Abstract

We discover single and homocentric optical spheres of the three-dimensional inhomogeneous nonlinear Schrödinger equation (NLSE) with spherical symmetry, which is a novel model of light bullets that can present a three-dimensional rogue wave. The isosurface of this light bullet oscillates along the radius direction and does not travel with the evolution of time. The localized nature of rogue wave light bullets both in space and in time, which is in complete contrast to the traveling character of the usual light bullets, is due to the localization of the rogue wave in the one-dimensional NLSE. We present also an investigation of the stability of the optical sphere solutions. The lower modes of perturbation are found to display transverse instabilities that break the spherical symmetry of the system. For the higher modes, the optical sphere solutions can be classified as stable solutions.

© 2021 Chinese Laser Press

1. INTRODUCTION

In recent years, considerable effort has been devoted to the investigation of optical solitary waves [1] due to their fundamental impact on nonlinear wave propagation, spawning exciting applications along the way such as supercontinuum light sources [2], soliton lasers [3], and an improved understanding of the development and control of rogue waves (RWs) [4]. A special type of solitary waves, the RW phenomenon, which was first observed in the ocean, is a rare, short-lived, and high-energy event with amplitude much higher than the average wave crests around it [5]. The typical feature of RWs is that they suddenly appear and increase up to a very high and abnormal amplitude to finally disappear without a trace [6,7]. The experimental observation and theoretical analysis of RWs have ranged from Bose–Einstein condensates (BECs) [8,9] to optical systems [1012], oceans [13], superfluids [14], and plasmas [15,16]; see more details in two recent review articles [17,18]. One possible mathematical model to describe such RWs is the rational solution of one-dimensional nonlinear Schrödinger (NLS) type equations. Moreover, research has diversified, also addressing optical solitary waves in higher-dimensional media, which display a more complex phenomenology due to the increased degrees of freedom [19].

In this context, the formation of self-trapped wave packets or light bullets, is one of the most exciting yet experimentally unsolved problems in optics [20,21]. Light bullets are spatiotemporal solitons that form when a suitable nonlinearity arrests both spatial diffraction and temporal group-velocity dispersion. Despite considerable theoretical work, experimental research on light bullets is rare, and one of the main reasons is that in nonlinear propagation, three-dimensional light bullets tend to disintegrate due to inherent instabilities. However, different situations are found in BECs and nonlinear optics with temporally or spatially modulated parameters. In particular, it was shown in Ref. [22] that complete stabilization of a cylindrical (2+1)-dimensional [(2+1)D] spatial soliton can be secured in a layered medium with nonlinearity management. A scheme for stabilizing spatiotemporal solitons in media with cubic self-focusing nonlinearity and dispersion management was proposed in Ref. [23]. The formation of tandem structures, which are composed of periodically alternating linear dispersive and nonlinear layers, was studied in Refs. [24,25]. Moreover, alteration of atomic scattering length achieved by Feshbach resonance has been used to dynamically stabilize higher-dimensional bright solitons [26]. Thus, the study of the (2+1)D and (3+1)D variable coefficients NLS equations (NLSEs) has recently been one of the central issues in the field of nonlinear optics. One of the interesting challenges concerns how to characterize the nonlinear light bullets on analytical level [2729]. In general, the analytical study of the multidimensional light bullets is impeded by the lack of the corresponding integrable systems. Therefore, several approaches have been recently developed to overcome this limitation. The traveling wave and light bullet soliton solutions to the generalized NLSE in (3+1)D for a cubic nonlinearity were first developed in Ref. [30] for anomalous dispersion and were generalized in Ref. [31] for normal dispersion by using the F-expansion technique. Exact solutions for varying potential and nonlinearity were found in Ref. [32] by similarity transformations. Nonautonomous rogue wave solutions have also been found for the generalized NLSEs with variable coefficients in three-dimensional spaces [33] based on the similarity analysis idea.

Very recently, the spatiotemporal dynamics of RW solutions in a composite (2+1)D were investigated in Ref. [34]. A novel type of light bullets, which take the shape of RWs and travel on a finite (2+1)D space-time background, has been obtained. It was shown that both the fundamental and second-order RWs have a directional preference or a bullet nature that can propagate in a certain direction with transverse double localization. Such special (2+1)D RW behavior has been called rogue wave bullets. We shall in this paper proceed along this direction to get rogue wave bullets of a new inhomogeneous (3+1)D integrable system where coefficients depend on time and transverse radial coordinates. The main result of the present work is the possibility to obtain a single optical sphere and homocentric optical spheres for an inhomogeneous (3+1)D NLSE with spherical symmetry.

2. THE THREE-DIMENSIONAL ROGUE WAVE LIGHT BULLETS

The three-dimensional inhomogeneous NLSE with variable coefficients can be written in a dimensionless form:

i(tψ)+β(r,t)2ψv(r,t)ψg(r,t)|ψ|2ψ=0,
where ψ(r,t) is the complex envelope of the optical field, r=x2+y2+z2 is the distance from a point (x,y,z) to the origin of the coordinates, and 2ψ=r2/r(r2ψ/r) is the 3D Laplacian describing beam diffraction or group velocity dispersion in a 1D time-domain configuration. The external potential v(r,t) and nonlinear coefficient g(r,t) are real-valued functions of time and spatial coordinates. This equation arises in many fields such as nonlinear optics [1,21] and BECs [32,3537]. The 1D version of Eq. (1) was considered in Refs. [3840], where the soliton, together with first- and second-order RW solutions, was obtained. We present here 3D RW solutions to the NLSE in (3+1)D. In order to investigate the dynamic properties of the optical rogue wave solution for Eq. (1), we perform a specific reduction, namely,
ψ(r,t)=ρ(r)exp[iϕ(r,t)]Φ[X(t),T(r,t)],
where the functions ρ(r) and ϕ(r,t) represent the amplitude and the phase, respectively. The complex function Φ satisfies the following NLSE with constant coefficients:
i[XΦ(X,T)]+2T2Φ(X,T)+2ϵ|Φ(X,T)|2Φ=0,
which is obtained by substituting Eq. (2) into Eq. (1) with the following specific transformation:
T=αr+t,X=t,ρ=1rα,ϕ=αr2t2,
β=1α2,g=2ϵαr2,v=14.
Here ϵ=±1andα is a positive constant.

According to the above transformation defined by Eqs. (2), (4), and (5), we set α=1,ϵ=1, and then Eq. (1) leads to a solvable three-dimensional inhomogeneous NLSE with spatial nonlinearities:

itψ+(2r2ψ+2rrψ)14ψ+2r2|ψ|2ψ=0.
This equation is a solvable model due to the established transformation and the solvability of the NLSE, which is the main result of this paper. We shall focus on rational-like solutions of Eq. (6), which provide novel localized optical spheres and thus generate new kinds of light bullets. These optical spheres oscillate along the radius direction and do not travel like the usual light bullets.

In optics, spatially inhomogeneous nonlinearities can be realized in various ways [41]. In a BEC, Eq. (6) describes the evolution of matter waves, where the spatially modulated nonlinearity landscape can be generated by the Feshbach resonance in nonuniform external fields [42,43]. Nonlinearity can also be modulated in optical structures, e.g., in photonic crystal fibers with the holes infiltrated with a highly nonlinear material, for example, index-matching nonlinear liquids [44,45].

Here we use the lowest-order rational solution of Eq. (3) [4649], which serves as a prototype of rogue waves, to construct the optical spheres of Eq. (6). Setting Φ to be the first-order rogue wave [4649] of the NLSE, α=1,ϵ=1, and, according to the transformations defined by Eqs. (2), (4), and (5), then the first-order rational-like solution of Eq. (6) can be rewritten as

ψ=ψrw=4r28rt20t2+3+16it(4r2+8rt+20t2+1)rexp[12i(r3t)].
There is only one singularity of ψ at r=0, which is demonstrated by Figs. 1 and 2 and which originates from the ρ=1rα in the transformation from Eq. (2).
 figure: Fig. 1.

Fig. 1. Evolution of Urw1 on the (r, t) plane. It is obvious to find Urw1 exhibiting oscillations along r when t is very small.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2.

Fig. 2. Profiles of Urw1 along r for different values of t. (a) Two extreme points are (0.851,0.233) and (1.507,0.419) for t=0.05; (b) there is no extreme point for t=0.25.

Download Full Size | PPT Slide | PDF

We next investigate the features of the amplitude Urw1=|ψrw| of the 3D RW solution from Eq. (7). Indeed, there exists a critical point t0 such that Urw1 oscillates with respect to r when t<t0, but it is a monotonic function of r when t>t0.

It is easy to show that Urw1 presents oscillations for very small t and approaches 1r when t goes to , so the continuity of Urw1 guarantees the existence of a critical point t0 of the turning of the monotonicity with respect to t. We found numerically that there exists a critical point t0[0.118,0.119], such that, if t>t0, Urw1 monotonically decreases with respect to r, and if t<t0, it oscillates with respect to r. This feature is complementary to the pioneering RW structure, which appears from nowhere and disappears without a trace [6,7]. This can be confirmed by profiles of Urw1 on the (r, t) plane in Fig. 1. According to our analysis, if t>0.119, the isosurface of Urw1 is just a single sphere. But for 0t<0.118, the isosurfaces can form three homocentric spheres with suitable values of Urw1. For example, when t=0.25, Urw1 decreases with respect to r [see Fig. 2(b)].However, when t=0.05, Urw1 exhibits oscillations with respect to r and thus presents two extreme points at 0.851 and 1.507; their values are 0.233 and 0.419, respectively [see Fig. 2(a)]. So, by setting Urw1(0.233,0.419), the isosurface has three homocentric optical spheres (see Fig. 3). Of course, by setting Urw1(0.233,0.419), the isosurface of Urw1 is a single sphere.

 figure: Fig. 3.

