Abstract

Microwave photons can image a surface by using near-field geometry with spatial resolution close to the nanometer-length scale. We detected electron-spin resonance (ESR) on ruby surfaces by using microwave photons at the S-band frequency (3.73  GHz). The spatial locations of the electron-spin centers were pinpointed with localized incident microwave photons generated by using evanescent microwave microscopy (EMM). We show that the EMM probe is capable of resolving 20,000 spin transitions, compared with the 1010 minimum detectable spins of the conventional continuous-wave ESR spectrometer. This represents roughly a 6-order-of-magnitude enhancement in sensitivity. Our ultimate goal is to achieve the minimum detectable spin transition of a single electron and nanometer-level spatial resolution by using microfabricated atomic force microscopy–EMM probes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Poole, Jr., Electron Spin Resonance, a Comprehensive Treatise on Experimental Techniques, 2nd ed. (Dover, 1996).
  2. T. Chang and A. H. Kahn, Standard Reference Materials: Electron Paramagnetic Resonance Intensity Standard: SRM 2601 (U.S. Department of Commerce, 1978).
  3. R. Wang, F. Li, and M. Tabib-Azar, "Calibration methods of a 2 GHz evanescent microwave magnetic probe," Rev. Sci. Instrum. 76, 054701 (2005).
  4. C. P. Poole, Jr. and H. A. Farach, Handbook of Electron Spin Resonance, Vol. 2 (Springer-Verlag, 1999), ISBN 1-56396-044-3.
    [CrossRef]
  5. M. Tabib-Azar, N. Shoemaker, and S. Harris, "Non-destructive characterization of materials by evanescent microwaves," Meas. Sci. Technol. 4, 583-590 (1993).
    [CrossRef]
  6. M. Tabib-Azar and S. R. LeClair, "Applications of evanescent microwave probes in gas and chemical sensors," Sens. Actuators B 67, 112-121 (2000).
    [CrossRef]
  7. M. Tabib-Azar, D. Akinwande, G. Ponchak, and S. R. LeClair, "Novel physical sensors using evanescent microwave probes," Rev. Sci. Instrum. 70, 3381-3386 (1999).
    [CrossRef]
  8. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  9. C. Mailer, B. H. Robinson, B. B. Williams, and H. J. Halpern, "Spectral fitting: the extraction of crucial information from a spectrum and a spectral Image," Magn. Reson. Med. 49, 1175-1180 (2003).
    [CrossRef] [PubMed]
  10. J. A. Gubner, "A new series for approximating Voigt functins," J. Phys. A. Math. Nucl. Gen. 27, 745-749 (1994).
    [CrossRef]
  11. M. Tabib-Azar and Y. Wang, "Design and fabrication of scanning near-field microwave probes compatible with atomic force microscopy to image embedded nanostructures," IEEE Trans. Microwave Theory Tech. 52, 971-979 (2004).
    [CrossRef]
  12. M. Xiao, I. Martin, and E. Yablonovitch, "Electrical detection of the spin resonance of a single electron in a silicon field transistor," Nature 420, 435-439 (2004).
    [CrossRef]
  13. D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, "Single spin detection by magnetic resonance force microscopy," Nature 430, 329-332 (2004).
    [CrossRef] [PubMed]
  14. H. W. Ch. Postma, I. Kozainsky, A. Husain, and M. L. Roukes, "Dynamic range of nanotube- and nanowire-based electromechanical systems," Appl. Phys. Lett. 86, 223105 (2005).
    [CrossRef]
  15. M. I. Dykman and P. M. Platzman, "Quantum computing using electrons floating of liquid helium," Fortschr. Phys. 48, 1095-1108 (2000).
    [CrossRef]
  16. L.J.Berliner and J.Reuben, eds., Biological Magnetic Resonance, Vol. 8 of Spin Labeling Theory and Practice (Plenum, 1989). See also other volumes in this series.
    [CrossRef]
  17. Y. Okawa and M. Aono, "Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions," J. Chem. Phys. 115, 2317-2322 (2001).
    [CrossRef]
  18. A. Blank, C. R. Dunnam, P. P. Borbat, and J. H. Freed, Pulsed three-dimensional electron spin resonance microscopy," Appl. Phys. Lett. 85, 5430-5432 (2004).
    [CrossRef]

2005

R. Wang, F. Li, and M. Tabib-Azar, "Calibration methods of a 2 GHz evanescent microwave magnetic probe," Rev. Sci. Instrum. 76, 054701 (2005).

