Abstract

The emergence of metasurfaces provides a novel strategy to tailor the electromagnetic response of electromagnetic waves in a controlled manner by judicious design of the constitutive meta-atom. However, passive metasurfaces tend to perform a specific or limited number of functionalities and suffer from narrow-frequency-band operation. Reported reconfigurable metasurfaces can generally be controlled only in a 1D configuration or use p-i-n diodes to show binary phase states. Here, a 2D reconfigurable reflective metasurface with individually addressable meta-atoms enabling a continuous phase control is proposed in the microwave regime. The response of the meta-atom is flexibly controlled by changing the bias voltage applied to the embedded varactor diode through an elaborated power supply system. By assigning appropriate phase profiles to the metasurface through voltage modulation, complex beam generation, including Bessel beams, vortex beams, and Airy beams, is fulfilled to demonstrate the accurate phase-control capability of the reconfigurable metasurface. Both simulations and measurements are performed as a proof of concept and show good agreement. The proposed design paves the way toward the achievement of real-time and programmable multifunctional meta-devices, with enormous potential for microwave applications such as wireless communication, electromagnetic imaging, and smart antennas.

© 2021 Chinese Laser Press

1. INTRODUCTION

Metasurfaces have attracted considerable attention due to the specific electromagnetic response that goes beyond limitations of natural materials, providing new and unprecedented ways to manipulate the phase, magnitude, and polarization of electromagnetic waves. Metasurfaces, as two-dimensional (2D) structures, show significantly lower profile and losses than their three-dimensional (3D) metamaterials counterparts. They have been devoted to the design of a plethora of fascinating devices, such as polarization convertors [14], vortex beam generators [5,6], beam deflectors [7], perfect absorbers [8,9], and imaging holography [1013]. However, the output response of passive metasurfaces cannot be modified once fabricated, resulting in the limitation of applications. To achieve multiple output possibilities with a passive metasurface, the polarization state of the illuminating wave is exploited as a common tool for an important degree of freedom. By judiciously designing anisotropic meta-atoms that show polarization-sensitive electromagnetic (EM) responses, several functionalities can be realized with different linearly polarized incident waves [1416]. For circularly polarized incident waves with different spin, multifunctional meta-devices can be achieved based on the Pancharatnam–Berry (PB) phase principle [17,18].

To dynamically manipulate EM waves, tunable components are loaded in metasurface designs. When the external stimuli applied to the component are modified, the electromagnetic response of the meta-atom is accordingly adjusted. Several mechanisms can be exploited to design reconfigurable metasurfaces, for instance, thermal [19,20], optical [2124], mechanical stretching [2528], micro-electro-mechanical systems (MEMS) [29,30], and electrical [3135] mechanisms. Thermal, optical, and mechanical stretching mechanisms are limited to global control of the metasurface. MEMS-loaded metasurfaces suffer from the drawback of high actuation voltages and complex manufacturing. P-i-n diodes and varactor diodes applied for electrical tuning mechanism are widely used for multifunctional reconfigurable metasurface designs [3648]. Metasurfaces integrating p-i-n diodes with only two different electrical states (“ON” and “OFF”) offer binary phase states tunability [3639], limiting potential applications to advanced wavefront tailoring. However, reconfigurable metasurfaces with continuous phase control can be realized by incorporating varactor diodes with dynamically tuned capacitance upon applied bias voltage. In Refs. [4048], the metasurfaces integrating varactor diodes could be adjusted solely along one lateral direction or in sectors, thus limiting the application perspectives, despite achieving nearly 360° phase coverage.

In this paper, a microwave versatile metasurface platform with individually addressable meta-atoms enabling nearly 340° phase coverage, is designed for an operation around 9.5 GHz by the incorporation of varactor diodes. Three complex beams, i.e., Bessel beam, vortex beam, and Airy beam, are generated to validate the performance of the fully dynamic metasurface. First, the zeroth-order Bessel beam is generated by implementing the phase profile mimicking an axicon lens. Then, a vortex beam carrying OAM mode 1 is generated. Focusing and nondiffracting vortex beams with limited beam radius are also fulfilled by superposing the spiral-plate phase profile with a focusing lens phase profile and a nondiffracting zeroth-order Bessel beam phase profile, respectively. Furthermore, another complex beam, the 2D Airy beam, is achieved using a 1 bit coding phase profile changing between 90° and +90°. The experimental verifications exhibit great consistency with numerical simulations, which further validate the excellent multifunctional property of the designed dynamic metasurface. Such a multitask platform shows great potential in the microwave regime for diverse applications, such as far-field wave manipulation in smart and electronically controllable devices and near-field focusing.

2. DYNAMIC METASURFACE DESIGN

The schematic representation of the dynamic metasurface is illustrated in Fig. 1. The switchable functionality operation between different types of beams is accomplished by setting different phase profiles through modification of the bias voltage applied to the varactor diodes.

 figure: Fig. 1.

Fig. 1. Schematic of complex beams generation exploiting the versatile metasurface platform. Three complex beams, including zeroth-order Bessel beam, vortex beam, and Airy beam, are generated by judiciously implementing the predefined phase profiles.

Download Full Size | PPT Slide | PDF

A schematic view of the elementary tunable meta-atom is shown in Figs. 2(a) and 2(b). The meta-atom is composed of three metal layers separated by two dielectric substrates (εr=3.5 and tanδ=0.0037) with thickness h1=0.25mm and h2=1mm. When an electric field is oriented perpendicularly to the two metal strips composing the top layer, a capacitive response is obtained. A MACOM MAVR-011020-1411 varactor diode with a dynamic capacitance range of 0.02 to 0.22 pF is loaded between the two strips and by applying a reversed DC bias voltage to the electronic element, total capacitance of the meta-atom can be precisely addressed. The second layer is a quasi-continuous reflective layer that brings an inductive response such that the meta-atom acts as an LC resonator whose frequency response can be properly addressed. To individually control each unit cell, the continuous strip of the capacitive layer is connected to the ground of the DC voltage supply, while the isolated strip is connected to its corresponding bias line located under the ground plane through a metal via, as shown in the Fig. 2(a). The equivalent circuit of the proposed meta-atom is depicted in the inset of Fig. 2(a). It is worth noting that the dimensions of the meta-atom have been optimized such that the intrinsic capacitance of the meta-atom can be neglected compared with the capacitance of the varactor diode. As such, the only capacitance that influences the resonance frequency of the RLC circuit is the one from the varactor diode.

 figure: Fig. 2.

Fig. 2. Schematic design of the addressable meta-atom incorporating a voltage-biased varactor diode. (a) 3D view. The inset shows the equivalent circuit of the meta-atom. (b) Exploded perspective view. The geometrical parameters are p=6mm, w1=1.1mm, w2=0.25mm, w3=0.16mm, g1=3.6mm, g2=0.205mm, l=5.8mm, q1=0.73mm, and q2=0.6mm. (c)–(f) Reflection magnitude and phase responses of the meta-atom for different stimuli signals in the frequency band ranging from 7 to 11 GHz obtained from (c), (d) numerical simulations and (e), (f) experimental characterizations.

Download Full Size | PPT Slide | PDF

Though a single metal via is required to bias the varactor diode in each meta-atom, 15 vias are integrated in the top dielectric substrate, where 14 of them are blind vias and a single one is connected to the voltage supply through the lower substrate layer, as highlighted in Fig. 2(b). As the location of each meta-atom is different on the metasurface, the location of the through via connected to the power supply to bias the varactor diode also changes. It is worthwhile to note that integration of the numerous blind vias in each meta-atom is absolutely necessary since the location of the through via connected to the power supply has an influence on the EM response of the latter meta-atom. By using blind vias in the top dielectric substrate, the influence of the location of the via on the EM response is then suppressed and allows for a negligible phase change when the position of the meta-atom changes on the metasurface. Therefore, the geometry above the quasi-continuous ground plane is fixed no matter the position of the meta-atom on the metasurface. In each meta-atom, 15 metal feed lines printed on the bottom face of the lower substrate are connected to the positive DC voltage, where only a single one is connected to the through via.

In order to investigate the performance of the electronically addressable meta-atom, both simulations and measurements are carried out in the frequency band ranging from 7 to 11 GHz. The numerical simulations are accomplished with the commercial software HFSS from ANSYS based on the finite element method (FEM). A Floquet port is used as a plane wave source, illuminating the unit cell and periodic boundaries set along both x and y directions. The reflection coefficient of the meta-atom is depicted in Figs. 2(c)–2(f). Eight capacitance values are selected for the simulations to show the characteristic of the element by adjusting the DC voltage applied on the varactor diode. Microwave measurements are performed on the fabricated prototype in an anechoic chamber using a network analyzer and two 2 to 18 GHz broadband horn antennas. The reflection measurements are done by placing the emitting and receiving horn antennas on the same side of the prototype and inclined at an angle of about 5° with respect to the normal on the prototype surface. Phase referencing and magnitude normalization are performed in reflection, by replacing the sample by a copper plate. Quasi-full phase coverage reaching nearly 340° is achieved between 8.5 and 9.5 GHz. Furthermore, as highlighted in Fig. 3, the reflection amplitude and phase responses show quasi-no variation with the position change of the through via, due to the use of blind vias in the meta-atom design.

 figure: Fig. 3.

Fig. 3. Reflection response of the meta-atom versus the position variation y1 of the through via for four different capacitance values at 9 GHz. (a) Phase without blind vias. (b) Phase with blind vias. (c) Magnitude without blind vias. (d) Magnitude with blind vias. The use of blind vias allows achieving a stable reflection response independent of the location of the meta-atom on the metasurface.

Download Full Size | PPT Slide | PDF

Based on the above designed meta-atom, we physically implement a dynamic metasurface platform composed of 30×30 unit cells. Due to the unit cell having 15 feed lines, a slit orthogonal to the feed lines is fabricated in the middle of the feed line layer of the metasurface. The numerical model is simulated using the HFSS software, where the full reconfigurable metasurface composed of 30×30 meta-atoms is constructed. A radiation box is assigned around the metasurface. Lumped RLC boundaries are assigned for the varactor diodes, and a plane wave is applied to illuminate the metasurface. Photographs of the fabricated metasurface are depicted in Fig. 4. A sample covering a usable surface of 180mm×180mm is fabricated using conventional printed circuit board (PCB) technology, and the varactor diodes are soldered on the metasurface using surface-mount component soldering technique. The bottom layer of the sample, shown in Fig. 4(b), comprises 20 flexible printed circuit (FPC) connectors that are utilized to connect the 900 meta-atoms to the power supply system.

 figure: Fig. 4.