Fig. 3. Profiles of Urw1. (a) The isosurface of Urw1 at t=0.05 when Urw1=0.4; (b) the inside of (a) plotted from a bird’s-eye view and z[0.9,0.9]; (c) the contour line of Urw1 at z=0. The latter two panels verify that there are three homocentric spheres.

Download Full Size | PPT Slide | PDF

The radius of these spheres increases to a certain value and then reaches an upper limit, which corresponds to localized feature of the rogue wave. In this process, the radius r of the sphere may have oscillation. Equivalently, r is not a monotonic function of time t, although it is bounded. In other words, the isosurface of Urw1 forms size-bounded sphere, which is a strong reflection of the localized nature of rogue waves in three dimensions. Moreover, the polynomial form of the rogue wave in the one-dimensional NLSE is reflected by the oscillation of the radius r of the isosurface. Therefore, the behavior of the sphere of the isosurface represents the nature of the first-order rogue wave of the NLSE: polynomial and having a doubly localized property. The asymptotical radius of the isosurface valued at Urw1=k is given by ras=1k.

For example, for the isosurface of Urw1 valued at 0.5, there are only two extreme points at (t=0.03404,r=0.68574) and (t=3.24987,r=2.00604) in the profile of r varying with t (see Fig. 4). Note that the asymptotic value of r reaches 2 for large t, but the maximum value of r is larger than 2 (see Fig. 4). The animation (Visualization 1) of an isosurface valued at Urw1=0.5 confirms remarkably the enlargement of the radius r and asymptotical value ras of the sphere. Due to very tiny variation of r around the two extremes, the animation cannot show the oscillation of r significantly, although it happened during the increase of r. However, this can be confirmed by a two-dimensional animation (Visualization 2) of contours of the sphere Urw1=0.5|z=0 with respect to t.

 figure: Fig. 4.

Fig. 4. Radius of the sphere for the isosurface given by Urw1=0.5. Panel (b) is plotted for very small t of panel (a), and there is a minimum rmin=0.68574. Panel (c) is plotted for large t of panel (a), and there is a maximum rmax=2.00604. The asymptotical value of r is ras=2.

Download Full Size | PPT Slide | PDF

The Urw1 is also very well localized in the (x, y) plane, although the peak changes with respect to t, which can be confirmed in Fig. 5 and the animation (Visualization 3). We can see from the animation that the peak of Urw1 is oscillating with time t. We have found here that if r<0.35, the peak decreases with time; if r[0.35,0.85], the peak oscillates with time; if r>0.85, the peak increases with time. So there exists a critical value of time at which the profile and the amplitude of the solution remain unchanged; see Fig. 6. Note that 0.35 and 0.85 are just approximate values. As we know, limt=Urw1=1r, so Urw1|z=0.5 has an asymptotic maximum value of 2 as confirmed by the animation.

 figure: Fig. 5.

Fig. 5. Localized profiles of the Urw1 with z=0.5 in the (x, y) plane: (a) t=0; (b) t=0.5.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6.

Fig. 6. Profiles of Urw1 with respect to t for different values of r: (a) r=0.25; (b) there are two extreme points (0.007,1.635) and (0.663,2.113) for r=0.5; (c) r=1.

Download Full Size | PPT Slide | PDF

3. THE STABILITY OF THE OPTICAL SPHERE SOLUTIONS

In order to determine the stability of the optical sphere solutions with respect to perturbations that break the initial spherical symmetry, we consider the Laplacian of Eq. (1) in spherical coordinates and choose an appropriate perturbation in the form [50]

ψ(r,θ,ϕ,t)=ψrw(r,t)+μg(r,t)ϒlm(θ,ϕ).
Here μ is a small expansion parameter and g(r,t) is a radial perturbation function. The spherical harmonic function is defined as ϒlm(θ,ϕ)=Plm(θ)cos(mϕ), where Plm is the associated Legendre function with lm0. Note that the angular perturbation function must be real to obtain the linearized equation that follows. Inserting Eq. (8) into Eq. (1) and linearizing in the small parameter μ, we obtain the following linear partial differential equation for the evolution of the radial perturbation function:
igt+1r2r(r2gr)l(l+1)r2g14g+2r2(|ψrw|2g+ψrw2g*)=0.
The asterisk denotes the complex conjugation. Note that the angular dependence appears solely by virtue of parameter l, and the azimuthal index m does not appear in the perturbation equation. Since this is a linear equation in g, we expect the solution to be of the form [51] g(r,t)=g(r)eλt as t, where λ is the maximum positive (real) eigenvalue and g(r) is the corresponding eigenfunction. Starting with a small random initial condition for g(r,0), Eq. (9) is integrated by using a Crank–Nicolson algorithm [52]. Figure 7(a) shows the numerically calculated growth rates λ as a function of the spherical harmonic modes l. As can be seen on this figure, for the modes l<70, the positive growth rate decreases with parameter l and the optical sphere solution is unstable. However, for the modes l>70, the growth constant can become zero, which means that the optical sphere solution can be classified as stable for these modes. Figure 7(b) shows the radial perturbation function corresponding to the most unstable mode l=4. It is shown that an exponentially growing radial profile for |g| emerges and affects only the edges of the optical spheres, leaving the central core relatively untouched. Note that stable vortex solitons have also been obtained in 3D NLSE with spatially inhomogeneous nonlinearities [53].
 figure: Fig. 7.

Fig. 7. (a) Growth rates λ as a function of the spherical harmonic modes l. (b) Dominant unstable l=4 radial perturbation eigenmode emerging from a small random initial condition.

Download Full Size | PPT Slide | PDF

4. CONCLUSION

In conclusion, we have shown that in the (3+1)-dimensional NLSE with varying coefficients, localized solutions in the form of rational formulas can exist owing to a specific transformation that allows us to reduce the dimensionality of the equation from (3+1) dimensions to (1+1) dimensions. These solutions are localized both in space and in time, and thus their corresponding isosurfaces are single spheres or homocentric spheres, which oscillate along the radius direction and are completely different from the well-known standard traveling light bullets. They can be interpreted as prototypes of RW light bullet solutions in the (3+1)-dimensional time-space. The other properties of the new nonautonomous RW light bullets have been studied analytically. Our analytical findings are confirmed by numerical plots of these solutions. A linear stability analysis in terms of spherical harmonic modes has been investigated. We have found that the RW light bullet solutions are stable for higher modes and transversely unstable for lower modes of the perturbation. Experimental advances have recently provided a strong incentive in the area of RWs in complex media [54]. Note that a demonstration of the direct observation of RWs in self-excited 3D longitudinal plasma density waves was reported in Ref. [55] by using self-excited dust acoustic waves as a platform. We believe that the results obtained here can stimulate further research on the experiments and help to understand the behavior of 3D RWs in a wide range of nonlinear physical areas.

Funding

National Natural Science Foundation of China (12071034, 61705140); Ministry of Higher Education and Research; Hauts de France Council; European Regional Development Fund.

Acknowledgment

J. He gratefully acknowledges support from the University of Lille for his visit. C. G. L. Tiofack acknowledges support from the Ministry of Higher Education and Research, Hauts-de-France Council, and ERDF through the Contract de Projets Etat-Region (CPER Photonics for Society P4S). C. G. L. Tiofack and M. Taki appreciate helpful discussions with S. Coulibaly.

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. Y. Kivshar and G. Agrawal, Optical Solitons (Academic, 2003).