H. W. Ch. Postma, I. Kozainsky, A. Husain, and M. L. Roukes, "Dynamic range of nanotube- and nanowire-based electromechanical systems," Appl. Phys. Lett. 86, 223105 (2005).
[CrossRef]

2004

A. Blank, C. R. Dunnam, P. P. Borbat, and J. H. Freed, Pulsed three-dimensional electron spin resonance microscopy," Appl. Phys. Lett. 85, 5430-5432 (2004).
[CrossRef]

M. Tabib-Azar and Y. Wang, "Design and fabrication of scanning near-field microwave probes compatible with atomic force microscopy to image embedded nanostructures," IEEE Trans. Microwave Theory Tech. 52, 971-979 (2004).
[CrossRef]

M. Xiao, I. Martin, and E. Yablonovitch, "Electrical detection of the spin resonance of a single electron in a silicon field transistor," Nature 420, 435-439 (2004).
[CrossRef]

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, "Single spin detection by magnetic resonance force microscopy," Nature 430, 329-332 (2004).
[CrossRef] [PubMed]

2003

C. Mailer, B. H. Robinson, B. B. Williams, and H. J. Halpern, "Spectral fitting: the extraction of crucial information from a spectrum and a spectral Image," Magn. Reson. Med. 49, 1175-1180 (2003).
[CrossRef] [PubMed]

2001

Y. Okawa and M. Aono, "Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions," J. Chem. Phys. 115, 2317-2322 (2001).
[CrossRef]

2000

M. I. Dykman and P. M. Platzman, "Quantum computing using electrons floating of liquid helium," Fortschr. Phys. 48, 1095-1108 (2000).
[CrossRef]

M. Tabib-Azar and S. R. LeClair, "Applications of evanescent microwave probes in gas and chemical sensors," Sens. Actuators B 67, 112-121 (2000).
[CrossRef]

1999

M. Tabib-Azar, D. Akinwande, G. Ponchak, and S. R. LeClair, "Novel physical sensors using evanescent microwave probes," Rev. Sci. Instrum. 70, 3381-3386 (1999).
[CrossRef]

1994

J. A. Gubner, "A new series for approximating Voigt functins," J. Phys. A. Math. Nucl. Gen. 27, 745-749 (1994).
[CrossRef]

1993

M. Tabib-Azar, N. Shoemaker, and S. Harris, "Non-destructive characterization of materials by evanescent microwaves," Meas. Sci. Technol. 4, 583-590 (1993).
[CrossRef]

1944

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Akinwande, D.

M. Tabib-Azar, D. Akinwande, G. Ponchak, and S. R. LeClair, "Novel physical sensors using evanescent microwave probes," Rev. Sci. Instrum. 70, 3381-3386 (1999).
[CrossRef]

Aono, M.

Y. Okawa and M. Aono, "Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions," J. Chem. Phys. 115, 2317-2322 (2001).
[CrossRef]

Bethe, H. A.

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Blank, A.

A. Blank, C. R. Dunnam, P. P. Borbat, and J. H. Freed, Pulsed three-dimensional electron spin resonance microscopy," Appl. Phys. Lett. 85, 5430-5432 (2004).
[CrossRef]

Borbat, P. P.

A. Blank, C. R. Dunnam, P. P. Borbat, and J. H. Freed, Pulsed three-dimensional electron spin resonance microscopy," Appl. Phys. Lett. 85, 5430-5432 (2004).
[CrossRef]

Budakian, R.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, "Single spin detection by magnetic resonance force microscopy," Nature 430, 329-332 (2004).
[CrossRef] [PubMed]

Chang, T.

