Abstract

Spectral properties of quarter-wave stacks deposited on microspheres are investigated with Mie theory. These properties are converted into colorimetric spaces to deal with visual applications. An ion-beam-sputtering process is then implemented to produce elementary stacks on the spheres, and the resulting powders are characterized.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Voarino, C. Deumié, and C. Amra, 'Optical properties calculated for multidielectric quarter-wave coatings on microspheres,' Opt. Express 12, 4476-4482 (2004).
    [CrossRef] [PubMed]
  2. H. A. Macleod, Thin Optical Filters (Adam Hilger, 1986).
    [CrossRef]
  3. A. V. Tikhonarov, M. K. Trubetsov, and G. W. DeBell, 'Application of the needle optimization technique to the design of optical coatings,' Appl. Opt. 35, 5493-5508 (1996).
    [CrossRef]
  4. M. Lequime, R. Parmentier, F. Lemarchand, and C. Amra, 'Towards tunable thin-film filters for wavelength division multiplexing applications,' Appl. Opt. 41, 3277-3284 (2002).
    [CrossRef] [PubMed]
  5. P. Laven, 'Simulation of rainbows, coronas and glories using Mie theory and the Debye series,' J. Quant. Spectrosc. Radiat. Transfer 89, 257-269 (2004).
    [CrossRef]
  6. C. F. Bohren and D. R. Hufman, Absoption and Scattering of Light by Small Particules (Wiley-Interscience, 1983).
  7. S. C. H. Elasyed, E. M. Khaled, and P. W. Barber, 'Light scattering by a coated sphere illuminated with a Gaussian beam,' Appl. Opt. 33, 3308-3314 (1994).
    [CrossRef]
  8. K. A. Fuller, 'Scattering of light by coated spheres,' Opt. Lett. 18, 257-259 (1993).
    [CrossRef] [PubMed]
  9. G. Gréhan, F. Onofri, and G. Gouesbet, 'Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,' Appl. Opt. 34, 7113-7126 (1995).
    [CrossRef] [PubMed]
  10. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  11. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  12. W. J. Wiscombe, 'Improved Mie scattering algorithms,' Appl. Opt. 19, 1505-1509 (1980).
    [CrossRef] [PubMed]
  13. C. Deumié, P. Voarino, and C. Amra, 'Overcoated microspheres for the spectral control of diffuse light,' Appl. Opt. 41, 3299-3305 (2002).
    [CrossRef] [PubMed]
  14. P. Voarino, 'Lumière diffuse et microspheres multicouches: calculs et realisations,' Ph.D. dissertation (Université de Droit, d'Economie et des Sciences d'Aix-Marseille III, Marseille, France, 2004).
  15. R. Sève, Physique de la couleur, de l'apparence colorée à la technique de la colorimétrie (Masson, 1996).
  16. L. Zuppiroli and M. N. Bussac, Traité des couleurs (Presse polytchniques et universitaires romandes, 2001).
  17. See 'CIE http://www.cie.com.'
  18. Commission Internationale de l'Eclairage (CIE), 'International lighting vocabulary,' CIE publication 15.2 (CIE, 1987).
  19. C. Deumié, 'Ellipsométrie sur champ diffus et analyse multi-échelle de la microstructure des multicouches optiques: diffusion lumineuse, microscopie à force atomique, microscopie à effet tunnel optique,' Ph.D. dissertation (Université Aix Marseille III, Marseille, France, 1997).
  20. C. Amra, D. Torricini, and P. Roche, 'Multiwavelength (0.45-10.6 µm) angle-resolved scatterometer or how to extend the optical window,' Appl. Opt. 32, 5462-5474 (1993).
    [CrossRef] [PubMed]
  21. C. Amra, 'Light scattering from multilayer optics. Part A: investigation tools,' J. Opt. Soc. Am. A 11, 197-210 (1994).
    [CrossRef]
  22. M. Lequime, L. Abel, and C. Deumié, 'Colorimetric properties of the light scattered by various objects,' in Advances in Optical Thin Films, C.Amra, N.Kaiser, and H.A.Macleod, eds., Proc. SPIE5250, 271-277 (2004).