Fig. 4. Photographs of the dynamic metasurface. (a) Top face of the fabricated sample. Ultrathin absorbing sheets, represented by the gray material, are placed around the usable surface to eliminate parasitic reflections. (b) Bottom face of the sample containing the bias lines and flexible printed circuit (FPC) connectors. (c) Usable part of the metasurface whose size is 180mm×180mm. (d) Zoomed detail of the metasurface showing the varactor-loaded meta-atom.

Download Full Size | PPT Slide | PDF

3. RESULTS AND DISCUSSION

A. Bessel Beam Generation

The Bessel beam, whose transverse intensity can be described by the Bessel functions of the first kind, is a nondiffracting beam. To generate the zeroth-order Bessel beam, the phase profile of an axicon lens is applied to satisfy the following equation [41]:

φB(x,y)=k|x|2+|y|2sinθ,
where k=2π/λ is the propagation constant in the free space with λ being the operating wavelength; x and y determine the position of the meta-atom in the Cartesian coordinate system and θ represents the tilt angle of the phase profile.

The phase profile described in Eq. (1) is implemented on the reconfigurable metasurface, which is illuminated by a plane wave with the electric field polarized along the x direction. The tilt angle θ of the Bessel beam phase profile is fixed to 14° for a Bessel beam generation with a single beam in the far field. The corresponding phase profiles of a zeroth-order Bessel beam for θ=14° at 8.5, 9, and 9.5 GHz are shown, respectively, in Figs. 5(a)–5(c). Near-field experimental measurements are carried out by using a broadband horn antenna placed at 150 cm away from the reconfigurable metasurface as a quasi-planar wave source. An EFS-105-12 all-dielectric fiber-optic active antenna [49] fixed on computer-controlled linear stages, which has a small dielectric head of dimensions 6.6mm×6.6mm and can operate over 2 to 12 GHz frequency band with high sensitivity, is used as the field-sensing probe for the information collection of the magnitude and phase of the electric field in the scanning plane. Both the horn antenna and probe are connected to the vector network analyzer. The numerical and experimental near-field results of the zeroth-order Bessel beam are depicted in Fig. 5 at three different frequencies. The normalized magnitude distribution in both xoz and yoz planes illustrates the nondiffracting property of the zeroth-order Bessel beam. To further characterize the performance of the generated Bessel beam, the normalized magnitude and phase distributions at z=15cm in the xoy plane are shown in the subfigures of each panel.

 figure: Fig. 5.

Fig. 5. (a)–(c) Phase profiles for the zeroth-order Bessel beam generation at 8.5, 9, and 9.5 GHz. (d)–(k) Numerical and experimental results of the zeroth-order Bessel beam at 8.5, 9, and 9.5 GHz. (d)–(f) Simulated electric field magnitude distributions in xoz and yoz planes, where the subfigures show the magnitude and phase distributions in the xoy transverse plane at z=15cm. (g)–(i) Corresponding experimental near-field mappings. (j), (k) Normalized far-field patterns in both xoz and yoz planes at 9.5 GHz.

Download Full Size | PPT Slide | PDF

Meanwhile, far-field simulations and measurements are also carried out to validate the performances. For the far-field measurements, the setup consists of using a small horn antenna in the 8.2–12.4 GHz frequency operation 50 cm far from the metasurface as feeding source. The feeding horn and the metasurface are placed on a rotating plate, and a broadband horn antenna is placed at 6 m away at the receiving end to collect the electric-field data in the far-field zone. A single beam is observed at the boresight (0°) in the xoz and yoz planes. It is clear that the Bessel beam is generated in a frequency band ranging from 8.5 to 9.5 GHz, which reveals the broadband property of the reconfigurable metasurface.

B. Vortex Beam Generation

As a method to enhance the channel capacity of communication links, orbital angular momentum (OAM) carried by vortex beams has attracted a lot of attention owing to the additional spatial degree of freedom and to the perfect orthogonality between different states, which is considered a promising transmission technique. To generate vortex beams, the phase shift to be implemented on the metasurface is expressed as [6]

φl(x,y)=l·arctan(y/x),
where l is the desired topological charge of the vortex beam.

The simulated near-field results utilizing the phase profile depicted in Fig. 6(a) for mode l=1 in the xoz and xoy planes are shown in Fig. 6(d) for 9.5 GHz frequency, where the hollow structure with null intensity at the center can be observed. The ring-shaped magnitude and spiral phase distributions, intrinsic features of OAM beams, can be clearly observed in the xoy plane at z=22cm. For the sake of demonstration, near-field measurements are also performed, where the doughnut-shaped structure and the vortex phase pattern can also be observed in Fig. 6(g), exhibiting a good agreement with the simulations. Besides, the hollow pattern can also be observed in the far-field region shown in Figs. 6(j) and 6(k), with a divergence angle of 30° between the two peaks.

 figure: Fig. 6.

Fig. 6. (a)–(c) Phase profiles for the generation of different types of vortex beams carrying OAM mode l=1 at 9.5 GHz. (d)–(k) Numerical and experimental results of different types of vortex beams carrying OAM mode l=1 at 9.5 GHz. (d)–(i) Near-field results of original, focusing, and nondiffracting vortex beams in xoz and xoy planes. (j), (k) Far-field results in xoz plane for the three vortex beams, where the patterns are normalized with respect to the nondiffracting one for simulations and measurements.

Download Full Size | PPT Slide | PDF

C. Focusing OAM

To convert the illuminating wave into a focusing vortex beam carrying OAM, a parabolic phase profile along the radial direction is superposed to the vortex beam phase profile for the focusing mechanism. Thus, the total phase φFOAM(x,y) for the focusing vortex beam satisfies the following equation [6]:

φFOAM(x,y)=l·arctan(y/x)+k(|x|2+|y|2+|f|2|f|),
where f is the focal length.

The near-field patterns of the focusing vortex beam using the phase profile shown in Fig. 6(b) are depicted in Figs. 6(e) and 6(h) with a focal length f=10cm for an OAM mode l=1 at 9.5 GHz. The simulation and measurement results in the xoz plane show that the energy of vortex beam converges at z=10cm. It is worth noting that the beam decays rapidly along the propagation direction beyond the focal point. The ring-shaped magnitude at the focal plane clearly shows a smaller inner diameter than the original OAM vortex beam. In the far-field region beyond the focal point, the focusing OAM beam diverges more than in the original configuration, exhibiting a peak-to-peak divergence angle of around 40°. Besides, the main lobes of the focusing vortex beam in the far field show lower magnitude than those of the original vortex beam for both simulation and measurement, as illustrated in Figs. 6(j) and 6(k), confirming the decay feature. Such feature can be particularly interesting in near-field communications or energy harvesting where a high level of energy is desired at a well-defined spatial location.

D. Nondiffracting Vortex Beam

A higher-order Bessel beam can be interpreted as a zeroth-order Bessel beam carrying an orbital angular momentum. By superposing the original vortex beam that is inherently divergent and a zeroth-order Bessel beam, a nondiffracting vortex beam, which has a concentrated energy distribution along the propagating direction, is achieved. The phase profile φBOAM(x,y) of the nondiffracting vortex beam can then be written as [6]

φBOAM(x,y)=l·arctan(y/x)+k|x|2+|y|2sinθ.

The nondiffracting vortex beam is particularly interesting, as it provides a solution to the divergence drawback of vortex beams. For this purpose, the nondiffracting vortex beam with OAM mode l=1 and presenting the phase profile shown in Fig. 6(c) is implemented on the metasurface. The results are shown in Figs. 6(f) and 6(i). In such a configuration, it can be observed that the Bessel vortex beam is less divergent compared with the original one. Furthermore, a hollow beam with nondiffractive propagation is achieved over a propagation distance up to 8λ0. Energy is concentrated around the central axis along the propagating direction in the xoz plane. Besides, the far-field results in the xoz plane highlight clearly the divergence reduction with the two main lobes at ±10° and the propagation characteristic enhancement with a higher energy of the main beam compared with the original vortex beam. Such a method of phase profile superposition can be further exploited to generate nondiffracting vortex beams with other topological modes.

E. Airy Beam Generation

An Airy beam, whose main beam propagates along a curved parabolic trajectory, is another kind of nondiffracting beam. The form of the Airy wave packet is verified as a solution to the Schrödinger equation describing a free particle [50]. Due to its diffraction-free characteristics, the Airy beam carries infinite energy, which in an experimental way is quasi-impossible to demonstrate. To overcome this problem and generate the Airy beam in an experimental environment, an exponential decaying factor is introduced to ensure a containment of the infinite Airy tail, and, despite such adjustment, the truncated Airy beam still exhibits a nondiffracting characteristic [51]. A one-dimensional Airy beam has been achieved from static and reconfigurable metasurfaces using the different possible schemes of phase only or amplitude and phase simultaneously modulation [5254]. However, a 2D Airy beam has only been generated from static metasurfaces [55]. Here, we propose to generate a 2D Airy beam from the reconfigurable metasurface. The 2D Airy beam can be implemented by the product of two 1D Airy beams accelerating along the x and y directions, respectively [56]. Therefore, the electric field envelope of the 2D Airy beam is written as [56]

ϕ(ξ=0,x,y)=Ai(ax)Ai(ay)exp(bx)exp(by),
where the two 1D Airy beams along the x and y axes share the same parameters a and b. a represents an arbitrary transverse scale; b is a positive value ensuring the exponential truncation of the theoretical Airy beam. a and b are related by b=αa, with α(1) being the exponential truncation factor. Ai(ax) and Ai(ay) are Airy functions; ξ=za2/k represents the normalized propagation distance along the z direction. We exploit the 1 bit coding phase scheme for the 2D Airy beam generation. The phase modulation profile, which varies between 90° and +90°, is described as [51]
φAiry(ξ=0,x,y)=arg[ϕ(ξ=0,x,y)]π/2.