2. R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, 2006).

3. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984). [CrossRef]  

4. D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007). [CrossRef]  

5. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation,” Phys. Rev. E 80, 026601 (2009). [CrossRef]  

6. N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675–678 (2009). [CrossRef]  

7. D. Kedziora, A. Ankiewicz, and N. Akhmediev, “Circular rogue wave clusters,” Phys. Rev. E 84, 056611 (2011). [CrossRef]  

8. Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80, 033610 (2009). [CrossRef]  

9. Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Vector rogue waves in binary mixtures of Bose-Einstein condensates,” Eur. Phys. J. Spec. Top. 185, 169–180 (2010). [CrossRef]  

10. A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, “Non-Gaussian statistics and extreme waves in a nonlinear optical cavity,” Phys. Rev. Lett. 103, 173901 (2009). [CrossRef]  

11. R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, and E. J. Heller, “Freak waves in the linear regime: a microwave study,” Phys. Rev. Lett. 104, 093901 (2010). [CrossRef]  

12. M. Onorato, S. Residori, U. Bortolozzo, A. Montinad, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013). [CrossRef]  

13. C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009).

14. A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P. V. E. McClintock, “Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium,” Phys. Rev. Lett. 101, 065303 (2008). [CrossRef]  

15. W. M. Moslem, “Langmuir rogue waves in electron-positron plasmas,” Phys. Plasmas 18, 032301 (2011). [CrossRef]  

16. H. Bailung, S. K. Sharma, and Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions,” Phys. Rev. Lett. 107, 255005 (2011). [CrossRef]  

17. J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias, “Rogue waves and analogies in optics and oceanography,” Nat. Rev. Phys. 1, 675–689 (2019). [CrossRef]  

18. Y. F. Song, Z. H. Wang, C. Wang, K. Panajotov, and H. Zhang, “Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives,” Adv. Photon. 2, 024001 (2020). [CrossRef]  

19. J. J. Rasmussen and K. Rypdal, “Blow-up in nonlinear Schröedinger equations-I: a general review,” Phys. Scr. 33, 481–497 (1986). [CrossRef]  

20. Y. Silberberg, “Collapse of optical pulse,” Opt. Lett. 15, 1282–1284 (1990). [CrossRef]  

21. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005). [CrossRef]  

22. I. Towers and B. A. Malomed, “Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 537–543 (2002). [CrossRef]  

23. M. Matuszewski, M. Trippenbach, B. A. Malomed, E. Infeld, and A. A. Skorupski, “Two-dimensional dispersion-managed light bullets in Kerr media,” Phys. Rev. E 70, 016603 (2004). [CrossRef]  

24. L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, “Tandem light bullets,” Opt. Commun. 199, 277–281 (2001). [CrossRef]  

25. L. Torner and Y. V. Kartashov, “Light bullets in optical tandems,” Opt. Lett. 34, 1129–1131 (2009). [CrossRef]  

26. H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003). [CrossRef]  

27. K. D. Moll, A. L. Gaeta, and G. Fibich, “Self-similar optical wave collapse: observation of the Townes profile,” Phys. Rev. Lett. 90, 203902 (2003). [CrossRef]  

28. W. P. Zhong, M. Belic, G. Assanto, B. A. Malomed, and T. Huang, “Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient,” Phys. Rev. A 84, 043801 (2011). [CrossRef]  

29. A. L. Gaeta, “Optics. Collapsing light really shines,” Science 301, 54–55 (2003). [CrossRef]  

30. M. Belic, N. Petrovic, W. P. Zhong, R. H. Xie, and G. Chen, “Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrodinger equation,” Phys. Rev. Lett. 101, 123904 (2008). [CrossRef]  

31. N. Petrovic, M. Belic, W. P. Zhong, R. H. Xie, and G. Chen, “Exact spatiotemporal wave and soliton solutions to the generalized (3 + 1)-dimensional Schrödinger equation for both normal and anomalous dispersion,” Opt. Lett. 34, 1609–1611 (2009). [CrossRef]  

32. Z. Y. Yan and V. V. Konotop, “Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities,” Phys. Rev. E 80, 036607 (2009). [CrossRef]  

33. Z. Y. Yan, V. V. Konotop, and N. Akhmediev, “Three-dimensional rogue waves in nonstationary parabolic potentials,” Phys. Rev. E 82, 036610 (2010). [CrossRef]  

34. S. Chen, J. M. Soto-Crespo, F. Baronio, P. Grelu, and D. Mihalache, “Rogue-wave bullets in a composite (2+1)D nonlinear medium,” Opt. Express 24, 15251–15260 (2016). [CrossRef]  

35. L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford University, 2003).

36. Z. Y. Yan and C. Hang, “Analytical three-dimensional bright solitons and soliton pairs in Bose-Einstein condensates with time-space modulation,” Phys. Rev. A 80, 063626 (2009). [CrossRef]  

37. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463–512 (1999). [CrossRef]  

38. J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, “Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,” Phys. Rev. Lett. 98, 064102 (2007). [CrossRef]  

39. J. S. He and Y. Li, “Designable integrability of the variable coefficient nonlinear Schrodinger equations,” Stud. Appl. Math. 126, 1–15 (2010). [CrossRef]  

40. Y. Y. Wang, J. S. He, and Y. S. Li, “Soliton and rogue wave solution of the new nonautonomous nonlinear Schrödinger equation,” Commun. Theor. Phys. 56, 995–1004 (2011). [CrossRef]  

41. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011). [CrossRef]  

42. D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Dürr, “Control of a magnetic Feshbach resonance with laser light,” Nat. Phys. 5, 339–342 (2009). [CrossRef]  

43. R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, “Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate,” Phys. Rev. Lett. 105, 050405 (2010). [CrossRef]  

44. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, “Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers,” Opt. Lett. 30, 830–832 (2005). [CrossRef]  

45. C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express 15, 12145–12150 (2007). [CrossRef]  

46. D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Aust. Math. Soc. B 25, 16–43 (1983). [CrossRef]  

47. N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picoseconld pulses in an optical fiber: exact solutions,” Z. Eksp. Teor. Fiz. 89, 1542–1551 (1985) [English version: Sov. Phys. JETP 62, 894–899 (1985)].

48. J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, “Generating mechanism for higher-order rogue waves,” Phys. Rev. E 87, 052914 (2013). [CrossRef]  

49. L. H. Wang, J. S. He, H. Xu, J. Wang, and K. Porsezian, “Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber,” Phys. Rev. E 95, 042217 (2017). [CrossRef]  

50. D. E. Edmundson, “Unstable higher modes of a three-dimensional nonlinear Schrödinger equation,” Phys. Rev. E 55, 7636 (1997). [CrossRef]  

51. J. M. Soto-Crespo, D. R. Heatley, and E. M. Wright, “Stability of the higher-bound states in a saturable self-focusing medium,” Phys. Rev. E 44, 636–644 (1991). [CrossRef]  

52. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, 1986).

53. R. Driven, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, “Three-dimensional hybrid vortex solitons,” New J. Phys. 16, 063035 (2014). [CrossRef]  

54. M. Leonetti and C. Conti, “Observation of three dimensional optical rogue waves through obstacles,” Appl. Phys. Lett. 106, 254103 (2015). [CrossRef]  