2004

P. Voarino, C. Deumié, and C. Amra, 'Optical properties calculated for multidielectric quarter-wave coatings on microspheres,' Opt. Express 12, 4476-4482 (2004).
[CrossRef] [PubMed]

P. Laven, 'Simulation of rainbows, coronas and glories using Mie theory and the Debye series,' J. Quant. Spectrosc. Radiat. Transfer 89, 257-269 (2004).
[CrossRef]

2002

1996

1995

1994

1993

1980

Abel, L.

M. Lequime, L. Abel, and C. Deumié, 'Colorimetric properties of the light scattered by various objects,' in Advances in Optical Thin Films, C.Amra, N.Kaiser, and H.A.Macleod, eds., Proc. SPIE5250, 271-277 (2004).

Amra, C.

Barber, P. W.

Bohren, C. F.

C. F. Bohren and D. R. Hufman, Absoption and Scattering of Light by Small Particules (Wiley-Interscience, 1983).

Bussac, M. N.

L. Zuppiroli and M. N. Bussac, Traité des couleurs (Presse polytchniques et universitaires romandes, 2001).

DeBell, G. W.

Deumié, C.

P. Voarino, C. Deumié, and C. Amra, 'Optical properties calculated for multidielectric quarter-wave coatings on microspheres,' Opt. Express 12, 4476-4482 (2004).
[CrossRef] [PubMed]

C. Deumié, P. Voarino, and C. Amra, 'Overcoated microspheres for the spectral control of diffuse light,' Appl. Opt. 41, 3299-3305 (2002).
[CrossRef] [PubMed]

C. Deumié, 'Ellipsométrie sur champ diffus et analyse multi-échelle de la microstructure des multicouches optiques: diffusion lumineuse, microscopie à force atomique, microscopie à effet tunnel optique,' Ph.D. dissertation (Université Aix Marseille III, Marseille, France, 1997).

M. Lequime, L. Abel, and C. Deumié, 'Colorimetric properties of the light scattered by various objects,' in Advances in Optical Thin Films, C.Amra, N.Kaiser, and H.A.Macleod, eds., Proc. SPIE5250, 271-277 (2004).

Elasyed, S. C. H.

Fuller, K. A.

Gouesbet, G.

Gréhan, G.

Hufman, D. R.

C. F. Bohren and D. R. Hufman, Absoption and Scattering of Light by Small Particules (Wiley-Interscience, 1983).

Khaled, E. M.

Laven, P.

P. Laven, 'Simulation of rainbows, coronas and glories using Mie theory and the Debye series,' J. Quant. Spectrosc. Radiat. Transfer 89, 257-269 (2004).
[CrossRef]

Lemarchand, F.

Lequime, M.

M. Lequime, R. Parmentier, F. Lemarchand, and C. Amra, 'Towards tunable thin-film filters for wavelength division multiplexing applications,' Appl. Opt. 41, 3277-3284 (2002).
[CrossRef] [PubMed]

M. Lequime, L. Abel, and C. Deumié, 'Colorimetric properties of the light scattered by various objects,' in Advances in Optical Thin Films, C.Amra, N.Kaiser, and H.A.Macleod, eds., Proc. SPIE5250, 271-277 (2004).

Macleod, H. A.

H. A. Macleod, Thin Optical Filters (Adam Hilger, 1986).
[CrossRef]

Onofri, F.

Parmentier, R.

Roche, P.

Sève, R.

R. Sève, Physique de la couleur, de l'apparence colorée à la technique de la colorimétrie (Masson, 1996).

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Tikhonarov, A. V.

Torricini, D.

Trubetsov, M. K.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Voarino, P.

Wiscombe, W. J.

Zuppiroli, L.

L. Zuppiroli and M. N. Bussac, Traité des couleurs (Presse polytchniques et universitaires romandes, 2001).

Appl. Opt.

J. Opt. Soc. Am. A

J. Quant. Spectrosc. Radiat. Transfer

P. Laven, 'Simulation of rainbows, coronas and glories using Mie theory and the Debye series,' J. Quant. Spectrosc. Radiat. Transfer 89, 257-269 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Other

H. A. Macleod, Thin Optical Filters (Adam Hilger, 1986).
[CrossRef]

C. F. Bohren and D. R. Hufman, Absoption and Scattering of Light by Small Particules (Wiley-Interscience, 1983).

P. Voarino, 'Lumière diffuse et microspheres multicouches: calculs et realisations,' Ph.D. dissertation (Université de Droit, d'Economie et des Sciences d'Aix-Marseille III, Marseille, France, 2004).