T. Chang and A. H. Kahn, Standard Reference Materials: Electron Paramagnetic Resonance Intensity Standard: SRM 2601 (U.S. Department of Commerce, 1978).

Chui, B. W.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, "Single spin detection by magnetic resonance force microscopy," Nature 430, 329-332 (2004).
[CrossRef] [PubMed]

Dunnam, C. R.

A. Blank, C. R. Dunnam, P. P. Borbat, and J. H. Freed, Pulsed three-dimensional electron spin resonance microscopy," Appl. Phys. Lett. 85, 5430-5432 (2004).
[CrossRef]

Dykman, M. I.

M. I. Dykman and P. M. Platzman, "Quantum computing using electrons floating of liquid helium," Fortschr. Phys. 48, 1095-1108 (2000).
[CrossRef]

Farach, H. A.

C. P. Poole, Jr. and H. A. Farach, Handbook of Electron Spin Resonance, Vol. 2 (Springer-Verlag, 1999), ISBN 1-56396-044-3.
[CrossRef]

Freed, J. H.

A. Blank, C. R. Dunnam, P. P. Borbat, and J. H. Freed, Pulsed three-dimensional electron spin resonance microscopy," Appl. Phys. Lett. 85, 5430-5432 (2004).
[CrossRef]

Gubner, J. A.

J. A. Gubner, "A new series for approximating Voigt functins," J. Phys. A. Math. Nucl. Gen. 27, 745-749 (1994).
[CrossRef]

Halpern, H. J.

C. Mailer, B. H. Robinson, B. B. Williams, and H. J. Halpern, "Spectral fitting: the extraction of crucial information from a spectrum and a spectral Image," Magn. Reson. Med. 49, 1175-1180 (2003).
[CrossRef] [PubMed]

Harris, S.

M. Tabib-Azar, N. Shoemaker, and S. Harris, "Non-destructive characterization of materials by evanescent microwaves," Meas. Sci. Technol. 4, 583-590 (1993).
[CrossRef]

Husain, A.

H. W. Ch. Postma, I. Kozainsky, A. Husain, and M. L. Roukes, "Dynamic range of nanotube- and nanowire-based electromechanical systems," Appl. Phys. Lett. 86, 223105 (2005).
[CrossRef]

Kahn, A. H.

T. Chang and A. H. Kahn, Standard Reference Materials: Electron Paramagnetic Resonance Intensity Standard: SRM 2601 (U.S. Department of Commerce, 1978).

Kozainsky, I.

H. W. Ch. Postma, I. Kozainsky, A. Husain, and M. L. Roukes, "Dynamic range of nanotube- and nanowire-based electromechanical systems," Appl. Phys. Lett. 86, 223105 (2005).
[CrossRef]

LeClair, S. R.

M. Tabib-Azar and S. R. LeClair, "Applications of evanescent microwave probes in gas and chemical sensors," Sens. Actuators B 67, 112-121 (2000).
[CrossRef]

M. Tabib-Azar, D. Akinwande, G. Ponchak, and S. R. LeClair, "Novel physical sensors using evanescent microwave probes," Rev. Sci. Instrum. 70, 3381-3386 (1999).
[CrossRef]

Li, F.

R. Wang, F. Li, and M. Tabib-Azar, "Calibration methods of a 2 GHz evanescent microwave magnetic probe," Rev. Sci. Instrum. 76, 054701 (2005).

Mailer, C.

C. Mailer, B. H. Robinson, B. B. Williams, and H. J. Halpern, "Spectral fitting: the extraction of crucial information from a spectrum and a spectral Image," Magn. Reson. Med. 49, 1175-1180 (2003).
[CrossRef] [PubMed]

Mamin, H. J.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, "Single spin detection by magnetic resonance force microscopy," Nature 430, 329-332 (2004).
[CrossRef] [PubMed]

Martin, I.