Figure 7 presents the results obtained for the implementation of a 2D Airy beam with parameters a=42 and b=1 by applying the phase profile presented in Fig. 7(a), which is calculated from Eq. (6). The simulated magnitude distributions are presented in Figs. 7(b)–7(d), where the 3D view of the Airy beam is represented by two transverse planes and one longitudinal plane located at the diagonal of the xoy plane. The main Airy beam propagates along a parabolic trajectory in the longitudinal plane, as shown in Fig. 7(b). Owing to the equal transverse scale in the x and y directions, the total acceleration of the 2D Airy beam takes place along the diagonal direction of the xoy plane. Besides, the acceleration along the x and y axes can also be observed for both transverse planes located at z=6cm and z=15cm, as shown in Figs. 7(c) and 7(d), where the highest energy spot is located in the upper right corner. The corresponding experimental measurements validate the characteristics of the 2D Airy beam, and the parabolic trajectory is clearly visible in Fig. 7(e).

 figure: Fig. 7.

Fig. 7. (a) Phase profile for the generation of the 2D Airy beam with parameters a=42 and b=1 at 9.5 GHz. (b)–(g) Normalized magnitude distribution of the 2D Airy beam with parameter a=42 and b=1 at 9.5 GHz. (b) 3D numerical simulations consisting of one longitudinal plane along the diagonal of the xoy plane and two transverse planes at (c) z=15cm and (d) z=6cm. (e) 3D experimental measurements consisting of one longitudinal plane along the diagonal of the xoy plane and two transverse planes at (f) z=15cm and (g) z=6cm.

Download Full Size | PPT Slide | PDF

In addition to the above three complex beams, a plethora of other phase profiles, including beam splitting and hologram, can be considered and demonstrated from the elaborately designed dynamic metasurface. In a general manner, the proposed electronically reconfigurable metasurface can serve as a multitask platform to realize any functionality that can be implemented with a phase modulation. Besides, this reconfigurable metasurface is easy to integrate, which paves the way to construct software-controlled and intelligent meta-devices for the next generation of communication systems [57].

As a key factor to quantitatively evaluate the performances of the proposed metasurface platform for the different functionalities, the total efficiency is defined as the ratio of power carried by the complex beam PBeam with respect to the power of the incident wave Pinc:

η=PBeamPinc.

The efficiency is extracted from the experimental data in the xoy plane. In the case of the Bessel beam, the efficiency is found to be 34.47%, 34.32%, and 34.88% at 8.5, 9, and 9.5 GHz, respectively. For the generated mode 1 OAM beams at 9.5 GHz, the efficiency is calculated as 42.35% for the classical OAM beam at z=220mm, 42.53% for the nondiffracting OAM beam at z=220mm, and 38.66% for the focusing OAM beam at z=100mm. Finally, the efficiency at z=150mm of the generated Airy beam is calculated as 24.86%. Compared with passive multifunctional metasurfaces in Refs. [15,16] showing an efficiency higher than 72%, reconfigurable metasurfaces exhibit a lower efficiency [4548], due to ohmic losses introduced by the electronic components. The performances obtained with the proposed metasurface are consistent with previous works, as summarized in Table 1.

Tables Icon

Table 1. Comparison of Previous Studies on Multifunctional Metasurfaces

The absorption can then be calculated as

A=1PBeamPM,
where PBeam is the power carried by the complex beam and PM is the power of the reflected wave from a perfect metallic plate of similar dimensions. The absorption ratio of the zeroth-order Bessel beams at 8.5, 9, and 9.5 GHz is 52.44%, 57.06%, and 53.35%, respectively. The absorption ratio in the case of the classical vortex beam, focusing vortex beam, and nondiffracting vortex beam at 9.5 GHz is found to be 47.24%, 39.12%, and 49.95%, respectively. In the case of the Airy beam, an absorption ratio of 47.39% is measured at 9.5 GHz. It is worth noting that ohmic losses of the varactor diodes and, to a lesser extent, dielectric losses of the substrate have a distinct influence on the efficiency of the reconfigurable metasurface. Further improvement of the reflection efficiency may be achieved by using varactor diodes with lower ohmic losses and substrate with lower dielectric losses.

4. CONCLUSIONS

In summary, we have presented a novel 2D reflective reconfigurable metasurface, whose varactor diode-loaded meta-atom can be individually controlled by an elaborately designed voltage bias system to deliver a continuous phase variation, which can achieve an approximately 2π phase coverage over a wide frequency band and have nearly the same phase response with the position change of through via by utilizing the blind technique. The proposed reconfigurable metasurface has been numerically verified and experimentally demonstrated for complex beams generation in a wide frequency band spanning from 8.5 to 9.5 GHz. Zeroth-order Bessel beams with axicon phase profiles and different types of vortex beams, including classical, focusing, and nondiffracting vortex beams, are generated. Furthermore, the 2D Airy beam is achieved utilizing the 1 bit binary phase coding method. Experimental measurements, in excellent agreement with numerical simulations, highlight the outstanding performance of the reconfigurable metasurface for wavefronts tailoring. It is worth noting that the dynamic metasurface can achieve other functionalities by appropriately implementing their corresponding phase profiles. Interestingly, such a phase-tuning programmable metasurface can serve as a versatile platform in the microwave regime for far- and near-field wavefront manipulations.

Acknowledgment

R. Feng is supported in part by the Doctoral Students’ Long-Term Study Abroad Scholarship Fund of Xidian University and by the Chinese Scholarship Council.

Disclosures

The authors declare no conflicts of interest.

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

REFERENCES

1. B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface,” Appl. Phys. Lett. 111, 214101 (2017). [CrossRef]  

2. J. Xu, R. Li, J. Qin, S. Wang, and T. Han, “Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface,” Opt. Express 26, 20913–20919 (2018). [CrossRef]  

3. X. Huang, H. Yang, D. Zhang, and Y. Luo, “Ultrathin dual-band metasurface polarization converter,” IEEE Trans. Antennas Propag. 67, 4636–4641 (2019). [CrossRef]  

4. Y. Qi, B. Zhang, C. Liu, and X. Deng, “Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction,” IEEE Access 8, 116675–116684 (2020). [CrossRef]  

5. Q. Dai, Z. Li, L. Deng, N. Zhou, J. Deng, J. Tao, and G. Zheng, “Single-size nanostructured metasurface for dual-channel vortex beam generation,” Opt. Lett. 45, 3773–3776 (2020). [CrossRef]  

6. K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018). [CrossRef]  

7. B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas,” Opt. Express 26, 2613–2624 (2018). [CrossRef]  

8. X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019). [CrossRef]  

9. Y. Kato, S. Morita, H. Shiomi, and A. Sanada, “Ultrathin perfect absorbers for normal incident waves using Dirac cone metasurfaces with critical external coupling,” IEEE Microw. Wireless Compon. Lett. 30, 383–386 (2020). [CrossRef]  

10. Y. Li, A. Li, T. Cui, and D. F. Sievenpiper, “Multiwavelength multiplexing hologram designed using impedance metasurfaces,” IEEE Trans. Antennas Propag. 66, 6408–6413 (2018). [CrossRef]  

11. Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6, 1800121 (2018). [CrossRef]  

12. H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, and S. A. Maier, “Complex-amplitude metasurface-based orbital angular momentum holography in momentum space,” Nat. Nanotechnol. 15, 948–955 (2020). [CrossRef]  

13. C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020). [CrossRef]  

14. L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28, 1802205 (2018). [CrossRef]  

15. T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017). [CrossRef]  

16. T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5, 1600506 (2016). [CrossRef]  

17. Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11, 4186 (2020). [CrossRef]  

18. Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020). [CrossRef]  

19. M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017). [CrossRef]  

20. X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019). [CrossRef]  

21. K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019). [CrossRef]  

22. M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017). [CrossRef]  

23. X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, and T. J. Cui, “Digital metasurfaces: light-controllable digital coding metasurfaces,” Adv. Sci. 5, 1801028 (2018). [CrossRef]  

24. Y. Zhou, X. Y. Hu, C. Li, H. Yang, and Q. H. Gong, “All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range,” J. Mod. Opt. 65, 1–7 (2018). [CrossRef]  

25. J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015). [CrossRef]  

26. S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photon. Rev. 10, 1002–1008 (2016). [CrossRef]  

27. B. Gupta, S. Pandey, A. Nahata, T. Zhang, and A. Nahata, “Bistable physical geometries for terahertz plasmonic structures using shape memory alloys,” Adv. Opt. Mater. 5, 1601008 (2017). [CrossRef]  

28. H. S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016). [CrossRef]  

29. T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018). [CrossRef]  

30. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018). [CrossRef]  

31. Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016). [CrossRef]  

32. J. Hwang and J. W. Roh, “Electrically tunable two-dimensional metasurfaces at near-infrared wavelengths,” Opt. Express 25, 25071–25078 (2017). [CrossRef]  

33. Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater. 8, 1901548 (2020). [CrossRef]  

34. Y. Chai, H. Deng, and Q. Xiong, “A dynamically phase tunable metasurface for a broad bandwidth ultra-low radar cross section,” IEEE Access 8, 53006–53017 (2020). [CrossRef]  

35. A. de Lustrac, B. Ratni, G.-P. Piau, Y. Duval, and S. N. Burokur, “Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities,” ACS Appl. Electron. Mater. 3, 1184–1190 (2021). [CrossRef]  

36. X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020). [CrossRef]  

37. X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally controlled coding metasurface,” Sci. Rep. 6, 20663 (2016). [CrossRef]  

38. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light Sci. Appl. 3, e218 (2014). [CrossRef]  

39. H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016). [CrossRef]  

40. C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic waves,” Adv. Opt. Mater. 5, 1700485 (2017). [CrossRef]  

41. R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, and S. N. Burokur, “Flexible manipulation of Bessel-like beams with a reconfigurable metasurface,” Adv. Opt. Mater. 8, 2001084 (2020). [CrossRef]  

42. H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016). [CrossRef]  

43. V. Popov, B. Ratni, S. N. Burokur, and F. Boust, “Non-local reconfigurable sparse metasurface: efficient near-field and far-field wavefront manipulations,” Adv. Opt. Mater. 9, 202001316 (2021). [CrossRef]  

44. B. Liu, Y. He, S.-W. Wong, and Y. Li, “Multifunctional vortex beam generation by a dynamic reflective metasurface,” Adv. Opt. Mater. 9, 2001689 (2020). [CrossRef]  

45. J. Y. Dai, J. Zhao, Q. Cheng, and T. J. Cui, “Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface,” Light Sci. Appl. 7, 90 (2018). [CrossRef]  

46. C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, “Deep-learning-enabled self-adaptive microwave cloak without human intervention,” Nat. Photonics 14, 383–390 (2020). [CrossRef]  

47. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017). [CrossRef]  

48. Z. Wang, D. Liao, T. Zhang, T. Chen, Y. Ruan, and B. Zheng, “Metasurface-based focus-tunable mirror,” Opt. Express 27, 30332–30339 (2019). [CrossRef]  

49. http://www.enprobe.de/products_FO-Antennas.htm.

50. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979). [CrossRef]  

51. R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, and S. N. Burokur, “Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface,” Phys. Rev. Appl. 14, 014081 (2020). [CrossRef]  

52. E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with C-aperture metasurface,” Adv. Opt. Mater. 5, 1601028 (2017). [CrossRef]  

53. H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019). [CrossRef]  

54. Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, and T. Xu, “Autofocusing Airy beams generated by all-dielectric metasurface for visible light,” Opt. Express 25, 9285–9294 (2017). [CrossRef]  

55. Z.-W. Miao, Z.-C. Hao, B.-B. Jin, and Z. N. Chen, “Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface,” IEEE Trans. Antennas Propag. 68, 1503–1513 (2019). [CrossRef]  

56. Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020). [CrossRef]  

57. C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag. 56, 162–169 (2018). [CrossRef]  

References

  • View by:

  1. B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface,” Appl. Phys. Lett. 111, 214101 (2017).
    [Crossref]
  2. J. Xu, R. Li, J. Qin, S. Wang, and T. Han, “Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface,” Opt. Express 26, 20913–20919 (2018).
    [Crossref]
  3. X. Huang, H. Yang, D. Zhang, and Y. Luo, “Ultrathin dual-band metasurface polarization converter,” IEEE Trans. Antennas Propag. 67, 4636–4641 (2019).
    [Crossref]
  4. Y. Qi, B. Zhang, C. Liu, and X. Deng, “Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction,” IEEE Access 8, 116675–116684 (2020).
    [Crossref]
  5. Q. Dai, Z. Li, L. Deng, N. Zhou, J. Deng, J. Tao, and G. Zheng, “Single-size nanostructured metasurface for dual-channel vortex beam generation,” Opt. Lett. 45, 3773–3776 (2020).
    [Crossref]
  6. K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
    [Crossref]
  7. B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas,” Opt. Express 26, 2613–2624 (2018).
    [Crossref]
  8. X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019).
    [Crossref]
  9. Y. Kato, S. Morita, H. Shiomi, and A. Sanada, “Ultrathin perfect absorbers for normal incident waves using Dirac cone metasurfaces with critical external coupling,” IEEE Microw. Wireless Compon. Lett. 30, 383–386 (2020).
    [Crossref]
  10. Y. Li, A. Li, T. Cui, and D. F. Sievenpiper, “Multiwavelength multiplexing hologram designed using impedance metasurfaces,” IEEE Trans. Antennas Propag. 66, 6408–6413 (2018).
    [Crossref]
  11. Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6, 1800121 (2018).
    [Crossref]
  12. H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, and S. A. Maier, “Complex-amplitude metasurface-based orbital angular momentum holography in momentum space,” Nat. Nanotechnol. 15, 948–955 (2020).
    [Crossref]
  13. C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020).
    [Crossref]
  14. L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28, 1802205 (2018).
    [Crossref]
  15. T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
    [Crossref]
  16. T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5, 1600506 (2016).
    [Crossref]
  17. Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11, 4186 (2020).
    [Crossref]
  18. Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020).
    [Crossref]
  19. M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
    [Crossref]
  20. X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
    [Crossref]
  21. K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
    [Crossref]
  22. M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
    [Crossref]
  23. X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, and T. J. Cui, “Digital metasurfaces: light-controllable digital coding metasurfaces,” Adv. Sci. 5, 1801028 (2018).
    [Crossref]
  24. Y. Zhou, X. Y. Hu, C. Li, H. Yang, and Q. H. Gong, “All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range,” J. Mod. Opt. 65, 1–7 (2018).
    [Crossref]
  25. J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
    [Crossref]
  26. S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photon. Rev. 10, 1002–1008 (2016).
    [Crossref]
  27. B. Gupta, S. Pandey, A. Nahata, T. Zhang, and A. Nahata, “Bistable physical geometries for terahertz plasmonic structures using shape memory alloys,” Adv. Opt. Mater. 5, 1601008 (2017).
    [Crossref]
  28. H. S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
    [Crossref]
  29. T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
    [Crossref]
  30. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
    [Crossref]
  31. Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
    [Crossref]
  32. J. Hwang and J. W. Roh, “Electrically tunable two-dimensional metasurfaces at near-infrared wavelengths,” Opt. Express 25, 25071–25078 (2017).
    [Crossref]
  33. Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater. 8, 1901548 (2020).
    [Crossref]
  34. Y. Chai, H. Deng, and Q. Xiong, “A dynamically phase tunable metasurface for a broad bandwidth ultra-low radar cross section,” IEEE Access 8, 53006–53017 (2020).
    [Crossref]
  35. A. de Lustrac, B. Ratni, G.-P. Piau, Y. Duval, and S. N. Burokur, “Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities,” ACS Appl. Electron. Mater. 3, 1184–1190 (2021).
    [Crossref]
  36. X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
    [Crossref]
  37. X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
    [Crossref]
  38. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light Sci. Appl. 3, e218 (2014).
    [Crossref]
  39. H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
    [Crossref]
  40. C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic waves,” Adv. Opt. Mater. 5, 1700485 (2017).
    [Crossref]
  41. R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, and S. N. Burokur, “Flexible manipulation of Bessel-like beams with a reconfigurable metasurface,” Adv. Opt. Mater. 8, 2001084 (2020).
    [Crossref]
  42. H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
    [Crossref]
  43. V. Popov, B. Ratni, S. N. Burokur, and F. Boust, “Non-local reconfigurable sparse metasurface: efficient near-field and far-field wavefront manipulations,” Adv. Opt. Mater. 9, 202001316 (2021).
    [Crossref]
  44. B. Liu, Y. He, S.-W. Wong, and Y. Li, “Multifunctional vortex beam generation by a dynamic reflective metasurface,” Adv. Opt. Mater. 9, 2001689 (2020).
    [Crossref]
  45. J. Y. Dai, J. Zhao, Q. Cheng, and T. J. Cui, “Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface,” Light Sci. Appl. 7, 90 (2018).
    [Crossref]
  46. C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, “Deep-learning-enabled self-adaptive microwave cloak without human intervention,” Nat. Photonics 14, 383–390 (2020).
    [Crossref]
  47. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
    [Crossref]
  48. Z. Wang, D. Liao, T. Zhang, T. Chen, Y. Ruan, and B. Zheng, “Metasurface-based focus-tunable mirror,” Opt. Express 27, 30332–30339 (2019).
    [Crossref]
  49. http://www.enprobe.de/products_FO-Antennas.htm .
  50. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
    [Crossref]
  51. R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, and S. N. Burokur, “Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface,” Phys. Rev. Appl. 14, 014081 (2020).
    [Crossref]
  52. E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with C-aperture metasurface,” Adv. Opt. Mater. 5, 1601028 (2017).
    [Crossref]
  53. H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
    [Crossref]
  54. Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, and T. Xu, “Autofocusing Airy beams generated by all-dielectric metasurface for visible light,” Opt. Express 25, 9285–9294 (2017).
    [Crossref]
  55. Z.-W. Miao, Z.-C. Hao, B.-B. Jin, and Z. N. Chen, “Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface,” IEEE Trans. Antennas Propag. 68, 1503–1513 (2019).
    [Crossref]
  56. Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020).
    [Crossref]
  57. C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag. 56, 162–169 (2018).
    [Crossref]

2021 (2)

A. de Lustrac, B. Ratni, G.-P. Piau, Y. Duval, and S. N. Burokur, “Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities,” ACS Appl. Electron. Mater. 3, 1184–1190 (2021).
[Crossref]

V. Popov, B. Ratni, S. N. Burokur, and F. Boust, “Non-local reconfigurable sparse metasurface: efficient near-field and far-field wavefront manipulations,” Adv. Opt. Mater. 9, 202001316 (2021).
[Crossref]

2020 (15)

B. Liu, Y. He, S.-W. Wong, and Y. Li, “Multifunctional vortex beam generation by a dynamic reflective metasurface,” Adv. Opt. Mater. 9, 2001689 (2020).
[Crossref]

C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, “Deep-learning-enabled self-adaptive microwave cloak without human intervention,” Nat. Photonics 14, 383–390 (2020).
[Crossref]

R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, and S. N. Burokur, “Flexible manipulation of Bessel-like beams with a reconfigurable metasurface,” Adv. Opt. Mater. 8, 2001084 (2020).
[Crossref]

R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, and S. N. Burokur, “Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface,” Phys. Rev. Appl. 14, 014081 (2020).
[Crossref]

Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020).
[Crossref]

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater. 8, 1901548 (2020).
[Crossref]

Y. Chai, H. Deng, and Q. Xiong, “A dynamically phase tunable metasurface for a broad bandwidth ultra-low radar cross section,” IEEE Access 8, 53006–53017 (2020).
[Crossref]

Y. Qi, B. Zhang, C. Liu, and X. Deng, “Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction,” IEEE Access 8, 116675–116684 (2020).
[Crossref]

Q. Dai, Z. Li, L. Deng, N. Zhou, J. Deng, J. Tao, and G. Zheng, “Single-size nanostructured metasurface for dual-channel vortex beam generation,” Opt. Lett. 45, 3773–3776 (2020).
[Crossref]

H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, and S. A. Maier, “Complex-amplitude metasurface-based orbital angular momentum holography in momentum space,” Nat. Nanotechnol. 15, 948–955 (2020).
[Crossref]

C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020).
[Crossref]

Y. Kato, S. Morita, H. Shiomi, and A. Sanada, “Ultrathin perfect absorbers for normal incident waves using Dirac cone metasurfaces with critical external coupling,” IEEE Microw. Wireless Compon. Lett. 30, 383–386 (2020).
[Crossref]

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11, 4186 (2020).
[Crossref]

Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020).
[Crossref]

2019 (7)

X. Huang, H. Yang, D. Zhang, and Y. Luo, “Ultrathin dual-band metasurface polarization converter,” IEEE Trans. Antennas Propag. 67, 4636–4641 (2019).
[Crossref]

X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019).
[Crossref]

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

Z. Wang, D. Liao, T. Zhang, T. Chen, Y. Ruan, and B. Zheng, “Metasurface-based focus-tunable mirror,” Opt. Express 27, 30332–30339 (2019).
[Crossref]

Z.-W. Miao, Z.-C. Hao, B.-B. Jin, and Z. N. Chen, “Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface,” IEEE Trans. Antennas Propag. 68, 1503–1513 (2019).
[Crossref]

2018 (12)

C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag. 56, 162–169 (2018).
[Crossref]

J. Y. Dai, J. Zhao, Q. Cheng, and T. J. Cui, “Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface,” Light Sci. Appl. 7, 90 (2018).
[Crossref]

X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, and T. J. Cui, “Digital metasurfaces: light-controllable digital coding metasurfaces,” Adv. Sci. 5, 1801028 (2018).
[Crossref]

Y. Zhou, X. Y. Hu, C. Li, H. Yang, and Q. H. Gong, “All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range,” J. Mod. Opt. 65, 1–7 (2018).
[Crossref]

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

J. Xu, R. Li, J. Qin, S. Wang, and T. Han, “Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface,” Opt. Express 26, 20913–20919 (2018).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref]

B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas,” Opt. Express 26, 2613–2624 (2018).
[Crossref]

Y. Li, A. Li, T. Cui, and D. F. Sievenpiper, “Multiwavelength multiplexing hologram designed using impedance metasurfaces,” IEEE Trans. Antennas Propag. 66, 6408–6413 (2018).
[Crossref]

Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6, 1800121 (2018).
[Crossref]

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28, 1802205 (2018).
[Crossref]

2017 (10)

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface,” Appl. Phys. Lett. 111, 214101 (2017).
[Crossref]

B. Gupta, S. Pandey, A. Nahata, T. Zhang, and A. Nahata, “Bistable physical geometries for terahertz plasmonic structures using shape memory alloys,” Adv. Opt. Mater. 5, 1601008 (2017).
[Crossref]

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

J. Hwang and J. W. Roh, “Electrically tunable two-dimensional metasurfaces at near-infrared wavelengths,” Opt. Express 25, 25071–25078 (2017).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic waves,” Adv. Opt. Mater. 5, 1700485 (2017).
[Crossref]

Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, and T. Xu, “Autofocusing Airy beams generated by all-dielectric metasurface for visible light,” Opt. Express 25, 9285–9294 (2017).
[Crossref]

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with C-aperture metasurface,” Adv. Opt. Mater. 5, 1601028 (2017).
[Crossref]

2016 (7)

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[Crossref]

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photon. Rev. 10, 1002–1008 (2016).
[Crossref]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
[Crossref]

H. S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5, 1600506 (2016).
[Crossref]

2015 (1)

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref]

2014 (1)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

1979 (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[Crossref]

Agarwal, R.

H. S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

Akyildiz, I.

C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag. 56, 162–169 (2018).
[Crossref]

Alù, A.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

Arbabi, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photon. Rev. 10, 1002–1008 (2016).
[Crossref]

Arbabi, E.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photon. Rev. 10, 1002–1008 (2016).
[Crossref]

Atwater, H. A.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Bai, G. D.

X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, and T. J. Cui, “Digital metasurfaces: light-controllable digital coding metasurfaces,” Adv. Sci. 5, 1801028 (2018).
[Crossref]

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28, 1802205 (2018).
[Crossref]

Bai, L.

X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, and T. J. Cui, “Digital metasurfaces: light-controllable digital coding metasurfaces,” Adv. Sci. 5, 1801028 (2018).
[Crossref]

Bai, X.

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[Crossref]

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[Crossref]

Boust, F.

V. Popov, B. Ratni, S. N. Burokur, and F. Boust, “Non-local reconfigurable sparse metasurface: efficient near-field and far-field wavefront manipulations,” Adv. Opt. Mater. 9, 202001316 (2021).
[Crossref]

Brener, I.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Bürger, J.

H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, and S. A. Maier, “Complex-amplitude metasurface-based orbital angular momentum holography in momentum space,” Nat. Nanotechnol. 15, 948–955 (2020).
[Crossref]

Burokur, S. N.

A. de Lustrac, B. Ratni, G.-P. Piau, Y. Duval, and S. N. Burokur, “Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities,” ACS Appl. Electron. Mater. 3, 1184–1190 (2021).
[Crossref]

V. Popov, B. Ratni, S. N. Burokur, and F. Boust, “Non-local reconfigurable sparse metasurface: efficient near-field and far-field wavefront manipulations,” Adv. Opt. Mater. 9, 202001316 (2021).
[Crossref]

R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, and S. N. Burokur, “Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface,” Phys. Rev. Appl. 14, 014081 (2020).
[Crossref]

R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, and S. N. Burokur, “Flexible manipulation of Bessel-like beams with a reconfigurable metasurface,” Adv. Opt. Mater. 8, 2001084 (2020).
[Crossref]

C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020).
[Crossref]

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11, 4186 (2020).
[Crossref]

Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020).
[Crossref]

Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6, 1800121 (2018).
[Crossref]

B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas,” Opt. Express 26, 2613–2624 (2018).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref]

B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface,” Appl. Phys. Lett. 111, 214101 (2017).
[Crossref]

Cai, T.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5, 1600506 (2016).
[Crossref]

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

Camacho-Morales, R.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Cao, A.

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

Cao, X.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[Crossref]

Capasso, F.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

Chai, Y.

Y. Chai, H. Deng, and Q. Xiong, “A dynamically phase tunable metasurface for a broad bandwidth ultra-low radar cross section,” IEEE Access 8, 53006–53017 (2020).
[Crossref]

Chen, H.

C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, “Deep-learning-enabled self-adaptive microwave cloak without human intervention,” Nat. Photonics 14, 383–390 (2020).
[Crossref]

X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Chen, K.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

Chen, L.

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

Chen, S.

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

Chen, T.

Chen, T. Y.

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
[Crossref]

Chen, X.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[Crossref]

Chen, X. Q.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28, 1802205 (2018).
[Crossref]

Chen, Y.

Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020).
[Crossref]

Chen, Z. N.

Z.-W. Miao, Z.-C. Hao, B.-B. Jin, and Z. N. Chen, “Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface,” IEEE Trans. Antennas Propag. 68, 1503–1513 (2019).
[Crossref]

Cheng, Q.

J. Y. Dai, J. Zhao, Q. Cheng, and T. J. Cui, “Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface,” Light Sci. Appl. 7, 90 (2018).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

Cui, T.

Y. Li, A. Li, T. Cui, and D. F. Sievenpiper, “Multiwavelength multiplexing hologram designed using impedance metasurfaces,” IEEE Trans. Antennas Propag. 66, 6408–6413 (2018).
[Crossref]

Cui, T. J.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28, 1802205 (2018).
[Crossref]

X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, and T. J. Cui, “Digital metasurfaces: light-controllable digital coding metasurfaces,” Adv. Sci. 5, 1801028 (2018).
[Crossref]

J. Y. Dai, J. Zhao, Q. Cheng, and T. J. Cui, “Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface,” Light Sci. Appl. 7, 90 (2018).
[Crossref]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

Dai, J. Y.

J. Y. Dai, J. Zhao, Q. Cheng, and T. J. Cui, “Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface,” Light Sci. Appl. 7, 90 (2018).
[Crossref]

Dai, Q.

de Lustrac, A.

A. de Lustrac, B. Ratni, G.-P. Piau, Y. Duval, and S. N. Burokur, “Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities,” ACS Appl. Electron. Mater. 3, 1184–1190 (2021).
[Crossref]

R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, and S. N. Burokur, “Flexible manipulation of Bessel-like beams with a reconfigurable metasurface,” Adv. Opt. Mater. 8, 2001084 (2020).
[Crossref]

R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, and S. N. Burokur, “Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface,” Phys. Rev. Appl. 14, 014081 (2020).
[Crossref]

B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas,” Opt. Express 26, 2613–2624 (2018).
[Crossref]

B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface,” Appl. Phys. Lett. 111, 214101 (2017).
[Crossref]

Deng, H.

Y. Chai, H. Deng, and Q. Xiong, “A dynamically phase tunable metasurface for a broad bandwidth ultra-low radar cross section,” IEEE Access 8, 53006–53017 (2020).
[Crossref]

Deng, J.

Deng, L.

Deng, X.

Y. Qi, B. Zhang, C. Liu, and X. Deng, “Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction,” IEEE Access 8, 116675–116684 (2020).
[Crossref]

Ding, X.

C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020).
[Crossref]

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11, 4186 (2020).
[Crossref]

Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020).
[Crossref]

R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, and S. N. Burokur, “Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface,” Phys. Rev. Appl. 14, 014081 (2020).
[Crossref]

Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6, 1800121 (2018).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

Dolgova, T. V.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Duan, J. W.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
[Crossref]

Duval, Y.

A. de Lustrac, B. Ratni, G.-P. Piau, Y. Duval, and S. N. Burokur, “Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities,” ACS Appl. Electron. Mater. 3, 1184–1190 (2021).
[Crossref]

Ee, H. S.

H. S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

Fan, Q.

Fan, Y.

X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019).
[Crossref]

Fang, X.

H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, and S. A. Maier, “Complex-amplitude metasurface-based orbital angular momentum holography in momentum space,” Nat. Nanotechnol. 15, 948–955 (2020).
[Crossref]

Faraji-Dana, M.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

Faraon, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photon. Rev. 10, 1002–1008 (2016).
[Crossref]

Feng, M.

X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019).
[Crossref]

Feng, R.

R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, and S. N. Burokur, “Flexible manipulation of Bessel-like beams with a reconfigurable metasurface,” Adv. Opt. Mater. 8, 2001084 (2020).
[Crossref]

R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, and S. N. Burokur, “Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface,” Phys. Rev. Appl. 14, 014081 (2020).
[Crossref]

Feng, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

Fu, X.

X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019).
[Crossref]

Gao, J.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[Crossref]

Genevet, P.

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11, 4186 (2020).
[Crossref]

Gong, Q. H.

