Abstract

Hyperspectral interferometric microscopy uses a unique combination of optics and algorithm design to extract information. Local brain activity rapidly changes local blood flow and red blood cell concentration (absorption) and oxygenation (color). We demonstrate that brain activity evoked during whisker stimulation can be detected with hyperspectral interferometric microscopy to identify the active whisker-barrel cortex in the rat brain. Information about constituent components is extracted across the entire spectral band. Algorithms can be flexibly optimized to discover, detect, quantify, and visualize a wide range of significant biological events, including changes relevant to the diagnosis and treatment of disease.

© 2006 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription