Abstract

A prototype of a GaN-based stacked micro-optics system is demonstrated. The system consists of a GaN microlens, GaN membrane gratings, six spacers, a spatial filter, and a 980  nm VCSEL. The laser beam is collimated by the GaN microlens and diffracted by the GaN membrane grating. The systems can be used in blue–violet–UV micro-optics systems.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, "Realization of free-space optical pickup head with stacked Si-based phase elements," IEEE Photon. Technol. Lett. 17, 214-216 (2005).
    [CrossRef]
  2. J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, "Microlens systems for fluorescence detection in chemical microsystems," Opt. Eng. 40, 814-821 (2001).
    [CrossRef]
  3. G. D. J. Su, H. Toshiyoshi, and M. C. Wu, "Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors," IEEE Photon. Technol. Lett. 13, 606-608 (2001).
    [CrossRef]
  4. C. C. Lee, Y. C. Chang, C. M. Wang, J. Y. Chang, and G. C. Chi, "Silicon-based transmissive diffractive optical element," Opt. Lett. 28, 1260-1262 (2003).
    [CrossRef] [PubMed]
  5. K. Iga and S. Misawa, "Distributed-index planar microlens stacked planar optics: a review of progress," Appl. Opt. 25, 3388-3396 (1986).
    [CrossRef] [PubMed]
  6. H. Sasaki, I. Fukuzaki, Y. Katsuki, and T. Kamijoh, "Design considerations of stacked multilayers of diffractive optical elements for optical network units in optical subscriber-network applications," Appl. Opt. 37, 3735-3745 (1998).
    [CrossRef]
  7. C. C. Chen, M. H. Li, J. K. Sheu, G. C. Chii, W. T. Cheng, J. H. Yeh, J. Y. Chang, and T. Ito, "GaN diffractive microlenses fabricated with gray-level mask," Opt. Commun. 215, 75-78 (2003).
    [CrossRef]
  8. C. H. Hou, M. H. Li, C. C. Chen, J. Y. Chang, J. K. Sheu, G. C. Chii, C. Wu, W. T. Cheng, and J. H. Yeh, "GaN diffractive microlenses using an UV micro-optics system," Opt. Rev. 10, 287-289 (2003).
    [CrossRef]
  9. C. C. Chen, J. Y. Chang, and G. C. Chii, "Design of GaN convex diffractive microlenses," Opt. Laser Technol. 34, 569-573 (2002).
    [CrossRef]
  10. C. C. Chen, C. H. Hou, J. K. Sheu, J. Y. Chang, M. H. Li, G. C. Chi, and C. Wu, "Grating in GaN membranes," Jpn. J. Appl. Phys. 43, 5854-5856 (2004).
    [CrossRef]
  11. C. C. Chen, H. W. Chuang, G. C. Chii, C. C. Chuo, and J. I. Chyi, "Stimulated-emission spectra of high-indium-content InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 77, 3758-3760 (2000).
    [CrossRef]
  12. C. C. Chen, K. L. Hsieh, G. C. Chii, C. C. Chuo, J. I. Chyi, and C. A. Chang, "Effect of thermal annealing on high indium content InGaN/GaN single quantum well structures," J. Appl. Phys. 89, 5465-5468 (2001).
    [CrossRef]
  13. C. C. Chen, K. L. Hsieh, J. K. Sheu, G. C. Chii, M. J. Jou, C. H. Lee, and M. Z. Lin, "Crystal orientation dependence of optical gain in InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 79, 1477-1479 (2001).
    [CrossRef]
  14. C. C. Chen, T. H. Hsueh, Y. S. Ting, G. C. Chii, and C. A. Chang, "Effects of In and Ga diffusion on optical gain of InGaN/GaN quantum well," J. Appl. Phys. 90, 5180-5182 (2001).
    [CrossRef]
  15. P. Heremans, J. Genoe, M. Kujik, R. Vounckx, and G. Borghs, "Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist," IEEE Photon. Technol. Lett. 9, 1367-1369 (1997).
    [CrossRef]
  16. C. C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, and V. Armbruster, "Phase correction by laser ablation of a polarization independent LiNbO3 Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 9, 1361-1363 (1997).
    [CrossRef]
  17. S. Mihailov and S. Lazare, "Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon," Appl. Opt. 32, 6211-6218 (1993).
    [CrossRef] [PubMed]