Y. Zhou, X. Y. Hu, C. Li, H. Yang, and Q. H. Gong, “All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range,” J. Mod. Opt. 65, 1–7 (2018).
[Crossref]

Gu, X.

Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6, 1800121 (2018).
[Crossref]

Guan, C.

C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020).
[Crossref]

Guan, F. X.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
[Crossref]

Guo, H.

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater. 8, 1901548 (2020).
[Crossref]

Guo, H. J.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
[Crossref]

Gupta, B.

B. Gupta, S. Pandey, A. Nahata, T. Zhang, and A. Nahata, “Bistable physical geometries for terahertz plasmonic structures using shape memory alloys,” Adv. Opt. Mater. 5, 1601008 (2017).
[Crossref]

Han, J.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

Han, S.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Han, T.

Hao, W.

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

Hao, Z.-C.

Z.-W. Miao, Z.-C. Hao, B.-B. Jin, and Z. N. Chen, “Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface,” IEEE Trans. Antennas Propag. 68, 1503–1513 (2019).
[Crossref]

He, C.

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

He, Q.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5, 1600506 (2016).
[Crossref]

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

He, Y.

B. Liu, Y. He, S.-W. Wong, and Y. Li, “Multifunctional vortex beam generation by a dynamic reflective metasurface,” Adv. Opt. Mater. 9, 2001689 (2020).
[Crossref]

Hong, J.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with C-aperture metasurface,” Adv. Opt. Mater. 5, 1601028 (2017).
[Crossref]

Horie, Y.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photon. Rev. 10, 1002–1008 (2016).
[Crossref]

Hu, W.

Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020).
[Crossref]

Hu, X. Y.

Y. Zhou, X. Y. Hu, C. Li, H. Yang, and Q. H. Gong, “All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range,” J. Mod. Opt. 65, 1–7 (2018).
[Crossref]

Huang, C.

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic waves,” Adv. Opt. Mater. 5, 1700485 (2017).
[Crossref]

Huang, X.

X. Huang, H. Yang, D. Zhang, and Y. Luo, “Ultrathin dual-band metasurface polarization converter,” IEEE Trans. Antennas Propag. 67, 4636–4641 (2019).
[Crossref]

Huang, Y.

Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020).
[Crossref]

Huang, Y. W.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Huo, P.

Hwang, J.

Inserra, D.

Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020).
[Crossref]

Ioannidis, S.

C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag. 56, 162–169 (2018).
[Crossref]

Jang, J.

H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, and S. A. Maier, “Complex-amplitude metasurface-based orbital angular momentum holography in momentum space,” Nat. Nanotechnol. 15, 948–955 (2020).
[Crossref]

Jiang, T.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

Jiang, W. X.

X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, and T. J. Cui, “Digital metasurfaces: light-controllable digital coding metasurfaces,” Adv. Sci. 5, 1801028 (2018).
[Crossref]

Jiang, Z.

R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, and S. N. Burokur, “Flexible manipulation of Bessel-like beams with a reconfigurable metasurface,” Adv. Opt. Mater. 8, 2001084 (2020).
[Crossref]

Jin, B.-B.

Z.-W. Miao, Z.-C. Hao, B.-B. Jin, and Z. N. Chen, “Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface,” IEEE Trans. Antennas Propag. 68, 1503–1513 (2019).
[Crossref]

Jin, M.

C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020).
[Crossref]

Jin, R.

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

Jing, L.

C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, “Deep-learning-enabled self-adaptive microwave cloak without human intervention,” Nat. Photonics 14, 383–390 (2020).
[Crossref]

Jung, I. W.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

Kamali, K. Z.

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

Kamali, S. M.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photon. Rev. 10, 1002–1008 (2016).
[Crossref]

Kato, Y.

Y. Kato, S. Morita, H. Shiomi, and A. Sanada, “Ultrathin perfect absorbers for normal incident waves using Dirac cone metasurfaces with critical external coupling,” IEEE Microw. Wireless Compon. Lett. 30, 383–386 (2020).
[Crossref]

Keeler, G.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Kim, H.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with C-aperture metasurface,” Adv. Opt. Mater. 5, 1601028 (2017).
[Crossref]

Kim, J.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with C-aperture metasurface,” Adv. Opt. Mater. 5, 1601028 (2017).
[Crossref]

Kim, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

Kivshar, Y. S.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Komar, A.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Kong, F.

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

Kruk, S.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Lee, B.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with C-aperture metasurface,” Adv. Opt. Mater. 5, 1601028 (2017).
[Crossref]

Lee, G.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with C-aperture metasurface,” Adv. Opt. Mater. 5, 1601028 (2017).
[Crossref]

Lee, H. W.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Lee, K.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with C-aperture metasurface,” Adv. Opt. Mater. 5, 1601028 (2017).
[Crossref]

Li, A.

Y. Li, A. Li, T. Cui, and D. F. Sievenpiper, “Multiwavelength multiplexing hologram designed using impedance metasurfaces,” IEEE Trans. Antennas Propag. 66, 6408–6413 (2018).
[Crossref]

Li, C.

Y. Zhou, X. Y. Hu, C. Li, H. Yang, and Q. H. Gong, “All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range,” J. Mod. Opt. 65, 1–7 (2018).
[Crossref]

Li, E.

C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, “Deep-learning-enabled self-adaptive microwave cloak without human intervention,” Nat. Photonics 14, 383–390 (2020).
[Crossref]

Li, G.

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

Li, H.

C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020).
[Crossref]

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

Li, J.

Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020).
[Crossref]

Li, M.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[Crossref]

Li, R.

Li, S.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[Crossref]

Li, X.

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

Li, Y.

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater. 8, 1901548 (2020).
[Crossref]

B. Liu, Y. He, S.-W. Wong, and Y. Li, “Multifunctional vortex beam generation by a dynamic reflective metasurface,” Adv. Opt. Mater. 9, 2001689 (2020).
[Crossref]

X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019).
[Crossref]

Y. Li, A. Li, T. Cui, and D. F. Sievenpiper, “Multiwavelength multiplexing hologram designed using impedance metasurfaces,” IEEE Trans. Antennas Propag. 66, 6408–6413 (2018).
[Crossref]

Li, Z.

Liang, X.

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

Liang, Y.

Liao, D.

Liaskos, C.

C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag. 56, 162–169 (2018).
[Crossref]

Lin, J.

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater. 8, 1901548 (2020).
[Crossref]

Liu, B.

B. Liu, Y. He, S.-W. Wong, and Y. Li, “Multifunctional vortex beam generation by a dynamic reflective metasurface,” Adv. Opt. Mater. 9, 2001689 (2020).
[Crossref]

Liu, C.

Y. Qi, B. Zhang, C. Liu, and X. Deng, “Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction,” IEEE Access 8, 116675–116684 (2020).
[Crossref]

Liu, J.

C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020).
[Crossref]

Liu, M.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

Liu, S.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Liu, X.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

Lopez, D.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

Lu, M.

Luo, W.

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

Luo, X.

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic waves,” Adv. Opt. Mater. 5, 1700485 (2017).
[Crossref]

Luo, Y.

X. Huang, H. Yang, D. Zhang, and Y. Luo, “Ultrathin dual-band metasurface polarization converter,” IEEE Trans. Antennas Propag. 67, 4636–4641 (2019).
[Crossref]

Ma, Q.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28, 1802205 (2018).
[Crossref]

Ma, S.

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

Maier, S. A.

H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, and S. A. Maier, “Complex-amplitude metasurface-based orbital angular momentum holography in momentum space,” Nat. Nanotechnol. 15, 948–955 (2020).
[Crossref]

Miao, Z.-W.

Z.-W. Miao, Z.-C. Hao, B.-B. Jin, and Z. N. Chen, “Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface,” IEEE Trans. Antennas Propag. 68, 1503–1513 (2019).
[Crossref]

Miroshnichenko, A. E.

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Monticone, F.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

Morita, S.

Y. Kato, S. Morita, H. Shiomi, and A. Sanada, “Ultrathin perfect absorbers for normal incident waves using Dirac cone metasurfaces with critical external coupling,” IEEE Microw. Wireless Compon. Lett. 30, 383–386 (2020).
[Crossref]

Nahata, A.

B. Gupta, S. Pandey, A. Nahata, T. Zhang, and A. Nahata, “Bistable physical geometries for terahertz plasmonic structures using shape memory alloys,” Adv. Opt. Mater. 5, 1601008 (2017).
[Crossref]

B. Gupta, S. Pandey, A. Nahata, T. Zhang, and A. Nahata, “Bistable physical geometries for terahertz plasmonic structures using shape memory alloys,” Adv. Opt. Mater. 5, 1601008 (2017).
[Crossref]

Neshev, D.

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

Neshev, D. N.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Nie, S.

C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag. 56, 162–169 (2018).
[Crossref]

Ou, J. Y.

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref]

Pala, R. A.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Pandey, S.

B. Gupta, S. Pandey, A. Nahata, T. Zhang, and A. Nahata, “Bistable physical geometries for terahertz plasmonic structures using shape memory alloys,” Adv. Opt. Mater. 5, 1601008 (2017).
[Crossref]

Park, H.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with C-aperture metasurface,” Adv. Opt. Mater. 5, 1601028 (2017).
[Crossref]

Pertsch, T.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Piau, G.-P.

A. de Lustrac, B. Ratni, G.-P. Piau, Y. Duval, and S. N. Burokur, “Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities,” ACS Appl. Electron. Mater. 3, 1184–1190 (2021).
[Crossref]

B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas,” Opt. Express 26, 2613–2624 (2018).
[Crossref]

B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface,” Appl. Phys. Lett. 111, 214101 (2017).
[Crossref]

Pitsillides, A.

C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag. 56, 162–169 (2018).
[Crossref]

Plum, E.

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref]

Popov, V.

V. Popov, B. Ratni, S. N. Burokur, and F. Boust, “Non-local reconfigurable sparse metasurface: efficient near-field and far-field wavefront manipulations,” Adv. Opt. Mater. 9, 202001316 (2021).
[Crossref]

Qi, M. Q.

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

Qi, Y.

Y. Qi, B. Zhang, C. Liu, and X. Deng, “Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction,” IEEE Access 8, 116675–116684 (2020).
[Crossref]

Qian, C.

C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, “Deep-learning-enabled self-adaptive microwave cloak without human intervention,” Nat. Photonics 14, 383–390 (2020).
[Crossref]

Qian, J.

