Abstract

The reflection resonance spectrum of a subwavelength diffraction-grating-coupled waveguide is used to analyze biomolecular interactions in real time. By detecting this resonance wavelength shift, the optical waveguide biosensor provides the ability to identify the kinetics of the biomolecular interaction on an on-line basis without the need for extrinsic labeling of the biomolecules. A theoretical analysis of the subwavelength optical waveguide biosensor is performed. A biosensor with a narrow reflection resonance spectrum, and hence an enhanced detection resolution, is then designed and fabricated. Currently, the detection limit of the optical waveguide sensor is approximately 105 refractive-index units. The biosensor is successfully applied to study of the dynamic response of an antibody interaction with protein G adsorbed on the sensing surface.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).
  2. A. Hessel and A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Appl. Opt. 4, 1275-1296 (1965).
    [CrossRef]
  3. D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
    [CrossRef]
  4. S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory of periodic dielect waveguides," IEEE Trans. Microwave Theory Tech. 23, 123-133 (1975).
    [CrossRef]
  5. S. T. Peng, "Rigorous formulation of scattering and guidance by dielectric grating waveguides: general case of oblique incidence," J. Opt. Soc. Am. A 6, 1869-1883 (1989).
    [CrossRef]
  6. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981).
    [CrossRef]
  7. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of grating diffraction--E-mode polarization and losses," J. Opt. Soc. Am. 73, 451-455 (1983).
    [CrossRef]
  8. P. Sheng, R. S. Stepleman, and P. N. Sanda, "Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations," Phy. Rev. B 26, 2907-2917 (1982).
    [CrossRef]
  9. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
    [CrossRef]
  10. A. Yariv and M. Nakamura, "Periodic structures for integrated optics," IEEE J. Quantum Electron. 13, 233-253 (1977).
    [CrossRef]
  11. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Interscience, 1984).
  12. K. Tiefenthaler and W. Lukosz, "Integrated optical switches and gas sensors," Opt. Lett. 10, 137-139 (1984).
    [CrossRef]
  13. K. Tiefenthaler and W. Lukosz, "Sensitivity of grating couples as integrated-optical chemical sensors," J. Opt. Soc. Am. B 6, 209-220 (1989).
    [CrossRef]
  14. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
    [CrossRef]
  15. S. Peng and G. M. Morris, "Resonant scattering from two-dimensional gratings," J. Opt. Soc. Am. A 13, 993-1005 (1996).
    [CrossRef]
  16. S. Peng and G. M. Morris, "Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings," Opt. Lett. 21, 549-551 (1996).
    [CrossRef] [PubMed]
  17. B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sensors Actuators B 81, 316-328 (2002).
    [CrossRef]
  18. M. Wiki and R. E. Kunz, "Wavelength-interrogated optical sensor for biochemical applications," Opt. Lett. 25, 463-465 (2000).
    [CrossRef]
  19. K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sensors Actuators B 91, 241-251 (2003).
    [CrossRef]
  20. C. W. Haggans, L. Li, and R. K. Kostuk, "Effective-medium theory of zeroth-order lamellar gratings in conical mountings," J. Opt. Soc. Am. A 10, 2217-2225 (1993).
    [CrossRef]
  21. H. Kikuta, Y. Ohira, H. Kubo, and K. Iwata, "Effective medium theory of two-dimensional subwavelength gratings in the non-quasi-static limit," J. Opt. Soc. Am. A 15, 1577-1585 (1998).
    [CrossRef]

2003

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sensors Actuators B 91, 241-251 (2003).
[CrossRef]

2002

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sensors Actuators B 81, 316-328 (2002).
[CrossRef]

2000

1998

1997

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

1996

1993

1992

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

1989

1984

1983

1982

P. Sheng, R. S. Stepleman, and P. N. Sanda, "Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations," Phy. Rev. B 26, 2907-2917 (1982).
[CrossRef]

1981

1977

A. Yariv and M. Nakamura, "Periodic structures for integrated optics," IEEE J. Quantum Electron. 13, 233-253 (1977).
[CrossRef]

1975

S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory of periodic dielect waveguides," IEEE Trans. Microwave Theory Tech. 23, 123-133 (1975).
[CrossRef]

1974

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
[CrossRef]

1965

1902

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).

Bertoni, H. L.

S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory of periodic dielect waveguides," IEEE Trans. Microwave Theory Tech. 23, 123-133 (1975).
[CrossRef]

Cottier, K.

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sensors Actuators B 91, 241-251 (2003).
[CrossRef]

Cunningham, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sensors Actuators B 81, 316-328 (2002).
[CrossRef]

Flanders, D. C.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
[CrossRef]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Gao, H.

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sensors Actuators B 91, 241-251 (2003).
[CrossRef]

Gaylord, T. K.

Haggans, C. W.

Hessel, A.

Iwata, K.

Kikuta, H.

Kogelnik, H.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
[CrossRef]

Kostuk, R. K.

Kubo, H.

Kunz, R. E.

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sensors Actuators B 91, 241-251 (2003).
[CrossRef]

M. Wiki and R. E. Kunz, "Wavelength-interrogated optical sensor for biochemical applications," Opt. Lett. 25, 463-465 (2000).
[CrossRef]

Li, L.

Li, P.

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sensors Actuators B 81, 316-328 (2002).
[CrossRef]

Lin, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sensors Actuators B 81, 316-328 (2002).
[CrossRef]

Lukosz, W.

Magnusson, R.

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Moharam, M. G.

Morris, G. M.

Nakamura, M.

