensors," Anal. Chem. 76, 2498-2505 (2004).
[CrossRef] [PubMed]

S. M. Buck, H. Xu, M. Brasuel, M. A. Philbert, and R. Kopelman, "Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells," Special Issue, E. Bakker and E. Pretsch, eds., Talanta 63, 41-59 (2004).
[CrossRef]

E. J. Park, M. Brasuel, C. Behrend, M. A. Philbert, and R. Kopelman, "Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells," Anal. Chem. 75, 3784-3791 (2003).
[CrossRef] [PubMed]

M. Brasuel, R. Kopelman, T. J. Miller, R. Tjalkens, and M. A. Philbert, "Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells," Anal. Chem. 73, 2221-2228 (2001).
[CrossRef] [PubMed]

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

M. Brasuel, R. Kopelman, I. Kasman, T. J. Miller, and M. A. Philbert, "Ion concentrations in live cells from highly selective ion correlations fluorescent nanosensors for sodium," in Proceedings of IEEE Conference on Sensors (IEEE, 2002) pp. 288-292.

Brasuel, M. G.

M. G. Brasuel, T. J. Miller, R. Kopelman, and M. A. Philbert, "Liquid polymer nano-PEBBLES for Cl analysis and biological applications," Analyst 128, 1262-1267 (2003).
[CrossRef] [PubMed]

Buck, S.

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

Buck, S. M.

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

S. M. Buck, H. Xu, M. Brasuel, M. A. Philbert, and R. Kopelman, "Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells," Special Issue, E. Bakker and E. Pretsch, eds., Talanta 63, 41-59 (2004).
[CrossRef]

Burda, C.

A. Samia, S. Dayal, and C. Burda, "Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy," Photochem. Photobiol. 82, 617-625 (2006).
[CrossRef] [PubMed]

Busch, T. M.

H. Li, D. E. Marotta, S. Kim, T. M. Busch, E. P. Wileyto, and G. Zheng, "High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles," J. Biomed. Opt. 10, 041203-1-041203-7 (2005).

Cao, Y.

Y. Cao, Y.-E. L. Koo, S. Koo, and R. Kopelman, "Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms," Photochem. Photobiol. 81, 1489-1498 (2005).
[CrossRef] [PubMed]

Y. Cao, Y.-E. L. Koo, and R. Kopelman, "Poly (Decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples," Analyst 129, 745-750 (2004).
[CrossRef] [PubMed]

Y.-E. L. Koo, Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel, and M. A. Philbert, "Real-time measurements of dissolved oxygen inside live cells by Ormosil (organically modified silicate) fluorescent PEBBLE nanosensors," Anal. Chem. 76, 2498-2505 (2004).
[CrossRef] [PubMed]

Chambrier, I.

D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, and D. A. Russell, "Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy," Langmuir 18, 2985-2987 (2002).
[CrossRef]

Chenevert, T. L.

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
[CrossRef]

Clark, H. A.

H. A. Clark, M. Hoyer, M. A. Philbert, and R. Kopelman, "Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors," Anal. Chem. 71, 4831-4836 (1999).
[CrossRef] [PubMed]

H. A. Clark, R. Kopelman, R. Tjalkens, and M. A. Philbert, "Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors," Anal. Chem. 71, 4837-4843 (1999).
[CrossRef] [PubMed]

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Cook, M. J.

D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, and D. A. Russell, "Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy," Langmuir 18, 2985-2987 (2002).
[CrossRef]

Cullum, B. M.

B. M. Cullum and T. Vo-Dinh, "The development of optical nanosensors for biological measurements," Trends Biotechnol. 18, 388-393 (2000).
[CrossRef] [PubMed]

Dayal, S.

A. Samia, S. Dayal, and C. Burda, "Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy," Photochem. Photobiol. 82, 617-625 (2006).
[CrossRef] [PubMed]

Denekamp, J.

J. Denekamp, "Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy," Br. J. Radiol. 66, 181-96 (1993).
[CrossRef] [PubMed]

Dougherty, T. J.

I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003).
[CrossRef] [PubMed]

Evans-Gowing, R.

D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, and D. A. Russell, "Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy," Langmuir 18, 2985-2987 (2002).
[CrossRef]

Fierke, C. A.

J. P. Sumner, N. Westerberg, A. K. Stoddard, C. A. Fierke, and R. Kopelman, "Cu+ and Cu2+ sensitive PEBBLE fluorescent nanosensors using Ds red as the recognition element," Sens. Actuators B 113, 760-767 (2005).
[CrossRef]

Finlay, B. B.

N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006).
[CrossRef]

Finlay, J. L.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

FitzGerald, S.

D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, and D. A. Russell, "Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy," Langmuir 18, 2985-2987 (2002).
[CrossRef]

Gao, R.