55. Y. Y. Tsai, J. Y. Tsai, and I. Lin, “Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms,” Nat. Phys. 12, 573–577 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Y. Kivshar and G. Agrawal, Optical Solitons (Academic, 2003).
  2. R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, 2006).
  3. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984).
    [Crossref]
  4. D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
    [Crossref]
  5. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation,” Phys. Rev. E 80, 026601 (2009).
    [Crossref]
  6. N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675–678 (2009).
    [Crossref]
  7. D. Kedziora, A. Ankiewicz, and N. Akhmediev, “Circular rogue wave clusters,” Phys. Rev. E 84, 056611 (2011).
    [Crossref]
  8. Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80, 033610 (2009).
    [Crossref]
  9. Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Vector rogue waves in binary mixtures of Bose-Einstein condensates,” Eur. Phys. J. Spec. Top. 185, 169–180 (2010).
    [Crossref]
  10. A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, “Non-Gaussian statistics and extreme waves in a nonlinear optical cavity,” Phys. Rev. Lett. 103, 173901 (2009).
    [Crossref]
  11. R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, and E. J. Heller, “Freak waves in the linear regime: a microwave study,” Phys. Rev. Lett. 104, 093901 (2010).
    [Crossref]
  12. M. Onorato, S. Residori, U. Bortolozzo, A. Montinad, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
    [Crossref]
  13. C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009).
  14. A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P. V. E. McClintock, “Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium,” Phys. Rev. Lett. 101, 065303 (2008).
    [Crossref]
  15. W. M. Moslem, “Langmuir rogue waves in electron-positron plasmas,” Phys. Plasmas 18, 032301 (2011).
    [Crossref]
  16. H. Bailung, S. K. Sharma, and Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions,” Phys. Rev. Lett. 107, 255005 (2011).
    [Crossref]
  17. J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias, “Rogue waves and analogies in optics and oceanography,” Nat. Rev. Phys. 1, 675–689 (2019).
    [Crossref]
  18. Y. F. Song, Z. H. Wang, C. Wang, K. Panajotov, and H. Zhang, “Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives,” Adv. Photon. 2, 024001 (2020).
    [Crossref]
  19. J. J. Rasmussen and K. Rypdal, “Blow-up in nonlinear Schröedinger equations-I: a general review,” Phys. Scr. 33, 481–497 (1986).
    [Crossref]
  20. Y. Silberberg, “Collapse of optical pulse,” Opt. Lett. 15, 1282–1284 (1990).
    [Crossref]
  21. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005).
    [Crossref]
  22. I. Towers and B. A. Malomed, “Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 537–543 (2002).
    [Crossref]
  23. M. Matuszewski, M. Trippenbach, B. A. Malomed, E. Infeld, and A. A. Skorupski, “Two-dimensional dispersion-managed light bullets in Kerr media,” Phys. Rev. E 70, 016603 (2004).
    [Crossref]
  24. L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, “Tandem light bullets,” Opt. Commun. 199, 277–281 (2001).
    [Crossref]
  25. L. Torner and Y. V. Kartashov, “Light bullets in optical tandems,” Opt. Lett. 34, 1129–1131 (2009).
    [Crossref]
  26. H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).
    [Crossref]
  27. K. D. Moll, A. L. Gaeta, and G. Fibich, “Self-similar optical wave collapse: observation of the Townes profile,” Phys. Rev. Lett. 90, 203902 (2003).
    [Crossref]
  28. W. P. Zhong, M. Belic, G. Assanto, B. A. Malomed, and T. Huang, “Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient,” Phys. Rev. A 84, 043801 (2011).
    [Crossref]
  29. A. L. Gaeta, “Optics. Collapsing light really shines,” Science 301, 54–55 (2003).
    [Crossref]
  30. M. Belic, N. Petrovic, W. P. Zhong, R. H. Xie, and G. Chen, “Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrodinger equation,” Phys. Rev. Lett. 101, 123904 (2008).
    [Crossref]
  31. N. Petrovic, M. Belic, W. P. Zhong, R. H. Xie, and G. Chen, “Exact spatiotemporal wave and soliton solutions to the generalized (3 + 1)-dimensional Schrödinger equation for both normal and anomalous dispersion,” Opt. Lett. 34, 1609–1611 (2009).
    [Crossref]
  32. Z. Y. Yan and V. V. Konotop, “Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities,” Phys. Rev. E 80, 036607 (2009).
    [Crossref]
  33. Z. Y. Yan, V. V. Konotop, and N. Akhmediev, “Three-dimensional rogue waves in nonstationary parabolic potentials,” Phys. Rev. E 82, 036610 (2010).
    [Crossref]
  34. S. Chen, J. M. Soto-Crespo, F. Baronio, P. Grelu, and D. Mihalache, “Rogue-wave bullets in a composite (2+1)D nonlinear medium,” Opt. Express 24, 15251–15260 (2016).
    [Crossref]
  35. L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford University, 2003).
  36. Z. Y. Yan and C. Hang, “Analytical three-dimensional bright solitons and soliton pairs in Bose-Einstein condensates with time-space modulation,” Phys. Rev. A 80, 063626 (2009).
    [Crossref]
  37. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463–512 (1999).
    [Crossref]
  38. J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, “Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,” Phys. Rev. Lett. 98, 064102 (2007).
    [Crossref]
  39. J. S. He and Y. Li, “Designable integrability of the variable coefficient nonlinear Schrodinger equations,” Stud. Appl. Math. 126, 1–15 (2010).
    [Crossref]
  40. Y. Y. Wang, J. S. He, and Y. S. Li, “Soliton and rogue wave solution of the new nonautonomous nonlinear Schrödinger equation,” Commun. Theor. Phys. 56, 995–1004 (2011).
    [Crossref]
  41. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011).
    [Crossref]
  42. D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Dürr, “Control of a magnetic Feshbach resonance with laser light,” Nat. Phys. 5, 339–342 (2009).
    [Crossref]
  43. R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, “Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate,” Phys. Rev. Lett. 105, 050405 (2010).
    [Crossref]
  44. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, “Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers,” Opt. Lett. 30, 830–832 (2005).
    [Crossref]
  45. C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express 15, 12145–12150 (2007).
    [Crossref]
  46. D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Aust. Math. Soc. B 25, 16–43 (1983).
    [Crossref]
  47. N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picoseconld pulses in an optical fiber: exact solutions,” Z. Eksp. Teor. Fiz. 89, 1542–1551 (1985) [English version: Sov. Phys. JETP 62, 894–899 (1985)].
  48. J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, “Generating mechanism for higher-order rogue waves,” Phys. Rev. E 87, 052914 (2013).
    [Crossref]
  49. L. H. Wang, J. S. He, H. Xu, J. Wang, and K. Porsezian, “Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber,” Phys. Rev. E 95, 042217 (2017).
    [Crossref]
  50. D. E. Edmundson, “Unstable higher modes of a three-dimensional nonlinear Schrödinger equation,” Phys. Rev. E 55, 7636 (1997).
    [Crossref]
  51. J. M. Soto-Crespo, D. R. Heatley, and E. M. Wright, “Stability of the higher-bound states in a saturable self-focusing medium,” Phys. Rev. E 44, 636–644 (1991).
    [Crossref]
  52. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, 1986).
  53. R. Driven, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, “Three-dimensional hybrid vortex solitons,” New J. Phys. 16, 063035 (2014).
    [Crossref]
  54. M. Leonetti and C. Conti, “Observation of three dimensional optical rogue waves through obstacles,” Appl. Phys. Lett. 106, 254103 (2015).
    [Crossref]
  55. Y. Y. Tsai, J. Y. Tsai, and I. Lin, “Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms,” Nat. Phys. 12, 573–577 (2016).
    [Crossref]

2020 (1)

Y. F. Song, Z. H. Wang, C. Wang, K. Panajotov, and H. Zhang, “Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives,” Adv. Photon. 2, 024001 (2020).
[Crossref]

2019 (1)

J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias, “Rogue waves and analogies in optics and oceanography,” Nat. Rev. Phys. 1, 675–689 (2019).
[Crossref]

2017 (1)

L. H. Wang, J. S. He, H. Xu, J. Wang, and K. Porsezian, “Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber,” Phys. Rev. E 95, 042217 (2017).
[Crossref]

2016 (2)

Y. Y. Tsai, J. Y. Tsai, and I. Lin, “Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms,” Nat. Phys. 12, 573–577 (2016).
[Crossref]

S. Chen, J. M. Soto-Crespo, F. Baronio, P. Grelu, and D. Mihalache, “Rogue-wave bullets in a composite (2+1)D nonlinear medium,” Opt. Express 24, 15251–15260 (2016).
[Crossref]

2015 (1)

M. Leonetti and C. Conti, “Observation of three dimensional optical rogue waves through obstacles,” Appl. Phys. Lett. 106, 254103 (2015).
[Crossref]

2014 (1)

R. Driven, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, “Three-dimensional hybrid vortex solitons,” New J. Phys. 16, 063035 (2014).
[Crossref]

2013 (2)

J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, “Generating mechanism for higher-order rogue waves,” Phys. Rev. E 87, 052914 (2013).
[Crossref]

M. Onorato, S. Residori, U. Bortolozzo, A. Montinad, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

2011 (6)

W. M. Moslem, “Langmuir rogue waves in electron-positron plasmas,” Phys. Plasmas 18, 032301 (2011).
[Crossref]

H. Bailung, S. K. Sharma, and Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions,” Phys. Rev. Lett. 107, 255005 (2011).
[Crossref]

D. Kedziora, A. Ankiewicz, and N. Akhmediev, “Circular rogue wave clusters,” Phys. Rev. E 84, 056611 (2011).
[Crossref]

W. P. Zhong, M. Belic, G. Assanto, B. A. Malomed, and T. Huang, “Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient,” Phys. Rev. A 84, 043801 (2011).
[Crossref]

Y. Y. Wang, J. S. He, and Y. S. Li, “Soliton and rogue wave solution of the new nonautonomous nonlinear Schrödinger equation,” Commun. Theor. Phys. 56, 995–1004 (2011).
[Crossref]

Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011).
[Crossref]

2010 (5)

R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, “Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate,” Phys. Rev. Lett. 105, 050405 (2010).
[Crossref]

J. S. He and Y. Li, “Designable integrability of the variable coefficient nonlinear Schrodinger equations,” Stud. Appl. Math. 126, 1–15 (2010).
[Crossref]

Z. Y. Yan, V. V. Konotop, and N. Akhmediev, “Three-dimensional rogue waves in nonstationary parabolic potentials,” Phys. Rev. E 82, 036610 (2010).
[Crossref]

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Vector rogue waves in binary mixtures of Bose-Einstein condensates,” Eur. Phys. J. Spec. Top. 185, 169–180 (2010).
[Crossref]

R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, and E. J. Heller, “Freak waves in the linear regime: a microwave study,” Phys. Rev. Lett. 104, 093901 (2010).
[Crossref]

2009 (9)

A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, “Non-Gaussian statistics and extreme waves in a nonlinear optical cavity,” Phys. Rev. Lett. 103, 173901 (2009).
[Crossref]

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80, 033610 (2009).
[Crossref]

N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation,” Phys. Rev. E 80, 026601 (2009).
[Crossref]

N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675–678 (2009).
[Crossref]

Z. Y. Yan and C. Hang, “Analytical three-dimensional bright solitons and soliton pairs in Bose-Einstein condensates with time-space modulation,” Phys. Rev. A 80, 063626 (2009).
[Crossref]

N. Petrovic, M. Belic, W. P. Zhong, R. H. Xie, and G. Chen, “Exact spatiotemporal wave and soliton solutions to the generalized (3 + 1)-dimensional Schrödinger equation for both normal and anomalous dispersion,” Opt. Lett. 34, 1609–1611 (2009).
[Crossref]

Z. Y. Yan and V. V. Konotop, “Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities,” Phys. Rev. E 80, 036607 (2009).
[Crossref]

L. Torner and Y. V. Kartashov, “Light bullets in optical tandems,” Opt. Lett. 34, 1129–1131 (2009).
[Crossref]

D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Dürr, “Control of a magnetic Feshbach resonance with laser light,” Nat. Phys. 5, 339–342 (2009).
[Crossref]

2008 (2)

M. Belic, N. Petrovic, W. P. Zhong, R. H. Xie, and G. Chen, “Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrodinger equation,” Phys. Rev. Lett. 101, 123904 (2008).
[Crossref]

A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P. V. E. McClintock, “Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium,” Phys. Rev. Lett. 101, 065303 (2008).
[Crossref]

2007 (3)