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

Qin, J.

Qiu, C.-W.

Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020).
[Crossref]

X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, and T. J. Cui, “Digital metasurfaces: light-controllable digital coding metasurfaces,” Adv. Sci. 5, 1801028 (2018).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

Qu, S.

X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019).
[Crossref]

Rahmani, M.

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Ratni, B.

A. de Lustrac, B. Ratni, G.-P. Piau, Y. Duval, and S. N. Burokur, “Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities,” ACS Appl. Electron. Mater. 3, 1184–1190 (2021).
[Crossref]

V. Popov, B. Ratni, S. N. Burokur, and F. Boust, “Non-local reconfigurable sparse metasurface: efficient near-field and far-field wavefront manipulations,” Adv. Opt. Mater. 9, 202001316 (2021).
[Crossref]

R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, and S. N. Burokur, “Flexible manipulation of Bessel-like beams with a reconfigurable metasurface,” Adv. Opt. Mater. 8, 2001084 (2020).
[Crossref]

Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020).
[Crossref]

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11, 4186 (2020).
[Crossref]

R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, and S. N. Burokur, “Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface,” Phys. Rev. Appl. 14, 014081 (2020).
[Crossref]

B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas,” Opt. Express 26, 2613–2624 (2018).
[Crossref]

Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6, 1800121 (2018).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref]

B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface,” Appl. Phys. Lett. 111, 214101 (2017).
[Crossref]

Ren, H.

H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, and S. A. Maier, “Complex-amplitude metasurface-based orbital angular momentum holography in momentum space,” Nat. Nanotechnol. 15, 948–955 (2020).
[Crossref]

Rho, J.

H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, and S. A. Maier, “Complex-amplitude metasurface-based orbital angular momentum holography in momentum space,” Nat. Nanotechnol. 15, 948–955 (2020).
[Crossref]

Roh, J. W.

Roy, T.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

Ruan, Y.

Sanada, A.

Y. Kato, S. Morita, H. Shiomi, and A. Sanada, “Ultrathin perfect absorbers for normal incident waves using Dirac cone metasurfaces with critical external coupling,” IEEE Microw. Wireless Compon. Lett. 30, 383–386 (2020).
[Crossref]

Shcherbakov, M. R.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Shen, L.

C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, “Deep-learning-enabled self-adaptive microwave cloak without human intervention,” Nat. Photonics 14, 383–390 (2020).
[Crossref]

Shen, Y.

C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, “Deep-learning-enabled self-adaptive microwave cloak without human intervention,” Nat. Photonics 14, 383–390 (2020).
[Crossref]

Shiomi, H.

Y. Kato, S. Morita, H. Shiomi, and A. Sanada, “Ultrathin perfect absorbers for normal incident waves using Dirac cone metasurfaces with critical external coupling,” IEEE Microw. Wireless Compon. Lett. 30, 383–386 (2020).
[Crossref]

Sievenpiper, D. F.

Y. Li, A. Li, T. Cui, and D. F. Sievenpiper, “Multiwavelength multiplexing hologram designed using impedance metasurfaces,” IEEE Trans. Antennas Propag. 66, 6408–6413 (2018).
[Crossref]

Sokhoyan, R.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Song, E.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with C-aperture metasurface,” Adv. Opt. Mater. 5, 1601028 (2017).
[Crossref]

Song, Q.

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11, 4186 (2020).
[Crossref]

Staude, I.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Sun, B.

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic waves,” Adv. Opt. Mater. 5, 1700485 (2017).
[Crossref]

Sun, S.

Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020).
[Crossref]

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

Sun, S. L.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5, 1600506 (2016).
[Crossref]

Sun, W.

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater. 8, 1901548 (2020).
[Crossref]

Sun, Y.

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

Tang, J.

X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, and T. J. Cui, “Digital metasurfaces: light-controllable digital coding metasurfaces,” Adv. Sci. 5, 1801028 (2018).
[Crossref]

Tang, K.

Tang, S.

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

Tang, S. W.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5, 1600506 (2016).
[Crossref]

Tang, W. X.

X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, and T. J. Cui, “Digital metasurfaces: light-controllable digital coding metasurfaces,” Adv. Sci. 5, 1801028 (2018).
[Crossref]

Tao, J.

Thyagarajan, K.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Tian, Z.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

Troccoli, M.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

Tsai, D. P.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Tsioliaridou, A.

C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag. 56, 162–169 (2018).
[Crossref]

Vabishchevich, P. P.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Valente, J.

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref]

Vaskin, A.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

Wan, X.

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

Wang, D.

Wang, G.

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

Wang, G. M.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5, 1600506 (2016).
[Crossref]

Wang, J.

X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019).
[Crossref]

Wang, K.

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

Wang, Q.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

Wang, S.

Wang, W.

X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019).
[Crossref]

Wang, Z.

C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020).
[Crossref]

Z. Wang, D. Liao, T. Zhang, T. Chen, Y. Ruan, and B. Zheng, “Metasurface-based focus-tunable mirror,” Opt. Express 27, 30332–30339 (2019).
[Crossref]

Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6, 1800121 (2018).
[Crossref]

Ward, J.

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

Wen, G.

Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020).
[Crossref]

Wong, S.-W.

B. Liu, Y. He, S.-W. Wong, and Y. Li, “Multifunctional vortex beam generation by a dynamic reflective metasurface,” Adv. Opt. Mater. 9, 2001689 (2020).
[Crossref]

Wu, H. T.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28, 1802205 (2018).
[Crossref]

Wu, Q.

C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020).
[Crossref]

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11, 4186 (2020).
[Crossref]

Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020).
[Crossref]

Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6, 1800121 (2018).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref]

Wu, R. Y.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28, 1802205 (2018).
[Crossref]

Xiao, S.

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater. 8, 1901548 (2020).
[Crossref]

Xiong, Q.

Y. Chai, H. Deng, and Q. Xiong, “A dynamically phase tunable metasurface for a broad bandwidth ultra-low radar cross section,” IEEE Access 8, 53006–53017 (2020).
[Crossref]

Xu, H. X.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5, 1600506 (2016).
[Crossref]

Xu, H.-X.

Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020).
[Crossref]

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

Xu, J.

Xu, L.

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Xu, Q.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

Xu, S.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[Crossref]

Xu, T.

Xu, Y.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

Yang, F.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[Crossref]

Yang, H.

X. Huang, H. Yang, D. Zhang, and Y. Luo, “Ultrathin dual-band metasurface polarization converter,” IEEE Trans. Antennas Propag. 67, 4636–4641 (2019).
[Crossref]

Y. Zhou, X. Y. Hu, C. Li, H. Yang, and Q. H. Gong, “All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range,” J. Mod. Opt. 65, 1–7 (2018).
[Crossref]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[Crossref]

Yang, J.

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic waves,” Adv. Opt. Mater. 5, 1700485 (2017).
[Crossref]

Yang, Z.

Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020).
[Crossref]

Yi, J.

R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, and S. N. Burokur, “Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface,” Phys. Rev. Appl. 14, 014081 (2020).
[Crossref]

R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, and S. N. Burokur, “Flexible manipulation of Bessel-like beams with a reconfigurable metasurface,” Adv. Opt. Mater. 8, 2001084 (2020).
[Crossref]

Yin, X.

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

Youngs, I. J.

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref]

Yu, H.

Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020).
[Crossref]

Yu, P.

Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020).
[Crossref]

Yuan, Y.

Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020).
[Crossref]

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11, 4186 (2020).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref]

Zárate, Y.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Zhang, B.

Y. Qi, B. Zhang, C. Liu, and X. Deng, “Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction,” IEEE Access 8, 116675–116684 (2020).
[Crossref]

Zhang, C.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic waves,” Adv. Opt. Mater. 5, 1700485 (2017).
[Crossref]

Zhang, D.

Zhang, G.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Zhang, H.

R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, and S. N. Burokur, “Flexible manipulation of Bessel-like beams with a reconfigurable metasurface,” Adv. Opt. Mater. 8, 2001084 (2020).
[Crossref]

R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, and S. N. Burokur, “Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface,” Phys. Rev. Appl. 14, 014081 (2020).
[Crossref]

Zhang, J.

X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019).
[Crossref]

Zhang, K.

C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020).
[Crossref]

Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020).
[Crossref]

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11, 4186 (2020).
[Crossref]

R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, and S. N. Burokur, “Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface,” Phys. Rev. Appl. 14, 014081 (2020).
[Crossref]

Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6, 1800121 (2018).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref]

Zhang, L.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28, 1802205 (2018).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

Zhang, S.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

Zhang, T.

Z. Wang, D. Liao, T. Zhang, T. Chen, Y. Ruan, and B. Zheng, “Metasurface-based focus-tunable mirror,” Opt. Express 27, 30332–30339 (2019).
[Crossref]

B. Gupta, S. Pandey, A. Nahata, T. Zhang, and A. Nahata, “Bistable physical geometries for terahertz plasmonic structures using shape memory alloys,” Adv. Opt. Mater. 5, 1601008 (2017).
[Crossref]

Zhang, W.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

Zhang, X.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

Zhang, X. G.

X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, and T. J. Cui, “Digital metasurfaces: light-controllable digital coding metasurfaces,” Adv. Sci. 5, 1801028 (2018).
[Crossref]

Zhang, Z.

Zhao, B.

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic waves,” Adv. Opt. Mater. 5, 1700485 (2017).
[Crossref]

Zhao, J.

J. Y. Dai, J. Zhao, Q. Cheng, and T. J. Cui, “Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface,” Light Sci. Appl. 7, 90 (2018).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

Zhao, Y.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[Crossref]

Zheludev, N. I.

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref]

Zheng, B.

C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, “Deep-learning-enabled self-adaptive microwave cloak without human intervention,” Nat. Photonics 14, 383–390 (2020).
[Crossref]

Z. Wang, D. Liao, T. Zhang, T. Chen, Y. Ruan, and B. Zheng, “Metasurface-based focus-tunable mirror,” Opt. Express 27, 30332–30339 (2019).
[Crossref]

Zheng, G.

Zheng, Y.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[Crossref]

Zhou, L.

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater. 8, 1901548 (2020).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5, 1600506 (2016).
[Crossref]

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

Zhou, N.

Zhou, Y.