S. Wang, R. Gao, F. Zhou, and M. Selke, "Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy," J. Mater. Chem. 14, 487-493 (2004).
[CrossRef]

Geyer, J. R.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Grinstein, S.

N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006).
[CrossRef]

Gros, P.

N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006).
[CrossRef]

Gurny, R.

Y. N. Konan, R. Gurny, and E. Allémann, "State of the art in the delivery of photosensitizers for photodynamic therapy," J. Photochem. Photobiol. , B 66, 89-106 (2002).
[CrossRef]

Hall, D. E.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
[CrossRef]

Harrell, J. A.

J. A. Harrell and R. Kopelman, "Biocompatible probes measure intracellular activity," Biophotonics Int. 7, 22-24 (2000).

Haugland, R. P.

R. P. Haugland, The Handbook: A Guide to Fluorescent Probes and Labeling Technologies (Molecular Probes, 2005).

Hill, D.

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Hone, D. C.

D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, and D. A. Russell, "Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy," Langmuir 18, 2985-2987 (2002).
[CrossRef]

Hoyer, M.

H. A. Clark, M. Hoyer, M. A. Philbert, and R. Kopelman, "Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors," Anal. Chem. 71, 4831-4836 (1999).
[CrossRef] [PubMed]

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Hunter, A. C.

S. M. Moghimi, A. C. Hunter, and J. C. Murray, "Long circulating and target-specific nanoparticles: theory to practice," Pharmacol. Rev. 53, 283-318 (2001).
[PubMed]

Johnson, T. D.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

Josephson, L.

M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder, and L. Josephson, "A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation," Cancer Res. 63, 8122-8125 (2003).
[PubMed]

Kasman, I.

M. Brasuel, R. Kopelman, I. Kasman, T. J. Miller, and M. A. Philbert, "Ion concentrations in live cells from highly selective ion correlations fluorescent nanosensors for sodium," in Proceedings of IEEE Conference on Sensors (IEEE, 2002) pp. 288-292.

Kehbein, K. A.

B. H. McNaughton, K. A. Kehbein, J. N. Anker, and R. Kopelman, "Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing," J. Phys. Chem. B 110, 18958-18964 (2006).
[CrossRef] [PubMed]

Kim, G.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

Kim, S.

H. Li, D. E. Marotta, S. Kim, T. M. Busch, E. P. Wileyto, and G. Zheng, "High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles," J. Biomed. Opt. 10, 041203-1-041203-7 (2005).

King, M.

M. King and R. Kopelman, "Development of a hydroxyl radical ratiometric nanoprobe," Sens. Actuators B 90, 76-81 (2003).
[CrossRef]

King, R. S.

M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder, and L. Josephson, "A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation," Cancer Res. 63, 8122-8125 (2003).
[PubMed]

Kircher, M. F.

M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder, and L. Josephson, "A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation," Cancer Res. 63, 8122-8125 (2003).
[PubMed]

Konan, Y. N.

Y. N. Konan, R. Gurny, and E. Allémann, "State of the art in the delivery of photosensitizers for photodynamic therapy," J. Photochem. Photobiol. , B 66, 89-106 (2002).
[CrossRef]

Koo, S.

Y. Cao, Y.-E. L. Koo, S. Koo, and R. Kopelman, "Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms," Photochem. Photobiol. 81, 1489-1498 (2005).
[CrossRef] [PubMed]

Koo, S. M.

Y.-E. L. Koo, Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel, and M. A. Philbert, "Real-time measurements of dissolved oxygen inside live cells by Ormosil (organically modified silicate) fluorescent PEBBLE nanosensors," Anal. Chem. 76, 2498-2505 (2004).
[CrossRef] [PubMed]

Koo, Y.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

Koo, Y.-E. L.

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

Y. Cao, Y.-E. L. Koo, S. Koo, and R. Kopelman, "Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms," Photochem. Photobiol. 81, 1489-1498 (2005).
[CrossRef] [PubMed]

Y. Cao, Y.-E. L. Koo, and R. Kopelman, "Poly (Decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples," Analyst 129, 745-750 (2004).
[CrossRef] [PubMed]

Y.-E. L. Koo, Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel, and M. A. Philbert, "Real-time measurements of dissolved oxygen inside live cells by Ormosil (organically modified silicate) fluorescent PEBBLE nanosensors," Anal. Chem. 76, 2498-2505 (2004).
[CrossRef] [PubMed]

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

Kopelman, R.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006).
[CrossRef]

B. H. McNaughton, K. A. Kehbein, J. N. Anker, and R. Kopelman, "Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing," J. Phys. Chem. B 110, 18958-18964 (2006).
[CrossRef] [PubMed]