D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, “Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,” Phys. Rev. Lett. 98, 064102 (2007).
[Crossref]

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express 15, 12145–12150 (2007).
[Crossref]

2005 (2)

2004 (1)

M. Matuszewski, M. Trippenbach, B. A. Malomed, E. Infeld, and A. A. Skorupski, “Two-dimensional dispersion-managed light bullets in Kerr media,” Phys. Rev. E 70, 016603 (2004).
[Crossref]

2003 (3)

H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).
[Crossref]

K. D. Moll, A. L. Gaeta, and G. Fibich, “Self-similar optical wave collapse: observation of the Townes profile,” Phys. Rev. Lett. 90, 203902 (2003).
[Crossref]

A. L. Gaeta, “Optics. Collapsing light really shines,” Science 301, 54–55 (2003).
[Crossref]

2002 (1)

2001 (1)

L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, “Tandem light bullets,” Opt. Commun. 199, 277–281 (2001).
[Crossref]

1999 (1)

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463–512 (1999).
[Crossref]

1997 (1)

D. E. Edmundson, “Unstable higher modes of a three-dimensional nonlinear Schrödinger equation,” Phys. Rev. E 55, 7636 (1997).
[Crossref]

1991 (1)

J. M. Soto-Crespo, D. R. Heatley, and E. M. Wright, “Stability of the higher-bound states in a saturable self-focusing medium,” Phys. Rev. E 44, 636–644 (1991).
[Crossref]

1990 (1)

1986 (1)

J. J. Rasmussen and K. Rypdal, “Blow-up in nonlinear Schröedinger equations-I: a general review,” Phys. Scr. 33, 481–497 (1986).
[Crossref]

1985 (1)

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picoseconld pulses in an optical fiber: exact solutions,” Z. Eksp. Teor. Fiz. 89, 1542–1551 (1985) [English version: Sov. Phys. JETP 62, 894–899 (1985)].

1984 (1)

1983 (1)

D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Aust. Math. Soc. B 25, 16–43 (1983).
[Crossref]

Agrawal, G.

Y. Kivshar and G. Agrawal, Optical Solitons (Academic, 2003).

Akhmediev, N.

D. Kedziora, A. Ankiewicz, and N. Akhmediev, “Circular rogue wave clusters,” Phys. Rev. E 84, 056611 (2011).
[Crossref]

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Vector rogue waves in binary mixtures of Bose-Einstein condensates,” Eur. Phys. J. Spec. Top. 185, 169–180 (2010).
[Crossref]

Z. Y. Yan, V. V. Konotop, and N. Akhmediev, “Three-dimensional rogue waves in nonstationary parabolic potentials,” Phys. Rev. E 82, 036610 (2010).
[Crossref]

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80, 033610 (2009).
[Crossref]

N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation,” Phys. Rev. E 80, 026601 (2009).
[Crossref]

N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675–678 (2009).
[Crossref]

Akhmediev, N. N.

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picoseconld pulses in an optical fiber: exact solutions,” Z. Eksp. Teor. Fiz. 89, 1542–1551 (1985) [English version: Sov. Phys. JETP 62, 894–899 (1985)].

Alfano, R.

R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, 2006).

Ankiewicz, A.

D. Kedziora, A. Ankiewicz, and N. Akhmediev, “Circular rogue wave clusters,” Phys. Rev. E 84, 056611 (2011).
[Crossref]

N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675–678 (2009).
[Crossref]

N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation,” Phys. Rev. E 80, 026601 (2009).
[Crossref]

Arecchi, F. T.

M. Onorato, S. Residori, U. Bortolozzo, A. Montinad, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, “Non-Gaussian statistics and extreme waves in a nonlinear optical cavity,” Phys. Rev. Lett. 103, 173901 (2009).
[Crossref]

Assanto, G.

W. P. Zhong, M. Belic, G. Assanto, B. A. Malomed, and T. Huang, “Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient,” Phys. Rev. A 84, 043801 (2011).
[Crossref]

Bailung, H.

H. Bailung, S. K. Sharma, and Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions,” Phys. Rev. Lett. 107, 255005 (2011).
[Crossref]

Bang, O.

Baronio, F.

Bauer, D. M.

D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Dürr, “Control of a magnetic Feshbach resonance with laser light,” Nat. Phys. 5, 339–342 (2009).
[Crossref]

Belic, M.

W. P. Zhong, M. Belic, G. Assanto, B. A. Malomed, and T. Huang, “Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient,” Phys. Rev. A 84, 043801 (2011).
[Crossref]

N. Petrovic, M. Belic, W. P. Zhong, R. H. Xie, and G. Chen, “Exact spatiotemporal wave and soliton solutions to the generalized (3 + 1)-dimensional Schrödinger equation for both normal and anomalous dispersion,” Opt. Lett. 34, 1609–1611 (2009).
[Crossref]

M. Belic, N. Petrovic, W. P. Zhong, R. H. Xie, and G. Chen, “Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrodinger equation,” Phys. Rev. Lett. 101, 123904 (2008).
[Crossref]

Belmonte-Beitia, J.

J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, “Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,” Phys. Rev. Lett. 98, 064102 (2007).
[Crossref]

Bennet, F. H.

Bjarklev, A.

Bludov, Y. V.

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Vector rogue waves in binary mixtures of Bose-Einstein condensates,” Eur. Phys. J. Spec. Top. 185, 169–180 (2010).
[Crossref]

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80, 033610 (2009).
[Crossref]

Bolger, J. A.

Bortolozzo, U.

M. Onorato, S. Residori, U. Bortolozzo, A. Montinad, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, “Non-Gaussian statistics and extreme waves in a nonlinear optical cavity,” Phys. Rev. Lett. 103, 173901 (2009).
[Crossref]

Carrasco, S.

L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, “Tandem light bullets,” Opt. Commun. 199, 277–281 (2001).
[Crossref]

Chabchoub, A.

J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias, “Rogue waves and analogies in optics and oceanography,” Nat. Rev. Phys. 1, 675–689 (2019).
[Crossref]

Chen, G.

N. Petrovic, M. Belic, W. P. Zhong, R. H. Xie, and G. Chen, “Exact spatiotemporal wave and soliton solutions to the generalized (3 + 1)-dimensional Schrödinger equation for both normal and anomalous dispersion,” Opt. Lett. 34, 1609–1611 (2009).
[Crossref]

M. Belic, N. Petrovic, W. P. Zhong, R. H. Xie, and G. Chen, “Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrodinger equation,” Phys. Rev. Lett. 101, 123904 (2008).
[Crossref]

Chen, S.

Conti, C.

M. Leonetti and C. Conti, “Observation of three dimensional optical rogue waves through obstacles,” Appl. Phys. Lett. 106, 254103 (2015).
[Crossref]

Crasovan, L.-C.

L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, “Tandem light bullets,” Opt. Commun. 199, 277–281 (2001).
[Crossref]

Dalfovo, F.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463–512 (1999).
[Crossref]

Dias, F.

J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias, “Rogue waves and analogies in optics and oceanography,” Nat. Rev. Phys. 1, 675–689 (2019).
[Crossref]

Driven, R.

R. Driven, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, “Three-dimensional hybrid vortex solitons,” New J. Phys. 16, 063035 (2014).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias, “Rogue waves and analogies in optics and oceanography,” Nat. Rev. Phys. 1, 675–689 (2019).
[Crossref]

Dürr, S.

D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Dürr, “Control of a magnetic Feshbach resonance with laser light,” Nat. Phys. 5, 339–342 (2009).
[Crossref]

Edmundson, D. E.

D. E. Edmundson, “Unstable higher modes of a three-dimensional nonlinear Schrödinger equation,” Phys. Rev. E 55, 7636 (1997).
[Crossref]

Efimov, V. B.

A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P. V. E. McClintock, “Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium,” Phys. Rev. Lett. 101, 065303 (2008).
[Crossref]

Eggleton, B. J.

Eleonskii, V. M.

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picoseconld pulses in an optical fiber: exact solutions,” Z. Eksp. Teor. Fiz. 89, 1542–1551 (1985) [English version: Sov. Phys. JETP 62, 894–899 (1985)].

Fibich, G.

K. D. Moll, A. L. Gaeta, and G. Fibich, “Self-similar optical wave collapse: observation of the Townes profile,” Phys. Rev. Lett. 90, 203902 (2003).
[Crossref]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, 1986).

Fokas, A. S.

J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, “Generating mechanism for higher-order rogue waves,” Phys. Rev. E 87, 052914 (2013).
[Crossref]

Fuerbach, A.

Gaeta, A. L.

K. D. Moll, A. L. Gaeta, and G. Fibich, “Self-similar optical wave collapse: observation of the Townes profile,” Phys. Rev. Lett. 90, 203902 (2003).
[Crossref]

A. L. Gaeta, “Optics. Collapsing light really shines,” Science 301, 54–55 (2003).
[Crossref]

Ganshin, A. N.

A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P. V. E. McClintock, “Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium,” Phys. Rev. Lett. 101, 065303 (2008).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias, “Rogue waves and analogies in optics and oceanography,” Nat. Rev. Phys. 1, 675–689 (2019).
[Crossref]

Giorgini, S.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463–512 (1999).
[Crossref]

Grelu, P.

Hang, C.