M. Xiao, I. Martin, and E. Yablonovitch, "Electrical detection of the spin resonance of a single electron in a silicon field transistor," Nature 420, 435-439 (2004).
[CrossRef]

Okawa, Y.

Y. Okawa and M. Aono, "Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions," J. Chem. Phys. 115, 2317-2322 (2001).
[CrossRef]

Platzman, P. M.

M. I. Dykman and P. M. Platzman, "Quantum computing using electrons floating of liquid helium," Fortschr. Phys. 48, 1095-1108 (2000).
[CrossRef]

Ponchak, G.

M. Tabib-Azar, D. Akinwande, G. Ponchak, and S. R. LeClair, "Novel physical sensors using evanescent microwave probes," Rev. Sci. Instrum. 70, 3381-3386 (1999).
[CrossRef]

Poole, C. P.

C. P. Poole, Jr., Electron Spin Resonance, a Comprehensive Treatise on Experimental Techniques, 2nd ed. (Dover, 1996).

C. P. Poole, Jr. and H. A. Farach, Handbook of Electron Spin Resonance, Vol. 2 (Springer-Verlag, 1999), ISBN 1-56396-044-3.
[CrossRef]

Postma, H. W. Ch.

H. W. Ch. Postma, I. Kozainsky, A. Husain, and M. L. Roukes, "Dynamic range of nanotube- and nanowire-based electromechanical systems," Appl. Phys. Lett. 86, 223105 (2005).
[CrossRef]

Robinson, B. H.

C. Mailer, B. H. Robinson, B. B. Williams, and H. J. Halpern, "Spectral fitting: the extraction of crucial information from a spectrum and a spectral Image," Magn. Reson. Med. 49, 1175-1180 (2003).
[CrossRef] [PubMed]

Roukes, M. L.

H. W. Ch. Postma, I. Kozainsky, A. Husain, and M. L. Roukes, "Dynamic range of nanotube- and nanowire-based electromechanical systems," Appl. Phys. Lett. 86, 223105 (2005).
[CrossRef]

Rugar, D.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, "Single spin detection by magnetic resonance force microscopy," Nature 430, 329-332 (2004).
[CrossRef] [PubMed]

Shoemaker, N.

M. Tabib-Azar, N. Shoemaker, and S. Harris, "Non-destructive characterization of materials by evanescent microwaves," Meas. Sci. Technol. 4, 583-590 (1993).
[CrossRef]

Tabib-Azar, M.

R. Wang, F. Li, and M. Tabib-Azar, "Calibration methods of a 2 GHz evanescent microwave magnetic probe," Rev. Sci. Instrum. 76, 054701 (2005).

M. Tabib-Azar and Y. Wang, "Design and fabrication of scanning near-field microwave probes compatible with atomic force microscopy to image embedded nanostructures," IEEE Trans. Microwave Theory Tech. 52, 971-979 (2004).
[CrossRef]

M. Tabib-Azar and S. R. LeClair, "Applications of evanescent microwave probes in gas and chemical sensors," Sens. Actuators B 67, 112-121 (2000).
[CrossRef]

M. Tabib-Azar, D. Akinwande, G. Ponchak, and S. R. LeClair, "Novel physical sensors using evanescent microwave probes," Rev. Sci. Instrum. 70, 3381-3386 (1999).
[CrossRef]

M. Tabib-Azar, N. Shoemaker, and S. Harris, "Non-destructive characterization of materials by evanescent microwaves," Meas. Sci. Technol. 4, 583-590 (1993).
[CrossRef]

Wang, R.

R. Wang, F. Li, and M. Tabib-Azar, "Calibration methods of a 2 GHz evanescent microwave magnetic probe," Rev. Sci. Instrum. 76, 054701 (2005).

Wang, Y.

M. Tabib-Azar and Y. Wang, "Design and fabrication of scanning near-field microwave probes compatible with atomic force microscopy to image embedded nanostructures," IEEE Trans. Microwave Theory Tech. 52, 971-979 (2004).
[CrossRef]

Williams, B. B.