J. Sumner and R. Kopelman, "Alexa Fluor 488 as an iron sensitive indicator and its application in PEBBLE nanosensors," Analyst 130, 528-533 (2005).
[CrossRef] [PubMed]

Y. Cao, Y.-E. L. Koo, S. Koo, and R. Kopelman, "Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms," Photochem. Photobiol. 81, 1489-1498 (2005).
[CrossRef] [PubMed]

J. P. Sumner, N. Westerberg, A. K. Stoddard, C. A. Fierke, and R. Kopelman, "Cu+ and Cu2+ sensitive PEBBLE fluorescent nanosensors using Ds red as the recognition element," Sens. Actuators B 113, 760-767 (2005).
[CrossRef]

W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, "Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms," Photochem. Photobiol. 81, 242-249 (2005).
[CrossRef]

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

S. M. Buck, H. Xu, M. Brasuel, M. A. Philbert, and R. Kopelman, "Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells," Special Issue, E. Bakker and E. Pretsch, eds., Talanta 63, 41-59 (2004).
[CrossRef]

Y.-E. L. Koo, Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel, and M. A. Philbert, "Real-time measurements of dissolved oxygen inside live cells by Ormosil (organically modified silicate) fluorescent PEBBLE nanosensors," Anal. Chem. 76, 2498-2505 (2004).
[CrossRef] [PubMed]

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

C. J. Behrend, J. N. Anker, and R. Kopelman, "Brownian modulated optical nanoprobes," Appl. Phys. Lett. 84, 154-156 (2004).
[CrossRef]

Y. Cao, Y.-E. L. Koo, and R. Kopelman, "Poly (Decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples," Analyst 129, 745-750 (2004).
[CrossRef] [PubMed]

M. G. Brasuel, T. J. Miller, R. Kopelman, and M. A. Philbert, "Liquid polymer nano-PEBBLES for Cl analysis and biological applications," Analyst 128, 1262-1267 (2003).
[CrossRef] [PubMed]

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
[CrossRef]

J. N. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. Phys. Lett. 82, 1102-1104 (2003).
[CrossRef]

E. J. Park, M. Brasuel, C. Behrend, M. A. Philbert, and R. Kopelman, "Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells," Anal. Chem. 75, 3784-3791 (2003).
[CrossRef] [PubMed]

M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, and R. Kopelman, "Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES," Sens. Actuators B 90, 82-89 (2003).
[CrossRef]

F. Yan and R. Kopelman, "The Embedding of meta-Tetra (hydroxyphenyl) Chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH dependent optical properties," Photochem. Photobiol. 78, 587-591 (2003).
[CrossRef]

M. King and R. Kopelman, "Development of a hydroxyl radical ratiometric nanoprobe," Sens. Actuators B 90, 76-81 (2003).
[CrossRef]

J. N. Anker, C. Behrend, and R. Kopelman, "Aspherical magnetically modulated optical nanoprobes (MagMOONs)," J. Appl. Phys. 93, 6698-6700 (2003).
[CrossRef]

J. P. Sumner, J. W. Aylott, E. Monson, and R. Kopelman, "A fluorescent PEBBLE nanosensor for intracellular free zinc," Analyst 127, 11-16 (2002).
[CrossRef] [PubMed]

H. Xu, J. W. Aylott, and R. Kopelman, "Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging," Analyst 127, 1471-1477 (2002).
[CrossRef] [PubMed]

H. Xu, J. W. Aylott, R. Kopelman, T. J. Miller, and M. A. Philbert, "A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma," Anal. Chem. 73, 4124-4133 (2001).
[CrossRef] [PubMed]

M. Brasuel, R. Kopelman, T. J. Miller, R. Tjalkens, and M. A. Philbert, "Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells," Anal. Chem. 73, 2221-2228 (2001).
[CrossRef] [PubMed]

J. A. Harrell and R. Kopelman, "Biocompatible probes measure intracellular activity," Biophotonics Int. 7, 22-24 (2000).

H. A. Clark, M. Hoyer, M. A. Philbert, and R. Kopelman, "Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors," Anal. Chem. 71, 4831-4836 (1999).
[CrossRef] [PubMed]

H. A. Clark, R. Kopelman, R. Tjalkens, and M. A. Philbert, "Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors," Anal. Chem. 71, 4837-4843 (1999).
[CrossRef] [PubMed]

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

M. Brasuel, R. Kopelman, I. Kasman, T. J. Miller, and M. A. Philbert, "Ion concentrations in live cells from highly selective ion correlations fluorescent nanosensors for sodium," in Proceedings of IEEE Conference on Sensors (IEEE, 2002) pp. 288-292.

Li, H.

H. Li, D. E. Marotta, S. Kim, T. M. Busch, E. P. Wileyto, and G. Zheng, "High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles," J. Biomed. Opt. 10, 041203-1-041203-7 (2005).