Z. Y. Yan and C. Hang, “Analytical three-dimensional bright solitons and soliton pairs in Bose-Einstein condensates with time-space modulation,” Phys. Rev. A 80, 063626 (2009).
[Crossref]

He, J. S.

L. H. Wang, J. S. He, H. Xu, J. Wang, and K. Porsezian, “Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber,” Phys. Rev. E 95, 042217 (2017).
[Crossref]

J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, “Generating mechanism for higher-order rogue waves,” Phys. Rev. E 87, 052914 (2013).
[Crossref]

Y. Y. Wang, J. S. He, and Y. S. Li, “Soliton and rogue wave solution of the new nonautonomous nonlinear Schrödinger equation,” Commun. Theor. Phys. 56, 995–1004 (2011).
[Crossref]

J. S. He and Y. Li, “Designable integrability of the variable coefficient nonlinear Schrodinger equations,” Stud. Appl. Math. 126, 1–15 (2010).
[Crossref]

Heatley, D. R.

J. M. Soto-Crespo, D. R. Heatley, and E. M. Wright, “Stability of the higher-bound states in a saturable self-focusing medium,” Phys. Rev. E 44, 636–644 (1991).
[Crossref]

Heller, E. J.

R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, and E. J. Heller, “Freak waves in the linear regime: a microwave study,” Phys. Rev. Lett. 104, 093901 (2010).
[Crossref]

Höhmann, R.

R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, and E. J. Heller, “Freak waves in the linear regime: a microwave study,” Phys. Rev. Lett. 104, 093901 (2010).
[Crossref]

Huang, T.

W. P. Zhong, M. Belic, G. Assanto, B. A. Malomed, and T. Huang, “Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient,” Phys. Rev. A 84, 043801 (2011).
[Crossref]

Infeld, E.

M. Matuszewski, M. Trippenbach, B. A. Malomed, E. Infeld, and A. A. Skorupski, “Two-dimensional dispersion-managed light bullets in Kerr media,” Phys. Rev. E 70, 016603 (2004).
[Crossref]

Jalali, B.

D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Kaplan, L.

R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, and E. J. Heller, “Freak waves in the linear regime: a microwave study,” Phys. Rev. Lett. 104, 093901 (2010).
[Crossref]

Kartashov, Y. V.

R. Driven, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, “Three-dimensional hybrid vortex solitons,” New J. Phys. 16, 063035 (2014).
[Crossref]

Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011).
[Crossref]

L. Torner and Y. V. Kartashov, “Light bullets in optical tandems,” Opt. Lett. 34, 1129–1131 (2009).
[Crossref]

Kedziora, D.

D. Kedziora, A. Ankiewicz, and N. Akhmediev, “Circular rogue wave clusters,” Phys. Rev. E 84, 056611 (2011).
[Crossref]

Kharif, C.

C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009).

Kivshar, Y.

Y. Kivshar and G. Agrawal, Optical Solitons (Academic, 2003).

Kivshar, Y. S.

Kolmakov, G. V.

A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P. V. E. McClintock, “Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium,” Phys. Rev. Lett. 101, 065303 (2008).
[Crossref]

Konotop, V. V.

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Vector rogue waves in binary mixtures of Bose-Einstein condensates,” Eur. Phys. J. Spec. Top. 185, 169–180 (2010).
[Crossref]

Z. Y. Yan, V. V. Konotop, and N. Akhmediev, “Three-dimensional rogue waves in nonstationary parabolic potentials,” Phys. Rev. E 82, 036610 (2010).
[Crossref]

Z. Y. Yan and V. V. Konotop, “Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities,” Phys. Rev. E 80, 036607 (2009).
[Crossref]

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80, 033610 (2009).
[Crossref]

Koonath, P.

D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Krolikowski, W.

Kuhl, U.

R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, and E. J. Heller, “Freak waves in the linear regime: a microwave study,” Phys. Rev. Lett. 104, 093901 (2010).
[Crossref]

Kulagin, N. E.

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picoseconld pulses in an optical fiber: exact solutions,” Z. Eksp. Teor. Fiz. 89, 1542–1551 (1985) [English version: Sov. Phys. JETP 62, 894–899 (1985)].

Leonetti, M.

M. Leonetti and C. Conti, “Observation of three dimensional optical rogue waves through obstacles,” Appl. Phys. Lett. 106, 254103 (2015).
[Crossref]

Lettner, M.

D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Dürr, “Control of a magnetic Feshbach resonance with laser light,” Nat. Phys. 5, 339–342 (2009).
[Crossref]

Li, Y.

J. S. He and Y. Li, “Designable integrability of the variable coefficient nonlinear Schrodinger equations,” Stud. Appl. Math. 126, 1–15 (2010).
[Crossref]

Li, Y. S.

Y. Y. Wang, J. S. He, and Y. S. Li, “Soliton and rogue wave solution of the new nonautonomous nonlinear Schrödinger equation,” Commun. Theor. Phys. 56, 995–1004 (2011).
[Crossref]

Lin, I.

Y. Y. Tsai, J. Y. Tsai, and I. Lin, “Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms,” Nat. Phys. 12, 573–577 (2016).
[Crossref]

Malomed, B. A.

R. Driven, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, “Three-dimensional hybrid vortex solitons,” New J. Phys. 16, 063035 (2014).
[Crossref]

Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011).
[Crossref]

W. P. Zhong, M. Belic, G. Assanto, B. A. Malomed, and T. Huang, “Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient,” Phys. Rev. A 84, 043801 (2011).
[Crossref]

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005).
[Crossref]

M. Matuszewski, M. Trippenbach, B. A. Malomed, E. Infeld, and A. A. Skorupski, “Two-dimensional dispersion-managed light bullets in Kerr media,” Phys. Rev. E 70, 016603 (2004).
[Crossref]

I. Towers and B. A. Malomed, “Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 537–543 (2002).
[Crossref]

Matuszewski, M.

M. Matuszewski, M. Trippenbach, B. A. Malomed, E. Infeld, and A. A. Skorupski, “Two-dimensional dispersion-managed light bullets in Kerr media,” Phys. Rev. E 70, 016603 (2004).
[Crossref]

McClintock, P. V. E.

A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P. V. E. McClintock, “Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium,” Phys. Rev. Lett. 101, 065303 (2008).
[Crossref]

Meier, T.

R. Driven, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, “Three-dimensional hybrid vortex solitons,” New J. Phys. 16, 063035 (2014).
[Crossref]

Mezhov-Deglin, L. P.

A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P. V. E. McClintock, “Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium,” Phys. Rev. Lett. 101, 065303 (2008).
[Crossref]

Mihalache, D.

S. Chen, J. M. Soto-Crespo, F. Baronio, P. Grelu, and D. Mihalache, “Rogue-wave bullets in a composite (2+1)D nonlinear medium,” Opt. Express 24, 15251–15260 (2016).
[Crossref]

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005).
[Crossref]

L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, “Tandem light bullets,” Opt. Commun. 199, 277–281 (2001).
[Crossref]

Moll, K. D.

K. D. Moll, A. L. Gaeta, and G. Fibich, “Self-similar optical wave collapse: observation of the Townes profile,” Phys. Rev. Lett. 90, 203902 (2003).
[Crossref]

Mollenauer, L. F.

Montina, A.

A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, “Non-Gaussian statistics and extreme waves in a nonlinear optical cavity,” Phys. Rev. Lett. 103, 173901 (2009).
[Crossref]

Montinad, A.

M. Onorato, S. Residori, U. Bortolozzo, A. Montinad, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Moslem, W. M.

W. M. Moslem, “Langmuir rogue waves in electron-positron plasmas,” Phys. Plasmas 18, 032301 (2011).
[Crossref]

Mussot, A.

J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias, “Rogue waves and analogies in optics and oceanography,” Nat. Rev. Phys. 1, 675–689 (2019).
[Crossref]

Nakamura, Y.

H. Bailung, S. K. Sharma, and Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions,” Phys. Rev. Lett. 107, 255005 (2011).
[Crossref]

Neshev, D. N.

Nulsen, A.

Onorato, M.

M. Onorato, S. Residori, U. Bortolozzo, A. Montinad, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Panajotov, K.

Y. F. Song, Z. H. Wang, C. Wang, K. Panajotov, and H. Zhang, “Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives,” Adv. Photon. 2, 024001 (2020).
[Crossref]

Pelinovsky, E.

C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009).

Peregrine, D. H.

D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Aust. Math. Soc. B 25, 16–43 (1983).
[Crossref]

Perez-Garcia, V. M.

J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, “Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,” Phys. Rev. Lett. 98, 064102 (2007).
[Crossref]

Petrovic, N.

N. Petrovic, M. Belic, W. P. Zhong, R. H. Xie, and G. Chen, “Exact spatiotemporal wave and soliton solutions to the generalized (3 + 1)-dimensional Schrödinger equation for both normal and anomalous dispersion,” Opt. Lett. 34, 1609–1611 (2009).
[Crossref]

M. Belic, N. Petrovic, W. P. Zhong, R. H. Xie, and G. Chen, “Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrodinger equation,” Phys. Rev. Lett. 101, 123904 (2008).
[Crossref]

Pitaevskii, L.

L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford University, 2003).

Pitaevskii, L. P.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463–512 (1999).
[Crossref]

Porsezian, K.