C. Mailer, B. H. Robinson, B. B. Williams, and H. J. Halpern, "Spectral fitting: the extraction of crucial information from a spectrum and a spectral Image," Magn. Reson. Med. 49, 1175-1180 (2003).
[CrossRef] [PubMed]

Xiao, M.

M. Xiao, I. Martin, and E. Yablonovitch, "Electrical detection of the spin resonance of a single electron in a silicon field transistor," Nature 420, 435-439 (2004).
[CrossRef]

Yablonovitch, E.

M. Xiao, I. Martin, and E. Yablonovitch, "Electrical detection of the spin resonance of a single electron in a silicon field transistor," Nature 420, 435-439 (2004).
[CrossRef]

Appl. Phys. Lett.

H. W. Ch. Postma, I. Kozainsky, A. Husain, and M. L. Roukes, "Dynamic range of nanotube- and nanowire-based electromechanical systems," Appl. Phys. Lett. 86, 223105 (2005).
[CrossRef]

A. Blank, C. R. Dunnam, P. P. Borbat, and J. H. Freed, Pulsed three-dimensional electron spin resonance microscopy," Appl. Phys. Lett. 85, 5430-5432 (2004).
[CrossRef]

Fortschr. Phys.

M. I. Dykman and P. M. Platzman, "Quantum computing using electrons floating of liquid helium," Fortschr. Phys. 48, 1095-1108 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

M. Tabib-Azar and Y. Wang, "Design and fabrication of scanning near-field microwave probes compatible with atomic force microscopy to image embedded nanostructures," IEEE Trans. Microwave Theory Tech. 52, 971-979 (2004).
[CrossRef]

J. Chem. Phys.

Y. Okawa and M. Aono, "Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions," J. Chem. Phys. 115, 2317-2322 (2001).
[CrossRef]

J. Phys. A. Math. Nucl. Gen.

J. A. Gubner, "A new series for approximating Voigt functins," J. Phys. A. Math. Nucl. Gen. 27, 745-749 (1994).
[CrossRef]

Magn. Reson. Med.

C. Mailer, B. H. Robinson, B. B. Williams, and H. J. Halpern, "Spectral fitting: the extraction of crucial information from a spectrum and a spectral Image," Magn. Reson. Med. 49, 1175-1180 (2003).
[CrossRef] [PubMed]

Meas. Sci. Technol.

M. Tabib-Azar, N. Shoemaker, and S. Harris, "Non-destructive characterization of materials by evanescent microwaves," Meas. Sci. Technol. 4, 583-590 (1993).
[CrossRef]

Nature

M. Xiao, I. Martin, and E. Yablonovitch, "Electrical detection of the spin resonance of a single electron in a silicon field transistor," Nature 420, 435-439 (2004).
[CrossRef]

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, "Single spin detection by magnetic resonance force microscopy," Nature 430, 329-332 (2004).
[CrossRef] [PubMed]

Phys. Rev.

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Rev. Sci. Instrum.

M. Tabib-Azar, D. Akinwande, G. Ponchak, and S. R. LeClair, "Novel physical sensors using evanescent microwave probes," Rev. Sci. Instrum. 70, 3381-3386 (1999).
[CrossRef]

R. Wang, F. Li, and M. Tabib-Azar, "Calibration methods of a 2 GHz evanescent microwave magnetic probe," Rev. Sci. Instrum. 76, 054701 (2005).

Sens. Actuators B

M. Tabib-Azar and S. R. LeClair, "Applications of evanescent microwave probes in gas and chemical sensors," Sens. Actuators B 67, 112-121 (2000).
[CrossRef]

Other

C. P. Poole, Jr. and H. A. Farach, Handbook of Electron Spin Resonance, Vol. 2 (Springer-Verlag, 1999), ISBN 1-56396-044-3.
[CrossRef]

C. P. Poole, Jr., Electron Spin Resonance, a Comprehensive Treatise on Experimental Techniques, 2nd ed. (Dover, 1996).

T. Chang and A. H. Kahn, Standard Reference Materials: Electron Paramagnetic Resonance Intensity Standard: SRM 2601 (U.S. Department of Commerce, 1978).