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Lightle, R.

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Mahmood, U.

M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder, and L. Josephson, "A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation," Cancer Res. 63, 8122-8125 (2003).
[PubMed]

Marotta, D. E.

H. Li, D. E. Marotta, S. Kim, T. M. Busch, E. P. Wileyto, and G. Zheng, "High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles," J. Biomed. Opt. 10, 041203-1-041203-7 (2005).

Martin-Orozco, N.

N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006).
[CrossRef]

McConville, P.

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
[CrossRef]

McConville, P. M.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

McGuire-Cullen, P.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

McNaughton, B. H.

B. H. McNaughton, K. A. Kehbein, J. N. Anker, and R. Kopelman, "Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing," J. Phys. Chem. B 110, 18958-18964 (2006).
[CrossRef] [PubMed]

Meixner, W.

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Miller, M. T.

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Miller, S.

N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006).
[CrossRef]

Miller, T. J.

M. G. Brasuel, T. J. Miller, R. Kopelman, and M. A. Philbert, "Liquid polymer nano-PEBBLES for Cl analysis and biological applications," Analyst 128, 1262-1267 (2003).
[CrossRef] [PubMed]

H. Xu, J. W. Aylott, R. Kopelman, T. J. Miller, and M. A. Philbert, "A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma," Anal. Chem. 73, 4124-4133 (2001).
[CrossRef] [PubMed]

M. Brasuel, R. Kopelman, T. J. Miller, R. Tjalkens, and M. A. Philbert, "Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells," Anal. Chem. 73, 2221-2228 (2001).
[CrossRef] [PubMed]

M. Brasuel, R. Kopelman, I. Kasman, T. J. Miller, and M. A. Philbert, "Ion concentrations in live cells from highly selective ion correlations fluorescent nanosensors for sodium," in Proceedings of IEEE Conference on Sensors (IEEE, 2002) pp. 288-292.

Milstein, J. M.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Moffat, B. A.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
[CrossRef]

Moghimi, S. M.

S. M. Moghimi, A. C. Hunter, and J. C. Murray, "Long circulating and target-specific nanoparticles: theory to practice," Pharmacol. Rev. 53, 283-318 (2001).
[PubMed]

Monson, E.

M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, and R. Kopelman, "Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES," Sens. Actuators B 90, 82-89 (2003).
[CrossRef]

J. P. Sumner, J. W. Aylott, E. Monson, and R. Kopelman, "A fluorescent PEBBLE nanosensor for intracellular free zinc," Analyst 127, 11-16 (2002).
[CrossRef] [PubMed]

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Moody, J.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

Moreno, M. J.

M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, and R. Kopelman, "Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES," Sens. Actuators B 90, 82-89 (2003).
[CrossRef]

Morgan, J.

I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003).
[CrossRef] [PubMed]

Murray, J. C.

S. M. Moghimi, A. C. Hunter, and J. C. Murray, "Long circulating and target-specific nanoparticles: theory to practice," Pharmacol. Rev. 53, 283-318 (2001).
[PubMed]

Nesland, J. M.

Q. Peng and J. M. Nesland, "Effects of photodynamic therapy on tumor stroma," Ultrastruct. Pathol. 28, 333-340 (2004).
[CrossRef]

Ohulchansky, T. Y.

I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003).
[CrossRef] [PubMed]

Oseroff, A. R.

I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003).
[CrossRef] [PubMed]

Packer, R. J.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Park, E.

N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006).
[CrossRef]

Park, E. J.

E. J. Park, M. Brasuel, C. Behrend, M. A. Philbert, and R. Kopelman, "Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells," Anal. Chem. 75, 3784-3791 (2003).
[CrossRef] [PubMed]

Parus, S.

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Peng, Q.

Q. Peng and J. M. Nesland, "Effects of photodynamic therapy on tumor stroma," Ultrastruct. Pathol. 28, 333-340 (2004).
[CrossRef]

Philbert, M.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, and R. Kopelman, "Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES," Sens. Actuators B 90, 82-89 (2003).
[CrossRef]

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
[CrossRef]

Philbert, M. A.