L. H. Wang, J. S. He, H. Xu, J. Wang, and K. Porsezian, “Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber,” Phys. Rev. E 95, 042217 (2017).
[Crossref]

J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, “Generating mechanism for higher-order rogue waves,” Phys. Rev. E 87, 052914 (2013).
[Crossref]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, 1986).

Rasmussen, J. J.

J. J. Rasmussen and K. Rypdal, “Blow-up in nonlinear Schröedinger equations-I: a general review,” Phys. Scr. 33, 481–497 (1986).
[Crossref]

Rasmussen, P. D.

Rempe, G.

D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Dürr, “Control of a magnetic Feshbach resonance with laser light,” Nat. Phys. 5, 339–342 (2009).
[Crossref]

Residori, S.

M. Onorato, S. Residori, U. Bortolozzo, A. Montinad, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, “Non-Gaussian statistics and extreme waves in a nonlinear optical cavity,” Phys. Rev. Lett. 103, 173901 (2009).
[Crossref]

Ropers, C.

D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Rosberg, C. R.

Rypdal, K.

J. J. Rasmussen and K. Rypdal, “Blow-up in nonlinear Schröedinger equations-I: a general review,” Phys. Scr. 33, 481–497 (1986).
[Crossref]

Saito, H.

H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).
[Crossref]

Sharma, S. K.

H. Bailung, S. K. Sharma, and Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions,” Phys. Rev. Lett. 107, 255005 (2011).
[Crossref]

Silberberg, Y.

Skorupski, A. A.

M. Matuszewski, M. Trippenbach, B. A. Malomed, E. Infeld, and A. A. Skorupski, “Two-dimensional dispersion-managed light bullets in Kerr media,” Phys. Rev. E 70, 016603 (2004).
[Crossref]

Slunyaev, A.

C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009).

Solli, D.

D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Song, Y. F.

Y. F. Song, Z. H. Wang, C. Wang, K. Panajotov, and H. Zhang, “Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives,” Adv. Photon. 2, 024001 (2020).
[Crossref]

Soto-Crespo, J. M.

S. Chen, J. M. Soto-Crespo, F. Baronio, P. Grelu, and D. Mihalache, “Rogue-wave bullets in a composite (2+1)D nonlinear medium,” Opt. Express 24, 15251–15260 (2016).
[Crossref]

N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation,” Phys. Rev. E 80, 026601 (2009).
[Crossref]

J. M. Soto-Crespo, D. R. Heatley, and E. M. Wright, “Stability of the higher-bound states in a saturable self-focusing medium,” Phys. Rev. E 44, 636–644 (1991).
[Crossref]

Steinvurzel, P.

Stöckmann, H. J.

R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, and E. J. Heller, “Freak waves in the linear regime: a microwave study,” Phys. Rev. Lett. 104, 093901 (2010).
[Crossref]

Stolen, R. H.

Stringari, S.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463–512 (1999).
[Crossref]

L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford University, 2003).

Sugawa, S.

R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, “Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate,” Phys. Rev. Lett. 105, 050405 (2010).
[Crossref]

Taie, S.

R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, “Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate,” Phys. Rev. Lett. 105, 050405 (2010).
[Crossref]

Takahashi, Y.

R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, “Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate,” Phys. Rev. Lett. 105, 050405 (2010).
[Crossref]

Taki, M.

N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675–678 (2009).
[Crossref]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, 1986).

Torner, L.

R. Driven, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, “Three-dimensional hybrid vortex solitons,” New J. Phys. 16, 063035 (2014).
[Crossref]

Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011).
[Crossref]

L. Torner and Y. V. Kartashov, “Light bullets in optical tandems,” Opt. Lett. 34, 1129–1131 (2009).
[Crossref]

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005).
[Crossref]

L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, “Tandem light bullets,” Opt. Commun. 199, 277–281 (2001).
[Crossref]

Torres, J. P.

L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, “Tandem light bullets,” Opt. Commun. 199, 277–281 (2001).
[Crossref]

Torres, P. J.

J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, “Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,” Phys. Rev. Lett. 98, 064102 (2007).
[Crossref]

Towers, I.

Trippenbach, M.

M. Matuszewski, M. Trippenbach, B. A. Malomed, E. Infeld, and A. A. Skorupski, “Two-dimensional dispersion-managed light bullets in Kerr media,” Phys. Rev. E 70, 016603 (2004).
[Crossref]

Tsai, J. Y.

Y. Y. Tsai, J. Y. Tsai, and I. Lin, “Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms,” Nat. Phys. 12, 573–577 (2016).
[Crossref]

Tsai, Y. Y.

Y. Y. Tsai, J. Y. Tsai, and I. Lin, “Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms,” Nat. Phys. 12, 573–577 (2016).
[Crossref]

Ueda, M.

H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).
[Crossref]

Vekslerchik, V.

J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, “Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,” Phys. Rev. Lett. 98, 064102 (2007).
[Crossref]

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, 1986).

Vo, C.

D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Dürr, “Control of a magnetic Feshbach resonance with laser light,” Nat. Phys. 5, 339–342 (2009).
[Crossref]

Wang, C.

Y. F. Song, Z. H. Wang, C. Wang, K. Panajotov, and H. Zhang, “Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives,” Adv. Photon. 2, 024001 (2020).
[Crossref]

Wang, J.

L. H. Wang, J. S. He, H. Xu, J. Wang, and K. Porsezian, “Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber,” Phys. Rev. E 95, 042217 (2017).
[Crossref]

Wang, L. H.

L. H. Wang, J. S. He, H. Xu, J. Wang, and K. Porsezian, “Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber,” Phys. Rev. E 95, 042217 (2017).
[Crossref]

J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, “Generating mechanism for higher-order rogue waves,” Phys. Rev. E 87, 052914 (2013).
[Crossref]

Wang, Y. Y.

Y. Y. Wang, J. S. He, and Y. S. Li, “Soliton and rogue wave solution of the new nonautonomous nonlinear Schrödinger equation,” Commun. Theor. Phys. 56, 995–1004 (2011).
[Crossref]

Wang, Z. H.

Y. F. Song, Z. H. Wang, C. Wang, K. Panajotov, and H. Zhang, “Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives,” Adv. Photon. 2, 024001 (2020).
[Crossref]

Wise, F.

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005).
[Crossref]

Wright, E. M.

J. M. Soto-Crespo, D. R. Heatley, and E. M. Wright, “Stability of the higher-bound states in a saturable self-focusing medium,” Phys. Rev. E 44, 636–644 (1991).
[Crossref]

Xie, R. H.

N. Petrovic, M. Belic, W. P. Zhong, R. H. Xie, and G. Chen, “Exact spatiotemporal wave and soliton solutions to the generalized (3 + 1)-dimensional Schrödinger equation for both normal and anomalous dispersion,” Opt. Lett. 34, 1609–1611 (2009).
[Crossref]

M. Belic, N. Petrovic, W. P. Zhong, R. H. Xie, and G. Chen, “Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrodinger equation,” Phys. Rev. Lett. 101, 123904 (2008).
[Crossref]

Xu, H.

L. H. Wang, J. S. He, H. Xu, J. Wang, and K. Porsezian, “Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber,” Phys. Rev. E 95, 042217 (2017).
[Crossref]

Yamazaki, R.

R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, “Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate,” Phys. Rev. Lett. 105, 050405 (2010).
[Crossref]

Yan, Z. Y.

Z. Y. Yan, V. V. Konotop, and N. Akhmediev, “Three-dimensional rogue waves in nonstationary parabolic potentials,” Phys. Rev. E 82, 036610 (2010).
[Crossref]

Z. Y. Yan and C. Hang, “Analytical three-dimensional bright solitons and soliton pairs in Bose-Einstein condensates with time-space modulation,” Phys. Rev. A 80, 063626 (2009).
[Crossref]

Z. Y. Yan and V. V. Konotop, “Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities,” Phys. Rev. E 80, 036607 (2009).
[Crossref]

Zhang, H.

Y. F. Song, Z. H. Wang, C. Wang, K. Panajotov, and H. Zhang, “Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives,” Adv. Photon. 2, 024001 (2020).
[Crossref]

Zhang, H. R.

J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, “Generating mechanism for higher-order rogue waves,” Phys. Rev. E 87, 052914 (2013).
[Crossref]

Zhong, W. P.