2005 (1)

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, "Realization of free-space optical pickup head with stacked Si-based phase elements," IEEE Photon. Technol. Lett. 17, 214-216 (2005).
[CrossRef]

2004 (1)

C. C. Chen, C. H. Hou, J. K. Sheu, J. Y. Chang, M. H. Li, G. C. Chi, and C. Wu, "Grating in GaN membranes," Jpn. J. Appl. Phys. 43, 5854-5856 (2004).
[CrossRef]

2003 (3)

C. C. Chen, M. H. Li, J. K. Sheu, G. C. Chii, W. T. Cheng, J. H. Yeh, J. Y. Chang, and T. Ito, "GaN diffractive microlenses fabricated with gray-level mask," Opt. Commun. 215, 75-78 (2003).
[CrossRef]

C. H. Hou, M. H. Li, C. C. Chen, J. Y. Chang, J. K. Sheu, G. C. Chii, C. Wu, W. T. Cheng, and J. H. Yeh, "GaN diffractive microlenses using an UV micro-optics system," Opt. Rev. 10, 287-289 (2003).
[CrossRef]

C. C. Lee, Y. C. Chang, C. M. Wang, J. Y. Chang, and G. C. Chi, "Silicon-based transmissive diffractive optical element," Opt. Lett. 28, 1260-1262 (2003).
[CrossRef] [PubMed]

2002 (1)

C. C. Chen, J. Y. Chang, and G. C. Chii, "Design of GaN convex diffractive microlenses," Opt. Laser Technol. 34, 569-573 (2002).
[CrossRef]

2001 (5)

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, "Microlens systems for fluorescence detection in chemical microsystems," Opt. Eng. 40, 814-821 (2001).
[CrossRef]

G. D. J. Su, H. Toshiyoshi, and M. C. Wu, "Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors," IEEE Photon. Technol. Lett. 13, 606-608 (2001).
[CrossRef]

C. C. Chen, K. L. Hsieh, G. C. Chii, C. C. Chuo, J. I. Chyi, and C. A. Chang, "Effect of thermal annealing on high indium content InGaN/GaN single quantum well structures," J. Appl. Phys. 89, 5465-5468 (2001).
[CrossRef]

C. C. Chen, K. L. Hsieh, J. K. Sheu, G. C. Chii, M. J. Jou, C. H. Lee, and M. Z. Lin, "Crystal orientation dependence of optical gain in InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 79, 1477-1479 (2001).
[CrossRef]

C. C. Chen, T. H. Hsueh, Y. S. Ting, G. C. Chii, and C. A. Chang, "Effects of In and Ga diffusion on optical gain of InGaN/GaN quantum well," J. Appl. Phys. 90, 5180-5182 (2001).
[CrossRef]

2000 (1)

C. C. Chen, H. W. Chuang, G. C. Chii, C. C. Chuo, and J. I. Chyi, "Stimulated-emission spectra of high-indium-content InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 77, 3758-3760 (2000).
[CrossRef]

1998 (1)

1997 (2)

P. Heremans, J. Genoe, M. Kujik, R. Vounckx, and G. Borghs, "Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist," IEEE Photon. Technol. Lett. 9, 1367-1369 (1997).
[CrossRef]

C. C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, and V. Armbruster, "Phase correction by laser ablation of a polarization independent LiNbO3 Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 9, 1361-1363 (1997).
[CrossRef]

1993 (1)

1986 (1)

Armbruster, V.