W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, "Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms," Photochem. Photobiol. 81, 242-249 (2005).
[CrossRef]

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

Y.-E. L. Koo, Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel, and M. A. Philbert, "Real-time measurements of dissolved oxygen inside live cells by Ormosil (organically modified silicate) fluorescent PEBBLE nanosensors," Anal. Chem. 76, 2498-2505 (2004).
[CrossRef] [PubMed]

S. M. Buck, H. Xu, M. Brasuel, M. A. Philbert, and R. Kopelman, "Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells," Special Issue, E. Bakker and E. Pretsch, eds., Talanta 63, 41-59 (2004).
[CrossRef]

M. G. Brasuel, T. J. Miller, R. Kopelman, and M. A. Philbert, "Liquid polymer nano-PEBBLES for Cl analysis and biological applications," Analyst 128, 1262-1267 (2003).
[CrossRef] [PubMed]

E. J. Park, M. Brasuel, C. Behrend, M. A. Philbert, and R. Kopelman, "Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells," Anal. Chem. 75, 3784-3791 (2003).
[CrossRef] [PubMed]

H. Xu, J. W. Aylott, R. Kopelman, T. J. Miller, and M. A. Philbert, "A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma," Anal. Chem. 73, 4124-4133 (2001).
[CrossRef] [PubMed]

M. Brasuel, R. Kopelman, T. J. Miller, R. Tjalkens, and M. A. Philbert, "Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells," Anal. Chem. 73, 2221-2228 (2001).
[CrossRef] [PubMed]

H. A. Clark, R. Kopelman, R. Tjalkens, and M. A. Philbert, "Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors," Anal. Chem. 71, 4837-4843 (1999).
[CrossRef] [PubMed]

H. A. Clark, M. Hoyer, M. A. Philbert, and R. Kopelman, "Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors," Anal. Chem. 71, 4831-4836 (1999).
[CrossRef] [PubMed]

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

M. Brasuel, R. Kopelman, I. Kasman, T. J. Miller, and M. A. Philbert, "Ion concentrations in live cells from highly selective ion correlations fluorescent nanosensors for sodium," in Proceedings of IEEE Conference on Sensors (IEEE, 2002) pp. 288-292.

Prasad, P. N.

I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003).
[CrossRef] [PubMed]

Pudavar, H. E.

I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003).
[CrossRef] [PubMed]

Reddy, G. R.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
[CrossRef]

Reddy, R.

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

Reddy, R. G.

M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, and R. Kopelman, "Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES," Sens. Actuators B 90, 82-89 (2003).
[CrossRef]

Rehemtulla, A.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, and R. Kopelman, "Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES," Sens. Actuators B 90, 82-89 (2003).
[CrossRef]

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
[CrossRef]

Rorke, L. B.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Ross, B.

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

Ross, B. D.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
[CrossRef]

M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, and R. Kopelman, "Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES," Sens. Actuators B 90, 82-89 (2003).
[CrossRef]

Roy, I.

I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003).
[CrossRef] [PubMed]

Russell, D. A.

D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, and D. A. Russell, "Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy," Langmuir 18, 2985-2987 (2002).
[CrossRef]

Samia, A.

A. Samia, S. Dayal, and C. Burda, "Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy," Photochem. Photobiol. 82, 617-625 (2006).
[CrossRef] [PubMed]

Schneider, R. J.

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, and R. Kopelman, "Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES," Sens. Actuators B 90, 82-89 (2003).
[CrossRef]

R. J. Schneider II, "Characterization of polyacrylamide nanoparticles for biomedical applications: toxicology, pharmacology, and therapy," Ph.D. dissertation (University of Michigan, Ann Arbor, 2005).

Selke, M.

S. Wang, R. Gao, F. Zhou, and M. Selke, "Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy," J. Mater. Chem. 14, 487-493 (2004).
[CrossRef]

Shi, Z. Y.

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Shurin, S. B.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Song, A.

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Stanley, P.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Stehbens, J. A.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Stevens, K. R.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Stoddard, A. K.

J. P. Sumner, N. Westerberg, A. K. Stoddard, C. A. Fierke, and R. Kopelman, "Cu+ and Cu2+ sensitive PEBBLE fluorescent nanosensors using Ds red as the recognition element," Sens. Actuators B 113, 760-767 (2005).
[CrossRef]

Sugai, J. V.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

Sumner, J.

J. Sumner and R. Kopelman, "Alexa Fluor 488 as an iron sensitive indicator and its application in PEBBLE nanosensors," Analyst 130, 528-533 (2005).
[CrossRef] [PubMed]

Sumner, J. P.

J. P. Sumner, N. Westerberg, A. K. Stoddard, C. A. Fierke, and R. Kopelman, "Cu+ and Cu2+ sensitive PEBBLE fluorescent nanosensors using Ds red as the recognition element," Sens. Actuators B 113, 760-767 (2005).
[CrossRef]

J. P. Sumner, J. W. Aylott, E. Monson, and R. Kopelman, "A fluorescent PEBBLE nanosensor for intracellular free zinc," Analyst 127, 11-16 (2002).
[CrossRef] [PubMed]

Tang, W.

W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, "Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms," Photochem. Photobiol. 81, 242-249 (2005).
[CrossRef]

Thorsrud, B.

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

Tjalkens, R.