W. P. Zhong, M. Belic, G. Assanto, B. A. Malomed, and T. Huang, “Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient,” Phys. Rev. A 84, 043801 (2011).
[Crossref]

N. Petrovic, M. Belic, W. P. Zhong, R. H. Xie, and G. Chen, “Exact spatiotemporal wave and soliton solutions to the generalized (3 + 1)-dimensional Schrödinger equation for both normal and anomalous dispersion,” Opt. Lett. 34, 1609–1611 (2009).
[Crossref]

M. Belic, N. Petrovic, W. P. Zhong, R. H. Xie, and G. Chen, “Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrodinger equation,” Phys. Rev. Lett. 101, 123904 (2008).
[Crossref]

Adv. Photon. (1)

Y. F. Song, Z. H. Wang, C. Wang, K. Panajotov, and H. Zhang, “Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives,” Adv. Photon. 2, 024001 (2020).
[Crossref]

Appl. Phys. Lett. (1)

M. Leonetti and C. Conti, “Observation of three dimensional optical rogue waves through obstacles,” Appl. Phys. Lett. 106, 254103 (2015).
[Crossref]

Commun. Theor. Phys. (1)

Y. Y. Wang, J. S. He, and Y. S. Li, “Soliton and rogue wave solution of the new nonautonomous nonlinear Schrödinger equation,” Commun. Theor. Phys. 56, 995–1004 (2011).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Vector rogue waves in binary mixtures of Bose-Einstein condensates,” Eur. Phys. J. Spec. Top. 185, 169–180 (2010).
[Crossref]

J. Aust. Math. Soc. B (1)

D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Aust. Math. Soc. B 25, 16–43 (1983).
[Crossref]

J. Opt. B (1)

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Phys. (2)

D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Dürr, “Control of a magnetic Feshbach resonance with laser light,” Nat. Phys. 5, 339–342 (2009).
[Crossref]

Y. Y. Tsai, J. Y. Tsai, and I. Lin, “Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms,” Nat. Phys. 12, 573–577 (2016).
[Crossref]

Nat. Rev. Phys. (1)

J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias, “Rogue waves and analogies in optics and oceanography,” Nat. Rev. Phys. 1, 675–689 (2019).
[Crossref]

Nature (1)

D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

New J. Phys. (1)

R. Driven, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, “Three-dimensional hybrid vortex solitons,” New J. Phys. 16, 063035 (2014).
[Crossref]

Opt. Commun. (1)

L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, “Tandem light bullets,” Opt. Commun. 199, 277–281 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Lett. A (1)

N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675–678 (2009).
[Crossref]

Phys. Plasmas (1)

W. M. Moslem, “Langmuir rogue waves in electron-positron plasmas,” Phys. Plasmas 18, 032301 (2011).
[Crossref]

Phys. Rep. (1)

M. Onorato, S. Residori, U. Bortolozzo, A. Montinad, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Phys. Rev. A (3)

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80, 033610 (2009).
[Crossref]

W. P. Zhong, M. Belic, G. Assanto, B. A. Malomed, and T. Huang, “Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient,” Phys. Rev. A 84, 043801 (2011).
[Crossref]

Z. Y. Yan and C. Hang, “Analytical three-dimensional bright solitons and soliton pairs in Bose-Einstein condensates with time-space modulation,” Phys. Rev. A 80, 063626 (2009).
[Crossref]

Phys. Rev. E (9)

J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, “Generating mechanism for higher-order rogue waves,” Phys. Rev. E 87, 052914 (2013).
[Crossref]

L. H. Wang, J. S. He, H. Xu, J. Wang, and K. Porsezian, “Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber,” Phys. Rev. E 95, 042217 (2017).
[Crossref]

D. E. Edmundson, “Unstable higher modes of a three-dimensional nonlinear Schrödinger equation,” Phys. Rev. E 55, 7636 (1997).
[Crossref]

J. M. Soto-Crespo, D. R. Heatley, and E. M. Wright, “Stability of the higher-bound states in a saturable self-focusing medium,” Phys. Rev. E 44, 636–644 (1991).
[Crossref]

Z. Y. Yan and V. V. Konotop, “Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities,” Phys. Rev. E 80, 036607 (2009).
[Crossref]

Z. Y. Yan, V. V. Konotop, and N. Akhmediev, “Three-dimensional rogue waves in nonstationary parabolic potentials,” Phys. Rev. E 82, 036610 (2010).
[Crossref]

M. Matuszewski, M. Trippenbach, B. A. Malomed, E. Infeld, and A. A. Skorupski, “Two-dimensional dispersion-managed light bullets in Kerr media,” Phys. Rev. E 70, 016603 (2004).
[Crossref]

D. Kedziora, A. Ankiewicz, and N. Akhmediev, “Circular rogue wave clusters,” Phys. Rev. E 84, 056611 (2011).
[Crossref]

N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation,” Phys. Rev. E 80, 026601 (2009).
[Crossref]

Phys. Rev. Lett. (9)

A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, “Non-Gaussian statistics and extreme waves in a nonlinear optical cavity,” Phys. Rev. Lett. 103, 173901 (2009).
[Crossref]

R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, and E. J. Heller, “Freak waves in the linear regime: a microwave study,” Phys. Rev. Lett. 104, 093901 (2010).
[Crossref]

H. Bailung, S. K. Sharma, and Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions,” Phys. Rev. Lett. 107, 255005 (2011).
[Crossref]

A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P. V. E. McClintock, “Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium,” Phys. Rev. Lett. 101, 065303 (2008).
[Crossref]

H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).
[Crossref]

K. D. Moll, A. L. Gaeta, and G. Fibich, “Self-similar optical wave collapse: observation of the Townes profile,” Phys. Rev. Lett. 90, 203902 (2003).
[Crossref]

M. Belic, N. Petrovic, W. P. Zhong, R. H. Xie, and G. Chen, “Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrodinger equation,” Phys. Rev. Lett. 101, 123904 (2008).
[Crossref]

J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, “Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,” Phys. Rev. Lett. 98, 064102 (2007).
[Crossref]

R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, “Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate,” Phys. Rev. Lett. 105, 050405 (2010).
[Crossref]

Phys. Scr. (1)

J. J. Rasmussen and K. Rypdal, “Blow-up in nonlinear Schröedinger equations-I: a general review,” Phys. Scr. 33, 481–497 (1986).
[Crossref]

Rev. Mod. Phys. (2)

Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011).
[Crossref]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463–512 (1999).
[Crossref]

Science (1)

A. L. Gaeta, “Optics. Collapsing light really shines,” Science 301, 54–55 (2003).
[Crossref]

Stud. Appl. Math. (1)

J. S. He and Y. Li, “Designable integrability of the variable coefficient nonlinear Schrodinger equations,” Stud. Appl. Math. 126, 1–15 (2010).
[Crossref]

Z. Eksp. Teor. Fiz. (1)

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picoseconld pulses in an optical fiber: exact solutions,” Z. Eksp. Teor. Fiz. 89, 1542–1551 (1985) [English version: Sov. Phys. JETP 62, 894–899 (1985)].

Other (5)

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, 1986).

L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford University, 2003).

C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009).

Y. Kivshar and G. Agrawal, Optical Solitons (Academic, 2003).

R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, 2006).

Supplementary Material (3)

NameDescription
» Visualization 1       The movie Visualization1.mov shows the three dimensional dynamical evolution of the 3D RW solution U_{rw1} given by equation (7) in the main text of paper, and also shows the bounded radius of this optical sphere when it is evolved with respect
» Visualization 2       The movie Visualization2.mov displays the evolution of the radius in the (x, y)-plane of the U_{rw1} at z=0 given by equation (7) in the main text of paper.
» Visualization 3       The movie Visualization3.mov shows the dynamical evolution of the U_{rw1} at z=0.5 given by equation (7) in the (x, y)-plane.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Evolution of Urw1 on the (r, t) plane. It is obvious to find Urw1 exhibiting oscillations along r when t is very small.
Fig. 2.
Fig. 2. Profiles of Urw1 along r for different values of t. (a) Two extreme points are (0.851,0.233) and (1.507,0.419) for t=0.05; (b) there is no extreme point for t=0.25.
Fig. 3.
Fig. 3. Profiles of Urw1. (a) The isosurface of Urw1 at t=0.05 when Urw1=0.4; (b) the inside of (a) plotted from a bird’s-eye view and z[0.9,0.9]; (c) the contour line of Urw1 at z=0. The latter two panels verify that there are three homocentric spheres.
Fig. 4.
Fig. 4. Radius of the sphere for the isosurface given by Urw1=0.5. Panel (b) is plotted for very small t of panel (a), and there is a minimum rmin=0.68574. Panel (c) is plotted for large t of panel (a), and there is a maximum rmax=2.00604. The asymptotical value of r is ras=2.
Fig. 5.
Fig. 5. Localized profiles of the Urw1 with z=0.5 in the (x, y) plane: (a) t=0; (b) t=0.5.
Fig. 6.
Fig. 6. Profiles of Urw1 with respect to t for different values of r: (a) r=0.25; (b) there are two extreme points (0.007,1.635) and (0.663,2.113) for r=0.5; (c) r=1.
Fig. 7.
Fig. 7. (a) Growth rates λ as a function of the spherical harmonic modes l. (b) Dominant unstable l=4 radial perturbation eigenmode emerging from a small random initial condition.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i(tψ)+β(r,t)2ψv(r,t)ψg(r,t)|ψ|2ψ=0,
ψ(r,t)=ρ(r)exp[iϕ(r,t)]Φ[X(t),T(r,t)],
i[XΦ(X,T)]+2T2Φ(X,T)+2ϵ|Φ(X,T)|2Φ=0,
T=αr+t,X=t,ρ=1rα,ϕ=αr2t2,
β=1α2,g=2ϵαr2,v=14.
itψ+(2r2ψ+2rrψ)14ψ+2r2|ψ|2ψ=0.
ψ=ψrw=4r28rt20t2+3+16it(4r2+8rt+20t2+1)rexp[12i(r3t)].
ψ(r,θ,ϕ,t)=ψrw(r,t)+μg(r,t)ϒlm(θ,ϕ).
igt+1r2r(r2gr)l(l+1)r2g14g+2r2(|ψrw|2g+ψrw2g*)=0.