R. Sève, Physique de la couleur, de l'apparence colorée à la technique de la colorimétrie (Masson, 1996).

L. Zuppiroli and M. N. Bussac, Traité des couleurs (Presse polytchniques et universitaires romandes, 2001).

See 'CIE http://www.cie.com.'

Commission Internationale de l'Eclairage (CIE), 'International lighting vocabulary,' CIE publication 15.2 (CIE, 1987).

C. Deumié, 'Ellipsométrie sur champ diffus et analyse multi-échelle de la microstructure des multicouches optiques: diffusion lumineuse, microscopie à force atomique, microscopie à effet tunnel optique,' Ph.D. dissertation (Université Aix Marseille III, Marseille, France, 1997).

M. Lequime, L. Abel, and C. Deumié, 'Colorimetric properties of the light scattered by various objects,' in Advances in Optical Thin Films, C.Amra, N.Kaiser, and H.A.Macleod, eds., Proc. SPIE5250, 271-277 (2004).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

(a) Angular scattering and (b) polar diagram at λ = 633 nm of a 10 nm radius silica sphere.

Fig. 2
Fig. 2

(a) Angular scattering and (b) polar diagram at λ = 633 nm of a 1 μm radius silica sphere.

Fig. 3
Fig. 3

(a) Angular scattering and (b) ST and SR versus wavelength in the visible range for an uncoated silica sphere of 100 nm radius.

Fig. 4
Fig. 4

(a) Angular scattering and (b) ST and SR versus wavelength in the visible range for a 100 nm radius silica sphere coated with an H layer.

Fig. 5
Fig. 5

(a) Angular scattering and (b) ST and SR versus wavelength in the visible range for a 100 nm radius silica sphere coated with an HBHBHBH mirror.

Fig. 6
Fig. 6

Chromaticity diagram of a 10 nm radius silica sphere (a) for diffuse scattering by reflection and transmission and (b) for each scattering angle θ.

Fig. 7
Fig. 7

Chromaticity diagram of a 1 μm radius silica sphere (a) for diffuse scattering by reflection and transmission and (b) for each scattering angle θ.

Fig. 8
Fig. 8

Chromaticity diagram of a 65 μm radius silica sphere (a) for diffuse scattering by reflection and transmission and (b) for each scattering angle θ.

Fig. 9
Fig. 9

Chromaticity diagram of a 100 nm radius silica sphere (a) for diffuse scattering by reflection and transmission and (b) for each scattering angle θ.

Fig. 10
Fig. 10

Chromaticity diagram of a 100 nm radius silica sphere covered with an H layer (a) for diffuse scattering by reflection and transmission and (b) for each scattering angle θ.

Fig. 11
Fig. 11

Chromaticity diagram of a 100 nm radius silica sphere covered with an HLHLHLH layer (a) for diffuse scattering by reflection and transmission and (b) for each scattering angle θ.

Fig. 12
Fig. 12

Chromaticity diagram of a 65 μm radius silica sphere covered with an H layer (a) for diffuse scattering by reflection and transmission and (b) for each scattering angle θ.

Fig. 13
Fig. 13

Chromaticity diagram of a 65 μm radius silica sphere covered with an HLHLHLH layer (a) for diffuse scattering by reflection and transmission and (b) for each scattering angle θ.

Fig. 14
Fig. 14

(a) Photograph of ion gun and (b) principal pattern of ion-beam sputtering in a spherical configuration.

Fig. 15
Fig. 15

Plot of (a) 15 μm radius uncoated spheres and (b) Al-coated 15 μm radius spheres.

Fig. 16
Fig. 16

Plot of (a) 65 μm radius uncoated spheres and (b) Al-coated 65 μm radius spheres.

Fig. 17
Fig. 17

(a) Angular scattering (λ = 633 nm) of uncoated then aluminized 65 μm radius spheres and (b) spectral scattering of the same uncoated then aluminized 65 μm radius spheres.

Fig. 18
Fig. 18

Photograph and spectral scattering SR (λ) of 65 μm radius aluminized spheres overcoated with different thicknesses of Ta2O5.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S T = 0 , ϕ I ( θ , ϕ ) sin θ d θ d ϕ
S R = 0 , ϕ I ( θ , ϕ ) sin θ d θ d ϕ
n H e H = n L e L = λ 0 / 4 ,

Metrics