M. Brasuel, R. Kopelman, T. J. Miller, R. Tjalkens, and M. A. Philbert, "Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells," Anal. Chem. 73, 2221-2228 (2001).
[CrossRef] [PubMed]

H. A. Clark, R. Kopelman, R. Tjalkens, and M. A. Philbert, "Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors," Anal. Chem. 71, 4837-4843 (1999).
[CrossRef] [PubMed]

Touret, N.

N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006).
[CrossRef]

Vo-Dinh, T.

B. M. Cullum and T. Vo-Dinh, "The development of optical nanosensors for biological measurements," Trends Biotechnol. 18, 388-393 (2000).
[CrossRef] [PubMed]

Walker, P. I.

D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, and D. A. Russell, "Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy," Langmuir 18, 2985-2987 (2002).
[CrossRef]

Wang, S.

S. Wang, R. Gao, F. Zhou, and M. Selke, "Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy," J. Mater. Chem. 14, 487-493 (2004).
[CrossRef]

Weissleder, R.

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder, and L. Josephson, "A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation," Cancer Res. 63, 8122-8125 (2003).
[PubMed]

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
[CrossRef]

Westerberg, N.

J. P. Sumner, N. Westerberg, A. K. Stoddard, C. A. Fierke, and R. Kopelman, "Cu+ and Cu2+ sensitive PEBBLE fluorescent nanosensors using Ds red as the recognition element," Sens. Actuators B 113, 760-767 (2005).
[CrossRef]

Wileyto, E. P.

H. Li, D. E. Marotta, S. Kim, T. M. Busch, E. P. Wileyto, and G. Zheng, "High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles," J. Biomed. Opt. 10, 041203-1-041203-7 (2005).

Wisoff, J. H.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Woolliscroft, M. J.

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

Xu, H.

W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, "Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms," Photochem. Photobiol. 81, 242-249 (2005).
[CrossRef]

S. M. Buck, H. Xu, M. Brasuel, M. A. Philbert, and R. Kopelman, "Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells," Special Issue, E. Bakker and E. Pretsch, eds., Talanta 63, 41-59 (2004).
[CrossRef]

H. Xu, J. W. Aylott, and R. Kopelman, "Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging," Analyst 127, 1471-1477 (2002).
[CrossRef] [PubMed]

H. Xu, J. W. Aylott, R. Kopelman, T. J. Miller, and M. A. Philbert, "A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma," Anal. Chem. 73, 4124-4133 (2001).
[CrossRef] [PubMed]

Yan, F.

F. Yan and R. Kopelman, "The Embedding of meta-Tetra (hydroxyphenyl) Chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH dependent optical properties," Photochem. Photobiol. 78, 587-591 (2003).
[CrossRef]

Zaharik, M. L.

N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006).
[CrossRef]

Zeltzer, P. M.

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

Zheng, G.

H. Li, D. E. Marotta, S. Kim, T. M. Busch, E. P. Wileyto, and G. Zheng, "High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles," J. Biomed. Opt. 10, 041203-1-041203-7 (2005).

Zhou, F.

S. Wang, R. Gao, F. Zhou, and M. Selke, "Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy," J. Mater. Chem. 14, 487-493 (2004).
[CrossRef]

Anal. Chem. (6)

H. A. Clark, M. Hoyer, M. A. Philbert, and R. Kopelman, "Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors," Anal. Chem. 71, 4831-4836 (1999).
[CrossRef] [PubMed]

H. A. Clark, R. Kopelman, R. Tjalkens, and M. A. Philbert, "Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors," Anal. Chem. 71, 4837-4843 (1999).
[CrossRef] [PubMed]

E. J. Park, M. Brasuel, C. Behrend, M. A. Philbert, and R. Kopelman, "Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells," Anal. Chem. 75, 3784-3791 (2003).
[CrossRef] [PubMed]

H. Xu, J. W. Aylott, R. Kopelman, T. J. Miller, and M. A. Philbert, "A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma," Anal. Chem. 73, 4124-4133 (2001).
[CrossRef] [PubMed]

Y.-E. L. Koo, Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel, and M. A. Philbert, "Real-time measurements of dissolved oxygen inside live cells by Ormosil (organically modified silicate) fluorescent PEBBLE nanosensors," Anal. Chem. 76, 2498-2505 (2004).
[CrossRef] [PubMed]

M. Brasuel, R. Kopelman, T. J. Miller, R. Tjalkens, and M. A. Philbert, "Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells," Anal. Chem. 73, 2221-2228 (2001).
[CrossRef] [PubMed]

Analyst (5)

J. Sumner and R. Kopelman, "Alexa Fluor 488 as an iron sensitive indicator and its application in PEBBLE nanosensors," Analyst 130, 528-533 (2005).
[CrossRef] [PubMed]