Y. Zhou, X. Y. Hu, C. Li, H. Yang, and Q. H. Gong, “All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range,” J. Mod. Opt. 65, 1–7 (2018).
[Crossref]

Zhu, B.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

Zhu, W.

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

Zou, C.

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

Zubyuk, V. V.

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

ACS Appl. Electron. Mater. (1)

A. de Lustrac, B. Ratni, G.-P. Piau, Y. Duval, and S. N. Burokur, “Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities,” ACS Appl. Electron. Mater. 3, 1184–1190 (2021).
[Crossref]

Adv. Funct. Mater. (2)

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28, 1802205 (2018).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Adv. Mater. (1)

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C.-W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29, 1606422 (2017).
[Crossref]

Adv. Opt. Mater. (12)

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic waves,” Adv. Opt. Mater. 5, 1700485 (2017).
[Crossref]

R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, and S. N. Burokur, “Flexible manipulation of Bessel-like beams with a reconfigurable metasurface,” Adv. Opt. Mater. 8, 2001084 (2020).
[Crossref]

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with C-aperture metasurface,” Adv. Opt. Mater. 5, 1601028 (2017).
[Crossref]

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Adv. Opt. Mater. 8, 2000570 (2020).
[Crossref]

V. Popov, B. Ratni, S. N. Burokur, and F. Boust, “Non-local reconfigurable sparse metasurface: efficient near-field and far-field wavefront manipulations,” Adv. Opt. Mater. 9, 202001316 (2021).
[Crossref]

B. Liu, Y. He, S.-W. Wong, and Y. Li, “Multifunctional vortex beam generation by a dynamic reflective metasurface,” Adv. Opt. Mater. 9, 2001689 (2020).
[Crossref]

X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, and W. Zhang, “Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface,” Adv. Opt. Mater. 7, 1900175 (2019).
[Crossref]

B. Gupta, S. Pandey, A. Nahata, T. Zhang, and A. Nahata, “Bistable physical geometries for terahertz plasmonic structures using shape memory alloys,” Adv. Opt. Mater. 5, 1601008 (2017).
[Crossref]

Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, and L. Zhou, “A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption,” Adv. Opt. Mater. 8, 1901548 (2020).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5, 1600506 (2016).
[Crossref]

Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6, 1800121 (2018).
[Crossref]

Adv. Sci. (2)

Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C.-W. Qiu, “A fully phase-modulated metasurface as an energy-controllable circular polarization router,” Adv. Sci. 7, 2001437 (2020).
[Crossref]

X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, and T. J. Cui, “Digital metasurfaces: light-controllable digital coding metasurfaces,” Adv. Sci. 5, 1801028 (2018).
[Crossref]

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[Crossref]

APL Photon. (1)

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

Appl. Phys. Lett. (1)

B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface,” Appl. Phys. Lett. 111, 214101 (2017).
[Crossref]

IEEE Access (2)

Y. Qi, B. Zhang, C. Liu, and X. Deng, “Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction,” IEEE Access 8, 116675–116684 (2020).
[Crossref]

Y. Chai, H. Deng, and Q. Xiong, “A dynamically phase tunable metasurface for a broad bandwidth ultra-low radar cross section,” IEEE Access 8, 53006–53017 (2020).
[Crossref]

IEEE Commun. Mag. (1)

C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag. 56, 162–169 (2018).
[Crossref]

IEEE Microw. Wireless Compon. Lett. (1)

Y. Kato, S. Morita, H. Shiomi, and A. Sanada, “Ultrathin perfect absorbers for normal incident waves using Dirac cone metasurfaces with critical external coupling,” IEEE Microw. Wireless Compon. Lett. 30, 383–386 (2020).
[Crossref]

IEEE Trans. Antennas Propag. (4)

Y. Li, A. Li, T. Cui, and D. F. Sievenpiper, “Multiwavelength multiplexing hologram designed using impedance metasurfaces,” IEEE Trans. Antennas Propag. 66, 6408–6413 (2018).
[Crossref]

X. Huang, H. Yang, D. Zhang, and Y. Luo, “Ultrathin dual-band metasurface polarization converter,” IEEE Trans. Antennas Propag. 67, 4636–4641 (2019).
[Crossref]

Z.-W. Miao, Z.-C. Hao, B.-B. Jin, and Z. N. Chen, “Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface,” IEEE Trans. Antennas Propag. 68, 1503–1513 (2019).
[Crossref]

Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, and G. Wen, “Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface,” IEEE Trans. Antennas Propag. 68, 7507–7516 (2020).
[Crossref]

J. Mod. Opt. (1)

Y. Zhou, X. Y. Hu, C. Li, H. Yang, and Q. H. Gong, “All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range,” J. Mod. Opt. 65, 1–7 (2018).
[Crossref]

J. Phys. D (1)

X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, and S. Qu, “Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design,” J. Phys. D 52, 31LT01 (2019).
[Crossref]

Laser Photon. Rev. (1)

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photon. Rev. 10, 1002–1008 (2016).
[Crossref]

Light Sci. Appl. (2)

J. Y. Dai, J. Zhao, Q. Cheng, and T. J. Cui, “Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface,” Light Sci. Appl. 7, 90 (2018).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

Nano Lett. (2)

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

H. S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

Nanophotonics (1)

C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, and Q. Wu, “Dual-polarized multiplexed meta-holograms utilizing coding metasurface,” Nanophotonics 9, 3605–3613 (2020).
[Crossref]

Nat. Commun. (4)

M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I. Brener, “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).
[Crossref]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11, 4186 (2020).
[Crossref]

Nat. Nanotechnol. (1)

H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, and S. A. Maier, “Complex-amplitude metasurface-based orbital angular momentum holography in momentum space,” Nat. Nanotechnol. 15, 948–955 (2020).
[Crossref]

Nat. Photonics (1)

C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, “Deep-learning-enabled self-adaptive microwave cloak without human intervention,” Nat. Photonics 14, 383–390 (2020).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Appl. (2)

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8, 034033 (2017).
[Crossref]

R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, and S. N. Burokur, “Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface,” Phys. Rev. Appl. 14, 014081 (2020).
[Crossref]

Sci. Rep. (3)

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6, 38255 (2016).
[Crossref]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[Crossref]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
[Crossref]

Small (1)

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

Other (1)

http://www.enprobe.de/products_FO-Antennas.htm .

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of complex beams generation exploiting the versatile metasurface platform. Three complex beams, including zeroth-order Bessel beam, vortex beam, and Airy beam, are generated by judiciously implementing the predefined phase profiles.
Fig. 2.
Fig. 2. Schematic design of the addressable meta-atom incorporating a voltage-biased varactor diode. (a) 3D view. The inset shows the equivalent circuit of the meta-atom. (b) Exploded perspective view. The geometrical parameters are p=6mm, w1=1.1mm, w2=0.25mm, w3=0.16mm, g1=3.6mm, g2=0.205mm, l=5.8mm, q1=0.73mm, and q2=0.6mm. (c)–(f) Reflection magnitude and phase responses of the meta-atom for different stimuli signals in the frequency band ranging from 7 to 11 GHz obtained from (c), (d) numerical simulations and (e), (f) experimental characterizations.
Fig. 3.
Fig. 3. Reflection response of the meta-atom versus the position variation y1 of the through via for four different capacitance values at 9 GHz. (a) Phase without blind vias. (b) Phase with blind vias. (c) Magnitude without blind vias. (d) Magnitude with blind vias. The use of blind vias allows achieving a stable reflection response independent of the location of the meta-atom on the metasurface.
Fig. 4.
Fig. 4. Photographs of the dynamic metasurface. (a) Top face of the fabricated sample. Ultrathin absorbing sheets, represented by the gray material, are placed around the usable surface to eliminate parasitic reflections. (b) Bottom face of the sample containing the bias lines and flexible printed circuit (FPC) connectors. (c) Usable part of the metasurface whose size is 180mm×180mm. (d) Zoomed detail of the metasurface showing the varactor-loaded meta-atom.
Fig. 5.
Fig. 5. (a)–(c) Phase profiles for the zeroth-order Bessel beam generation at 8.5, 9, and 9.5 GHz. (d)–(k) Numerical and experimental results of the zeroth-order Bessel beam at 8.5, 9, and 9.5 GHz. (d)–(f) Simulated electric field magnitude distributions in xoz and yoz planes, where the subfigures show the magnitude and phase distributions in the xoy transverse plane at z=15cm. (g)–(i) Corresponding experimental near-field mappings. (j), (k) Normalized far-field patterns in both xoz and yoz planes at 9.5 GHz.
Fig. 6.
Fig. 6. (a)–(c) Phase profiles for the generation of different types of vortex beams carrying OAM mode l=1 at 9.5 GHz. (d)–(k) Numerical and experimental results of different types of vortex beams carrying OAM mode l=1 at 9.5 GHz. (d)–(i) Near-field results of original, focusing, and nondiffracting vortex beams in xoz and xoy planes. (j), (k) Far-field results in xoz plane for the three vortex beams, where the patterns are normalized with respect to the nondiffracting one for simulations and measurements.
Fig. 7.
Fig. 7. (a) Phase profile for the generation of the 2D Airy beam with parameters a=42 and b=1 at 9.5 GHz. (b)–(g) Normalized magnitude distribution of the 2D Airy beam with parameter a=42 and b=1 at 9.5 GHz. (b) 3D numerical simulations consisting of one longitudinal plane along the diagonal of the xoy plane and two transverse planes at (c) z=15cm and (d) z=6cm. (e) 3D experimental measurements consisting of one longitudinal plane along the diagonal of the xoy plane and two transverse planes at (f) z=15cm and (g) z=6cm.

Tables (1)

Tables Icon

Table 1. Comparison of Previous Studies on Multifunctional Metasurfaces

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

φB(x,y)=k|x|2+|y|2sinθ,
φl(x,y)=l·arctan(y/x),
φFOAM(x,y)=l·arctan(y/x)+k(|x|2+|y|2+|f|2|f|),
φBOAM(x,y)=l·arctan(y/x)+k|x|2+|y|2sinθ.
ϕ(ξ=0,x,y)=Ai(ax)Ai(ay)exp(bx)exp(by),
φAiry(ξ=0,x,y)=arg[ϕ(ξ=0,x,y)]π/2.
η=PBeamPinc.
A=1PBeamPM,

Metrics