A. Yariv and M. Nakamura, "Periodic structures for integrated optics," IEEE J. Quantum Electron. 13, 233-253 (1977).
[CrossRef]

Ohira, Y.

Oliner, A. A.

Peng, S.

Peng, S. T.

S. T. Peng, "Rigorous formulation of scattering and guidance by dielectric grating waveguides: general case of oblique incidence," J. Opt. Soc. Am. A 6, 1869-1883 (1989).
[CrossRef]

S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory of periodic dielect waveguides," IEEE Trans. Microwave Theory Tech. 23, 123-133 (1975).
[CrossRef]

Pepper, J.

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sensors Actuators B 81, 316-328 (2002).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Sanda, P. N.

P. Sheng, R. S. Stepleman, and P. N. Sanda, "Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations," Phy. Rev. B 26, 2907-2917 (1982).
[CrossRef]

Schmidt, R. V.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
[CrossRef]

Shank, C. V.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Sheng, P.

P. Sheng, R. S. Stepleman, and P. N. Sanda, "Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations," Phy. Rev. B 26, 2907-2917 (1982).
[CrossRef]

Stepleman, R. S.

P. Sheng, R. S. Stepleman, and P. N. Sanda, "Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations," Phy. Rev. B 26, 2907-2917 (1982).
[CrossRef]

Tamir, T.

S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory of periodic dielect waveguides," IEEE Trans. Microwave Theory Tech. 23, 123-133 (1975).
[CrossRef]

Tiefenthaler, K.

Voirin, G.

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sensors Actuators B 91, 241-251 (2003).
[CrossRef]

Wang, S. S.

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Wiki, M.

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sensors Actuators B 91, 241-251 (2003).
[CrossRef]

M. Wiki and R. E. Kunz, "Wavelength-interrogated optical sensor for biochemical applications," Opt. Lett. 25, 463-465 (2000).
[CrossRef]

Wood, R. W.

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).

Yariv, A.

A. Yariv and M. Nakamura, "Periodic structures for integrated optics," IEEE J. Quantum Electron. 13, 233-253 (1977).
[CrossRef]

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Interscience, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Interscience, 1984).

Appl. Opt.

Appl. Phys. Lett.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
[CrossRef]

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

IEEE J. Quantum Electron.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

A. Yariv and M. Nakamura, "Periodic structures for integrated optics," IEEE J. Quantum Electron. 13, 233-253 (1977).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory of periodic dielect waveguides," IEEE Trans. Microwave Theory Tech. 23, 123-133 (1975).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Lett.

Phil. Mag.

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).

Phy. Rev. B

P. Sheng, R. S. Stepleman, and P. N. Sanda, "Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations," Phy. Rev. B 26, 2907-2917 (1982).
[CrossRef]

Sensors Actuators B

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sensors Actuators B 81, 316-328 (2002).
[CrossRef]

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sensors Actuators B 91, 241-251 (2003).
[CrossRef]

Other

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Interscience, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Appropriate subwavelength diffraction-grating structure design. (b) Simulation of zeroth-order reflection resonance spectrum with and without a biomolecular layer in a pure-water buffer medium.

Fig. 2
Fig. 2

Scanning-electron microscope photograph of a glass plate with a unidimensional diffraction grating structure. Diffraction- grating period, 330 nm; grating depth, 50 nm; duty cycle, 0.6.

Fig. 3
Fig. 3

Schematic illustration of a normally incident spectroscope.

Fig. 4
Fig. 4

(a) Measured reflection spectrum, (b) repeatability testing with 1600 data measurements recorded during 5.7 h. Standard deviation of the resonance wavelength, 0.006 nm.

Fig. 5
Fig. 5

Refractive indices of methyl alcohol, water, ethyl alcohol, 2-propanol, and cyclohexane and their corresponding resonance wavelengths.

Fig. 6
Fig. 6

Dynamic response of antibody interaction with protein on a sensing surface. Numerals 1–9 on the curve indicate injection of the correspondingly numbered targets into a fluid cell.

Equations (81)

Equations on this page are rendered with MathJax. Learn more.

10 5
0.1   nm
10 6
0.3 pg / mm 2
( 150   nm )
( 15   nm )
10 : 1
0.1   nm
1.65 × 10 4   nm
1 : 1
10   nm
0.01   nm
50
70 300   nm)
330   nm
50   nm
120   nm
10   nm
1.46
1.4   nm
200   μm × 200   μm
50   nm
Ta 2 O 5 )
120   nm
0.5   μm
( MW ; 22,600   Da,
10   mM  
10   mM
K 2 HPO 4
10   mM
KH 2 PO 4
pH   7 .4)
0.533   μM
10   mM
10   mM
K 2 HPO 4
10   mM  
KH 2 PO 4
0.138   M
0.0027   M  
 KCl
pH   7 .4)
30 %
H 2 O 2
0.7   M  
H 2 SO 4
1   mM
6   h .
1 mg / ml
40   mM
NA , 0.1 )
100   μm
1.5 nm
5.7   h .
0.01   nm
( n = 1.0003 ) ,
492.20   nm
( n = 1.3088 ) ,
498.40   nm
( n = 1.3352 ) ,
498.99   nm
( n = 1.3576 ) ,
499.50   nm
( n = 1.3832 ) ,
500.08   nm
( n = 1.4266 ) ,
501.07   nm
0.01   nm
10 5
35 μl / min
27 ± 0.1 ° C
10   s
12.8   s
0.10   nm
5   h
2.5   nm
1.4   nm
1.1 °
10 5
100   μm
10   mm × 10   mm

Metrics