H. Xu, J. W. Aylott, and R. Kopelman, "Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging," Analyst 127, 1471-1477 (2002).
[CrossRef] [PubMed]

J. P. Sumner, J. W. Aylott, E. Monson, and R. Kopelman, "A fluorescent PEBBLE nanosensor for intracellular free zinc," Analyst 127, 11-16 (2002).
[CrossRef] [PubMed]

M. G. Brasuel, T. J. Miller, R. Kopelman, and M. A. Philbert, "Liquid polymer nano-PEBBLES for Cl analysis and biological applications," Analyst 128, 1262-1267 (2003).
[CrossRef] [PubMed]

Y. Cao, Y.-E. L. Koo, and R. Kopelman, "Poly (Decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples," Analyst 129, 745-750 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

J. N. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. Phys. Lett. 82, 1102-1104 (2003).
[CrossRef]

C. J. Behrend, J. N. Anker, and R. Kopelman, "Brownian modulated optical nanoprobes," Appl. Phys. Lett. 84, 154-156 (2004).
[CrossRef]

Biophotonics Int. (1)

J. A. Harrell and R. Kopelman, "Biocompatible probes measure intracellular activity," Biophotonics Int. 7, 22-24 (2000).

Br. J. Radiol. (1)

J. Denekamp, "Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy," Br. J. Radiol. 66, 181-96 (1993).
[CrossRef] [PubMed]

Cancer Res. (1)

M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder, and L. Josephson, "A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation," Cancer Res. 63, 8122-8125 (2003).
[PubMed]

Clin. Cancer Res. (1)

G. R. Reddy, M. Bhojani, P. M. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. Philbert, R. Kopelman, A. Rehemtulla, and B. D. Ross, "Vascular targeted nanoparticles for imaging and treatment of brain tumors," Clin. Cancer Res. 12, 6677-6686 (2006).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

I. Roy, T. Y. Ohulchansky, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J. N. Anker, C. Behrend, and R. Kopelman, "Aspherical magnetically modulated optical nanoprobes (MagMOONs)," J. Appl. Phys. 93, 6698-6700 (2003).
[CrossRef]

J. Biomed. Opt. (1)

H. Li, D. E. Marotta, S. Kim, T. M. Busch, E. P. Wileyto, and G. Zheng, "High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles," J. Biomed. Opt. 10, 041203-1-041203-7 (2005).

J. Clin. Oncol. (1)

P. M. Zeltzer, J. M. Boyett, J. L. Finlay, A. L. Albright, L. B. Rorke, J. M. Milstein, J. C. Allen, K. R. Stevens, P. Stanley, H. Li, J. H. Wisoff, J. R. Geyer, P. McGuire-Cullen, J. A. Stehbens, S. B. Shurin, and R. J. Packer, "Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children's Cancer Group 921 randomized phase III study," J. Clin. Oncol. 17, 832-845 (1999).
[PubMed]

J. Magn. Magn. Mater. (1)

R. Kopelman, M. Philbert, Y.-E. L. Koo, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, and A. Rehemtulla, and B. D. Ross, "Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer," J. Magn. Magn. Mater. 293, 404-410 (2005).
[CrossRef]

J. Mater. Chem. (1)

S. Wang, R. Gao, F. Zhou, and M. Selke, "Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy," J. Mater. Chem. 14, 487-493 (2004).
[CrossRef]

J. Photochem. Photobiol. (1)

Y. N. Konan, R. Gurny, and E. Allémann, "State of the art in the delivery of photosensitizers for photodynamic therapy," J. Photochem. Photobiol. , B 66, 89-106 (2002).
[CrossRef]

J. Phys. Chem. B (1)

B. H. McNaughton, K. A. Kehbein, J. N. Anker, and R. Kopelman, "Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing," J. Phys. Chem. B 110, 18958-18964 (2006).
[CrossRef] [PubMed]

Langmuir (1)

D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, and D. A. Russell, "Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy," Langmuir 18, 2985-2987 (2002).
[CrossRef]

Mol. Biol. Cell (1)

N. Martin-Orozco, N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein, "Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages," Mol. Biol. Cell 17, 498-510 (2006).
[CrossRef]

Mol. Imaging (1)

B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI," Mol. Imaging 2, 324-32 (2003).
[CrossRef]

Pharmacol. Rev. (1)

S. M. Moghimi, A. C. Hunter, and J. C. Murray, "Long circulating and target-specific nanoparticles: theory to practice," Pharmacol. Rev. 53, 283-318 (2001).
[PubMed]

Photochem. Photobiol. (4)

W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, "Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms," Photochem. Photobiol. 81, 242-249 (2005).
[CrossRef]

A. Samia, S. Dayal, and C. Burda, "Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy," Photochem. Photobiol. 82, 617-625 (2006).
[CrossRef] [PubMed]

F. Yan and R. Kopelman, "The Embedding of meta-Tetra (hydroxyphenyl) Chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH dependent optical properties," Photochem. Photobiol. 78, 587-591 (2003).
[CrossRef]

Y. Cao, Y.-E. L. Koo, S. Koo, and R. Kopelman, "Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms," Photochem. Photobiol. 81, 1489-1498 (2005).
[CrossRef] [PubMed]

Sens. Actuators B (4)

J. P. Sumner, N. Westerberg, A. K. Stoddard, C. A. Fierke, and R. Kopelman, "Cu+ and Cu2+ sensitive PEBBLE fluorescent nanosensors using Ds red as the recognition element," Sens. Actuators B 113, 760-767 (2005).
[CrossRef]

M. King and R. Kopelman, "Development of a hydroxyl radical ratiometric nanoprobe," Sens. Actuators B 90, 76-81 (2003).
[CrossRef]

H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, and M. A. Philbert, "Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs)," Sens. Actuators B 51, 12-16 (1998).
[CrossRef]

M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, and R. Kopelman, "Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES," Sens. Actuators B 90, 82-89 (2003).
[CrossRef]

Talanta (1)

S. M. Buck, H. Xu, M. Brasuel, M. A. Philbert, and R. Kopelman, "Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells," Special Issue, E. Bakker and E. Pretsch, eds., Talanta 63, 41-59 (2004).
[CrossRef]

Trends Biotechnol. (1)

B. M. Cullum and T. Vo-Dinh, "The development of optical nanosensors for biological measurements," Trends Biotechnol. 18, 388-393 (2000).
[CrossRef] [PubMed]

Ultrastruct. Pathol. (1)

Q. Peng and J. M. Nesland, "Effects of photodynamic therapy on tumor stroma," Ultrastruct. Pathol. 28, 333-340 (2004).
[CrossRef]

Other (5)

R. J. Schneider II, "Characterization of polyacrylamide nanoparticles for biomedical applications: toxicology, pharmacology, and therapy," Ph.D. dissertation (University of Michigan, Ann Arbor, 2005).

H. Hah, W. Fan, Y, Koo, H. Xu, D. Orringer, M. Philbert, and R. Kopelman (Department of Chemistry, University of Michigan, Ann Arbor, MI 48109) are preparing a paper to be called "Blue dye loaded silica nanoparticle for visual delineation of tumor margin and PDT."

R. P. Haugland, The Handbook: A Guide to Fluorescent Probes and Labeling Technologies (Molecular Probes, 2005).

M. Brasuel, R. Kopelman, I. Kasman, T. J. Miller, and M. A. Philbert, "Ion concentrations in live cells from highly selective ion correlations fluorescent nanosensors for sodium," in Proceedings of IEEE Conference on Sensors (IEEE, 2002) pp. 288-292.

B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder, and R. Kopelman, "Photonic and magnetic nanoexplorers for biomedical use: From subcellular imaging to cancer diagnostics and therapy," in Nanobiophotonics and Biomedical Applications, A. N. Cartwright, ed., Proc. SPIE 5331, 76-83 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a ratiometric PEBBLE nanosensor.

Fig. 2
Fig. 2

Temporal changes of the oxygen PEBBLE spectra owing to cell respiration. The cells loaded with PEBBLEs were placed in a gastight chamber at time 0. The intensity of the reference peak at 623   nm remains nearly constant while that of the indicator peak at 760   nm increases with time. The oxygen level is determined by the ratio of peak intensities.

Fig. 3
Fig. 3

Schematic of multifunctional nanoplatform with a slowly biodegradable (polyacrylamide) core, photodynamic sensitizer dye, MRI contrast enhancement agent, polyethylene glycol (PEG) cloaking (from immune system), and molecular targeting (for tumor cells).

Fig. 4
Fig. 4

Time series of T2-weighted MR images of rat 9L brain tumors before and after PDT. (A) Untreated, (B) treated with light alone, (C) treated with Photofrin-containing NP and light. Note that the slight dark region in (B) is attributable to minor intratumoral hemorrhage. The laser treatment was applied for 5 min, at 700   mW , using a fiber optic probe and a Diomed 630 PDT Class IV diode laser ( 630 ± 3   nm ) .

Fig. 5
Fig. 5

(Color online) Photograph demonstrating visible contrast between control cells without NPs (left) and cells with TAT-peptide targeted silica NPs with encapsulated methylene blue (right). The cells were palletized as follows: The cells grown on the cover slip were incubated with the NPs for 4 h, washed three times to remove any unbound NPs, trypsinized, and centrifuged.

Metrics