C. C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, and V. Armbruster, "Phase correction by laser ablation of a polarization independent LiNbO3 Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 9, 1361-1363 (1997).
[CrossRef]

Borghs, G.

P. Heremans, J. Genoe, M. Kujik, R. Vounckx, and G. Borghs, "Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist," IEEE Photon. Technol. Lett. 9, 1367-1369 (1997).
[CrossRef]

Carenco, A.

C. C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, and V. Armbruster, "Phase correction by laser ablation of a polarization independent LiNbO3 Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 9, 1361-1363 (1997).
[CrossRef]

Chang, C. A.

C. C. Chen, T. H. Hsueh, Y. S. Ting, G. C. Chii, and C. A. Chang, "Effects of In and Ga diffusion on optical gain of InGaN/GaN quantum well," J. Appl. Phys. 90, 5180-5182 (2001).
[CrossRef]

C. C. Chen, K. L. Hsieh, G. C. Chii, C. C. Chuo, J. I. Chyi, and C. A. Chang, "Effect of thermal annealing on high indium content InGaN/GaN single quantum well structures," J. Appl. Phys. 89, 5465-5468 (2001).
[CrossRef]

Chang, J. Y.

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, "Realization of free-space optical pickup head with stacked Si-based phase elements," IEEE Photon. Technol. Lett. 17, 214-216 (2005).
[CrossRef]

C. C. Chen, C. H. Hou, J. K. Sheu, J. Y. Chang, M. H. Li, G. C. Chi, and C. Wu, "Grating in GaN membranes," Jpn. J. Appl. Phys. 43, 5854-5856 (2004).
[CrossRef]

C. H. Hou, M. H. Li, C. C. Chen, J. Y. Chang, J. K. Sheu, G. C. Chii, C. Wu, W. T. Cheng, and J. H. Yeh, "GaN diffractive microlenses using an UV micro-optics system," Opt. Rev. 10, 287-289 (2003).
[CrossRef]

C. C. Chen, M. H. Li, J. K. Sheu, G. C. Chii, W. T. Cheng, J. H. Yeh, J. Y. Chang, and T. Ito, "GaN diffractive microlenses fabricated with gray-level mask," Opt. Commun. 215, 75-78 (2003).
[CrossRef]

C. C. Lee, Y. C. Chang, C. M. Wang, J. Y. Chang, and G. C. Chi, "Silicon-based transmissive diffractive optical element," Opt. Lett. 28, 1260-1262 (2003).
[CrossRef] [PubMed]

C. C. Chen, J. Y. Chang, and G. C. Chii, "Design of GaN convex diffractive microlenses," Opt. Laser Technol. 34, 569-573 (2002).
[CrossRef]

Chang, Y. C.

Chen, C. C.

C. C. Chen, C. H. Hou, J. K. Sheu, J. Y. Chang, M. H. Li, G. C. Chi, and C. Wu, "Grating in GaN membranes," Jpn. J. Appl. Phys. 43, 5854-5856 (2004).
[CrossRef]

C. H. Hou, M. H. Li, C. C. Chen, J. Y. Chang, J. K. Sheu, G. C. Chii, C. Wu, W. T. Cheng, and J. H. Yeh, "GaN diffractive microlenses using an UV micro-optics system," Opt. Rev. 10, 287-289 (2003).
[CrossRef]

C. C. Chen, M. H. Li, J. K. Sheu, G. C. Chii, W. T. Cheng, J. H. Yeh, J. Y. Chang, and T. Ito, "GaN diffractive microlenses fabricated with gray-level mask," Opt. Commun. 215, 75-78 (2003).
[CrossRef]

C. C. Chen, J. Y. Chang, and G. C. Chii, "Design of GaN convex diffractive microlenses," Opt. Laser Technol. 34, 569-573 (2002).
[CrossRef]