L.J.Berliner and J.Reuben, eds., Biological Magnetic Resonance, Vol. 8 of Spin Labeling Theory and Practice (Plenum, 1989). See also other volumes in this series.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Classic ESR rectangular microwave cavity with the TE 102 configuration. It is not possible to resolve spatially the distribution of electron spins with the classical setup. However, gradient fields allow three-dimensional spatial resolution at the 10   μm length scale and sensitivity to 2 × 10 7 spins (see Ref. 18).

Fig. 2
Fig. 2

Quality factor, Q 5000 , estimation from the measured reflection coefficient S11 versus the frequency measured on a ruby surface.

Fig. 3
Fig. 3

EPR single-point measurement apparatus. S11 is the signal detected at the circulator. S11 data are plotted in Fig. 2.

Fig. 4
Fig. 4

(a) Experimental data of the first derivative of the EPR line shape. (b) Integrated experimental data with the baseline curvature removed by subtraction of a cubic polynomial fit to the background.

Fig. 5
Fig. 5

Comparison of the Voigt function and the experimental data of the first derivative of the ESR absorption spectrum centered at B c = 134.7. The fit favored the Gaussian flavor of the pseudo-Voigt function of α = 0.9. Three features of the derivative spectrum are the zero crossing: B c , minimum B (+), and maximum B (−). Clearly, B (+)B (−) is one measure of the width of the spectrum and is 2.17 mT for this data set.

Fig. 6
Fig. 6

Spectrum of the raw data plotted in Fig. 5. The feature at 131   mT may be an artifact of the numerical integration of the derivative data, which were comparatively noisy. It was possible to obtain a reasonable fit to the band at 134.6   mT with two Gaussian functions slightly displaced from 134.6   mT .

Fig. 7
Fig. 7

Computation of the power absorption distribution versus the distance from the center of the probe.

Fig. 8
Fig. 8

Schematic of the electron-spin resonance sensor using the evanescent microwave probe described in Ref. 11. The magnetic field h dc normal to the surface is provided by a small permanent magnet (modulated) placed under the sample.

Fig. 9
Fig. 9

Spin-label net hierarchy. (a) The Si-phthalocyanine–nitroxide (SiPcNO) Langmuir–Blodgett monolayer that acts as a weakly coupled detector of the spin state of the net. Dots represent the electrons localized on nitroxide moieties; one set is localized in the Si–Pc–NO molecules, and the second set is localized on the NO moieties on TEMPO attached to the diacetylene molecules. (b) Conducting diacetylene polymer moiety. (c) Solid line represents the patterned support.

Tables (4)

Tables Icon

Table 1 ESR Peak Magnetic Field at 3.73 GHz for the Ruby Crystal

Tables Icon

Table 2 Experimental Parameters for the Derivative Spectra

Tables Icon

Table 3 Double-Gaussian Fit of the Integrated Signal

Tables Icon

Table 4 Fit of Single-Gaussian Functions to the Derivative and Integral Data Sets

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

h ν = g μ B H 0 + ( 2 S + 1 ) D ,
Q = f 0 f 2 f 1 ,
S ( B , B c , Δ B 1 / 2 ) = α S G ( B , B c , Δ B 1 / 2 ) + ( 1 α ) S L ( B , B c , Δ B 1 / 2 ) ,
t Relax = 2 3 γ Δ B 1 / 2 2.83 × 10 9   s ,
P Absorp = V Meas / 120 × 10   μ V S Crys_Detect = 0.0385   μW,
N max = P Absorp P E l e c t = 3.85 × 10 5   μW 8 .74 × 10 10   μW = 4.41 × 10 4 .
P Absorp = ( 1 / 2 ) ω 0 χ H 2 ,

Metrics