C. C. Chen, K. L. Hsieh, G. C. Chii, C. C. Chuo, J. I. Chyi, and C. A. Chang, "Effect of thermal annealing on high indium content InGaN/GaN single quantum well structures," J. Appl. Phys. 89, 5465-5468 (2001).
[CrossRef]

C. C. Chen, K. L. Hsieh, J. K. Sheu, G. C. Chii, M. J. Jou, C. H. Lee, and M. Z. Lin, "Crystal orientation dependence of optical gain in InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 79, 1477-1479 (2001).
[CrossRef]

C. C. Chen, T. H. Hsueh, Y. S. Ting, G. C. Chii, and C. A. Chang, "Effects of In and Ga diffusion on optical gain of InGaN/GaN quantum well," J. Appl. Phys. 90, 5180-5182 (2001).
[CrossRef]

C. C. Chen, H. W. Chuang, G. C. Chii, C. C. Chuo, and J. I. Chyi, "Stimulated-emission spectra of high-indium-content InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 77, 3758-3760 (2000).
[CrossRef]

C. C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, and V. Armbruster, "Phase correction by laser ablation of a polarization independent LiNbO3 Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 9, 1361-1363 (1997).
[CrossRef]

Cheng, W. T.

C. H. Hou, M. H. Li, C. C. Chen, J. Y. Chang, J. K. Sheu, G. C. Chii, C. Wu, W. T. Cheng, and J. H. Yeh, "GaN diffractive microlenses using an UV micro-optics system," Opt. Rev. 10, 287-289 (2003).
[CrossRef]

C. C. Chen, M. H. Li, J. K. Sheu, G. C. Chii, W. T. Cheng, J. H. Yeh, J. Y. Chang, and T. Ito, "GaN diffractive microlenses fabricated with gray-level mask," Opt. Commun. 215, 75-78 (2003).
[CrossRef]

Chi, G. C.

C. C. Chen, C. H. Hou, J. K. Sheu, J. Y. Chang, M. H. Li, G. C. Chi, and C. Wu, "Grating in GaN membranes," Jpn. J. Appl. Phys. 43, 5854-5856 (2004).
[CrossRef]

C. C. Lee, Y. C. Chang, C. M. Wang, J. Y. Chang, and G. C. Chi, "Silicon-based transmissive diffractive optical element," Opt. Lett. 28, 1260-1262 (2003).
[CrossRef] [PubMed]

Chii, G. C.

C. C. Chen, M. H. Li, J. K. Sheu, G. C. Chii, W. T. Cheng, J. H. Yeh, J. Y. Chang, and T. Ito, "GaN diffractive microlenses fabricated with gray-level mask," Opt. Commun. 215, 75-78 (2003).
[CrossRef]

C. H. Hou, M. H. Li, C. C. Chen, J. Y. Chang, J. K. Sheu, G. C. Chii, C. Wu, W. T. Cheng, and J. H. Yeh, "GaN diffractive microlenses using an UV micro-optics system," Opt. Rev. 10, 287-289 (2003).
[CrossRef]

C. C. Chen, J. Y. Chang, and G. C. Chii, "Design of GaN convex diffractive microlenses," Opt. Laser Technol. 34, 569-573 (2002).
[CrossRef]

C. C. Chen, T. H. Hsueh, Y. S. Ting, G. C. Chii, and C. A. Chang, "Effects of In and Ga diffusion on optical gain of InGaN/GaN quantum well," J. Appl. Phys. 90, 5180-5182 (2001).
[CrossRef]

C. C. Chen, K. L. Hsieh, G. C. Chii, C. C. Chuo, J. I. Chyi, and C. A. Chang, "Effect of thermal annealing on high indium content InGaN/GaN single quantum well structures," J. Appl. Phys. 89, 5465-5468 (2001).
[CrossRef]

C. C. Chen, K. L. Hsieh, J. K. Sheu, G. C. Chii, M. J. Jou, C. H. Lee, and M. Z. Lin, "Crystal orientation dependence of optical gain in InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 79, 1477-1479 (2001).
[CrossRef]

C. C. Chen, H. W. Chuang, G. C. Chii, C. C. Chuo, and J. I. Chyi, "Stimulated-emission spectra of high-indium-content InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 77, 3758-3760 (2000).
[CrossRef]

Chuang, H. W.

C. C. Chen, H. W. Chuang, G. C. Chii, C. C. Chuo, and J. I. Chyi, "Stimulated-emission spectra of high-indium-content InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 77, 3758-3760 (2000).
[CrossRef]

Chuo, C. C.

C. C. Chen, K. L. Hsieh, G. C. Chii, C. C. Chuo, J. I. Chyi, and C. A. Chang, "Effect of thermal annealing on high indium content InGaN/GaN single quantum well structures," J. Appl. Phys. 89, 5465-5468 (2001).
[CrossRef]

C. C. Chen, H. W. Chuang, G. C. Chii, C. C. Chuo, and J. I. Chyi, "Stimulated-emission spectra of high-indium-content InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 77, 3758-3760 (2000).
[CrossRef]

Chyi, J. I.

C. C. Chen, K. L. Hsieh, G. C. Chii, C. C. Chuo, J. I. Chyi, and C. A. Chang, "Effect of thermal annealing on high indium content InGaN/GaN single quantum well structures," J. Appl. Phys. 89, 5465-5468 (2001).
[CrossRef]

C. C. Chen, H. W. Chuang, G. C. Chii, C. C. Chuo, and J. I. Chyi, "Stimulated-emission spectra of high-indium-content InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 77, 3758-3760 (2000).
[CrossRef]

Dändliker, R.

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, "Microlens systems for fluorescence detection in chemical microsystems," Opt. Eng. 40, 814-821 (2001).
[CrossRef]

de Rooij, N. F.

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, "Microlens systems for fluorescence detection in chemical microsystems," Opt. Eng. 40, 814-821 (2001).
[CrossRef]

Fukuzaki, I.

Genoe, J.

P. Heremans, J. Genoe, M. Kujik, R. Vounckx, and G. Borghs, "Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist," IEEE Photon. Technol. Lett. 9, 1367-1369 (1997).
[CrossRef]

Goedgebuer, J.-P.

C. C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, and V. Armbruster, "Phase correction by laser ablation of a polarization independent LiNbO3 Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 9, 1361-1363 (1997).
[CrossRef]

Heremans, P.

P. Heremans, J. Genoe, M. Kujik, R. Vounckx, and G. Borghs, "Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist," IEEE Photon. Technol. Lett. 9, 1367-1369 (1997).
[CrossRef]

Herzig, H. P.

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, "Microlens systems for fluorescence detection in chemical microsystems," Opt. Eng. 40, 814-821 (2001).
[CrossRef]

Hou, C. H.

C. C. Chen, C. H. Hou, J. K. Sheu, J. Y. Chang, M. H. Li, G. C. Chi, and C. Wu, "Grating in GaN membranes," Jpn. J. Appl. Phys. 43, 5854-5856 (2004).
[CrossRef]

C. H. Hou, M. H. Li, C. C. Chen, J. Y. Chang, J. K. Sheu, G. C. Chii, C. Wu, W. T. Cheng, and J. H. Yeh, "GaN diffractive microlenses using an UV micro-optics system," Opt. Rev. 10, 287-289 (2003).
[CrossRef]

Hsieh, K. L.

C. C. Chen, K. L. Hsieh, G. C. Chii, C. C. Chuo, J. I. Chyi, and C. A. Chang, "Effect of thermal annealing on high indium content InGaN/GaN single quantum well structures," J. Appl. Phys. 89, 5465-5468 (2001).
[CrossRef]

C. C. Chen, K. L. Hsieh, J. K. Sheu, G. C. Chii, M. J. Jou, C. H. Lee, and M. Z. Lin, "Crystal orientation dependence of optical gain in InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 79, 1477-1479 (2001).
[CrossRef]

Hsueh, T. H.

C. C. Chen, T. H. Hsueh, Y. S. Ting, G. C. Chii, and C. A. Chang, "Effects of In and Ga diffusion on optical gain of InGaN/GaN quantum well," J. Appl. Phys. 90, 5180-5182 (2001).
[CrossRef]

Iga, K.

Ito, T.

C. C. Chen, M. H. Li, J. K. Sheu, G. C. Chii, W. T. Cheng, J. H. Yeh, J. Y. Chang, and T. Ito, "GaN diffractive microlenses fabricated with gray-level mask," Opt. Commun. 215, 75-78 (2003).
[CrossRef]

Jou, M. J.

C. C. Chen, K. L. Hsieh, J. K. Sheu, G. C. Chii, M. J. Jou, C. H. Lee, and M. Z. Lin, "Crystal orientation dependence of optical gain in InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 79, 1477-1479 (2001).
[CrossRef]

Kamijoh, T.

Katsuki, Y.

Kujik, M.

P. Heremans, J. Genoe, M. Kujik, R. Vounckx, and G. Borghs, "Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist," IEEE Photon. Technol. Lett. 9, 1367-1369 (1997).
[CrossRef]

Lazare, S.

Lee, C. C.

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, "Realization of free-space optical pickup head with stacked Si-based phase elements," IEEE Photon. Technol. Lett. 17, 214-216 (2005).
[CrossRef]

C. C. Lee, Y. C. Chang, C. M. Wang, J. Y. Chang, and G. C. Chi, "Silicon-based transmissive diffractive optical element," Opt. Lett. 28, 1260-1262 (2003).
[CrossRef] [PubMed]

Lee, C. H.

C. C. Chen, K. L. Hsieh, J. K. Sheu, G. C. Chii, M. J. Jou, C. H. Lee, and M. Z. Lin, "Crystal orientation dependence of optical gain in InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 79, 1477-1479 (2001).
[CrossRef]

Li, M. H.

C. C. Chen, C. H. Hou, J. K. Sheu, J. Y. Chang, M. H. Li, G. C. Chi, and C. Wu, "Grating in GaN membranes," Jpn. J. Appl. Phys. 43, 5854-5856 (2004).
[CrossRef]

C. H. Hou, M. H. Li, C. C. Chen, J. Y. Chang, J. K. Sheu, G. C. Chii, C. Wu, W. T. Cheng, and J. H. Yeh, "GaN diffractive microlenses using an UV micro-optics system," Opt. Rev. 10, 287-289 (2003).
[CrossRef]

C. C. Chen, M. H. Li, J. K. Sheu, G. C. Chii, W. T. Cheng, J. H. Yeh, J. Y. Chang, and T. Ito, "GaN diffractive microlenses fabricated with gray-level mask," Opt. Commun. 215, 75-78 (2003).
[CrossRef]

Lin, M. Z.

C. C. Chen, K. L. Hsieh, J. K. Sheu, G. C. Chii, M. J. Jou, C. H. Lee, and M. Z. Lin, "Crystal orientation dependence of optical gain in InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 79, 1477-1479 (2001).
[CrossRef]

Mihailov, S.

Misawa, S.

Porte, H.

C. C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, and V. Armbruster, "Phase correction by laser ablation of a polarization independent LiNbO3 Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 9, 1361-1363 (1997).
[CrossRef]

Roulet, J. C.

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, "Microlens systems for fluorescence detection in chemical microsystems," Opt. Eng. 40, 814-821 (2001).
[CrossRef]

Sasaki, H.

Sheu, J. K.

C. C. Chen, C. H. Hou, J. K. Sheu, J. Y. Chang, M. H. Li, G. C. Chi, and C. Wu, "Grating in GaN membranes," Jpn. J. Appl. Phys. 43, 5854-5856 (2004).
[CrossRef]

C. C. Chen, M. H. Li, J. K. Sheu, G. C. Chii, W. T. Cheng, J. H. Yeh, J. Y. Chang, and T. Ito, "GaN diffractive microlenses fabricated with gray-level mask," Opt. Commun. 215, 75-78 (2003).
[CrossRef]

C. H. Hou, M. H. Li, C. C. Chen, J. Y. Chang, J. K. Sheu, G. C. Chii, C. Wu, W. T. Cheng, and J. H. Yeh, "GaN diffractive microlenses using an UV micro-optics system," Opt. Rev. 10, 287-289 (2003).
[CrossRef]

C. C. Chen, K. L. Hsieh, J. K. Sheu, G. C. Chii, M. J. Jou, C. H. Lee, and M. Z. Lin, "Crystal orientation dependence of optical gain in InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 79, 1477-1479 (2001).
[CrossRef]

Shih, H. F.

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, "Realization of free-space optical pickup head with stacked Si-based phase elements," IEEE Photon. Technol. Lett. 17, 214-216 (2005).
[CrossRef]

Su, G. D. J.

G. D. J. Su, H. Toshiyoshi, and M. C. Wu, "Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors," IEEE Photon. Technol. Lett. 13, 606-608 (2001).
[CrossRef]

Ting, Y. S.

C. C. Chen, T. H. Hsueh, Y. S. Ting, G. C. Chii, and C. A. Chang, "Effects of In and Ga diffusion on optical gain of InGaN/GaN quantum well," J. Appl. Phys. 90, 5180-5182 (2001).
[CrossRef]

Toshiyoshi, H.

G. D. J. Su, H. Toshiyoshi, and M. C. Wu, "Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors," IEEE Photon. Technol. Lett. 13, 606-608 (2001).
[CrossRef]

Verpoorte, E.

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, "Microlens systems for fluorescence detection in chemical microsystems," Opt. Eng. 40, 814-821 (2001).
[CrossRef]

Völkel, R.

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, "Microlens systems for fluorescence detection in chemical microsystems," Opt. Eng. 40, 814-821 (2001).
[CrossRef]

Vounckx, R.

P. Heremans, J. Genoe, M. Kujik, R. Vounckx, and G. Borghs, "Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist," IEEE Photon. Technol. Lett. 9, 1367-1369 (1997).
[CrossRef]

Wang, C. M.

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, "Realization of free-space optical pickup head with stacked Si-based phase elements," IEEE Photon. Technol. Lett. 17, 214-216 (2005).
[CrossRef]

C. C. Lee, Y. C. Chang, C. M. Wang, J. Y. Chang, and G. C. Chi, "Silicon-based transmissive diffractive optical element," Opt. Lett. 28, 1260-1262 (2003).
[CrossRef] [PubMed]

Wu, C.

C. C. Chen, C. H. Hou, J. K. Sheu, J. Y. Chang, M. H. Li, G. C. Chi, and C. Wu, "Grating in GaN membranes," Jpn. J. Appl. Phys. 43, 5854-5856 (2004).
[CrossRef]

C. H. Hou, M. H. Li, C. C. Chen, J. Y. Chang, J. K. Sheu, G. C. Chii, C. Wu, W. T. Cheng, and J. H. Yeh, "GaN diffractive microlenses using an UV micro-optics system," Opt. Rev. 10, 287-289 (2003).
[CrossRef]

Wu, M. C.

G. D. J. Su, H. Toshiyoshi, and M. C. Wu, "Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors," IEEE Photon. Technol. Lett. 13, 606-608 (2001).
[CrossRef]

Wu, M. L.

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, "Realization of free-space optical pickup head with stacked Si-based phase elements," IEEE Photon. Technol. Lett. 17, 214-216 (2005).
[CrossRef]

Yeh, J. H.

C. C. Chen, M. H. Li, J. K. Sheu, G. C. Chii, W. T. Cheng, J. H. Yeh, J. Y. Chang, and T. Ito, "GaN diffractive microlenses fabricated with gray-level mask," Opt. Commun. 215, 75-78 (2003).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

C. C. Chen, H. W. Chuang, G. C. Chii, C. C. Chuo, and J. I. Chyi, "Stimulated-emission spectra of high-indium-content InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 77, 3758-3760 (2000).
[CrossRef]

C. C. Chen, K. L. Hsieh, J. K. Sheu, G. C. Chii, M. J. Jou, C. H. Lee, and M. Z. Lin, "Crystal orientation dependence of optical gain in InGaN/GaN multiple-quantum-well structures," Appl. Phys. Lett. 79, 1477-1479 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

P. Heremans, J. Genoe, M. Kujik, R. Vounckx, and G. Borghs, "Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist," IEEE Photon. Technol. Lett. 9, 1367-1369 (1997).
[CrossRef]

C. C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, and V. Armbruster, "Phase correction by laser ablation of a polarization independent LiNbO3 Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 9, 1361-1363 (1997).
[CrossRef]

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, "Realization of free-space optical pickup head with stacked Si-based phase elements," IEEE Photon. Technol. Lett. 17, 214-216 (2005).
[CrossRef]

G. D. J. Su, H. Toshiyoshi, and M. C. Wu, "Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors," IEEE Photon. Technol. Lett. 13, 606-608 (2001).
[CrossRef]

J. Appl. Phys. (2)

C. C. Chen, T. H. Hsueh, Y. S. Ting, G. C. Chii, and C. A. Chang, "Effects of In and Ga diffusion on optical gain of InGaN/GaN quantum well," J. Appl. Phys. 90, 5180-5182 (2001).
[CrossRef]

C. C. Chen, K. L. Hsieh, G. C. Chii, C. C. Chuo, J. I. Chyi, and C. A. Chang, "Effect of thermal annealing on high indium content InGaN/GaN single quantum well structures," J. Appl. Phys. 89, 5465-5468 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C. C. Chen, C. H. Hou, J. K. Sheu, J. Y. Chang, M. H. Li, G. C. Chi, and C. Wu, "Grating in GaN membranes," Jpn. J. Appl. Phys. 43, 5854-5856 (2004).
[CrossRef]

Opt. Commun. (1)

C. C. Chen, M. H. Li, J. K. Sheu, G. C. Chii, W. T. Cheng, J. H. Yeh, J. Y. Chang, and T. Ito, "GaN diffractive microlenses fabricated with gray-level mask," Opt. Commun. 215, 75-78 (2003).
[CrossRef]

Opt. Eng. (1)

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, "Microlens systems for fluorescence detection in chemical microsystems," Opt. Eng. 40, 814-821 (2001).
[CrossRef]

Opt. Laser Technol. (1)

C. C. Chen, J. Y. Chang, and G. C. Chii, "Design of GaN convex diffractive microlenses," Opt. Laser Technol. 34, 569-573 (2002).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

C. H. Hou, M. H. Li, C. C. Chen, J. Y. Chang, J. K. Sheu, G. C. Chii, C. Wu, W. T. Cheng, and J. H. Yeh, "GaN diffractive microlenses using an UV micro-optics system," Opt. Rev. 10, 287-289 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SEM picture of a GaN membrane grating with a period of 9.2 μm.

Fig. 2
Fig. 2

SEM picture of a GaN diffractive microlens with a diameter of 1 mm.

Fig. 3
Fig. 3

Schematic drawing of the GaN micro-optics system.

Fig. 4
Fig. 4

Diffracted patterns. The light is emitted from a 980 nm VCSEL, collimated by a GaN microlens, and then diffracted by GaN membrane gratings.

Metrics