Abstract

We propose what we believe is a novel proposal for realizing a quantum C-NOT logic gate, through fabricating an interesting hybrid device with a chiral photon-pulse switch, a single nitrogen-vacancy (NV) center, and an optical microcavity. Three major different practical routes on realizing a chiral photon emitter are discussed, which can implement a chiral control unit via the nonreciprocal emitter–photon interactions, so-called “propagation-direction-dependent” emission. With the assistance of dichromatic microwave driving fields, we carry out the relevant C-NOT operations by engineering the interactions on a single NV spin in a cavity. We note that this logic gate is robust against practical noise and experimental imperfection, and this attempt may evoke wide and fruitful applications in quantum information processing.

© 2021 Chinese Laser Press

1. INTRODUCTION

In the quantum optics research area, it has always been a central goal to develop techniques for complete control of light–matter interaction at the single-quantum level, which underlies the essential physics of many phenomena and applications [1,2]. With the rapid innovation of the advanced photonic nanomaterials and processing technologies, a new quantum revolution on optics and photonics is accelerating the progress of the development for quantum information processing (QIP) [37].

Recently, “chiral quantum optics,” which leads to a chiral light–matter interaction, so-called “propagation-direction-dependent” emission, has quickly attracted widespread attention [8]. Utilizing this kind of chiral interface, we can constitute an interesting quantum control of photon–emitter interaction, such as the nonreciprocal interaction [920]. This new research can undoubtedly provide us with fundamentally new applications and functionalities in the area of quantum physics [2123]. Moreover, we can fabricate a hybrid quantum system with this exciting photon–emitter setup to functionalize some special quantum operations [24,25]. Perhaps this hybrid system with the chiral units can become a key resource for QIP in the near future [26,27].

As a point defect in diamond, the nitrogen vacancy (NV) centers integrated in a hybrid quantum system have recently emerged as one of the leading candidates for QIP thanks to their excellent spin properties, such as atom-like properties, solid-state spins without any trap, easy scalability, and longer coherence time even at ambient conditions [2830]. Significant theoretical and experimental investigations have been carried out to realize quantum simulation and manipulation [3140]. It is still a challenge to control a single NV center with enough strength at single-quantum level in the microwave-frequency domain, and this is also a serious limitation for its wide application in QIP [4146]. However, in the optical-frequency domain, we can conveniently fabricate the NV center with the optical cavity or optical lattice in a hybrid device, and coherently manipulate the NV center at single-quantum level with enough strong coupling [4752]. QIP with integrated photonics has attracted much attention recently [53]. It was also studied in Ref. [54] with the linear combination of unitary architecture [55]. QIP based on an NV center and optical microcavity was also studied in Ref. [56]. Progress in the fabrication and application of optical microcavity is reviewed in Ref. [57], and propagation-direction-dependent emission is reviewed in Ref. [58]. This efficient and reliable optical interface indicates to us a promising direction for studying the NV centers in QIP [56].

In this work, we propose realizing a robust quantum C-NOT logic gate [59] by fabricating a single NV center, an optical microcavity, and a chiral photon-pulse switch in a hybrid device. Here, we stress that we can implement an exquisite chiral control unit via three major different routes. For the first route, we can apply the idea of the nonreciprocal atom–photon or spin–photon interaction to realize this chiral control unit, called a “one-atom router” [9,48,60]. Second, according to the recent achievement on emitting the path-encoded photon utilizing an in-plane spin–photon interface accomplished by the I. J. Luxmoore group; we can also apply the quantum dot (QD) system to realize this chiral photon switch [11]. The third practicable route is to apply the surface plasmon (SP) scheme to realize this chiral photon emitter, in which the representative research comes from the M. D. Lukin group and the H. X. Xu group [1315]. As these propagation-direction-dependent emitters will deliver the σ+ mode optical pulse into the optical microcavity and reflect or filter the σ mode out in a well-controlled setup, we can achieve a series of relevant C-NOT operations by engineering the interactions of a single NV center in an optical microcavity or optical lattice, with the assistance of dichromatic microwave driving fields. In this scheme, we have not only made the analytical discussions, but also carried out the numerical simulations with the cavity dissipation, the NV decay and dephasing, and the system dispersion all being considered. We stress that this proposal may provide us with a quantum C-NOT gate with high fidelity that is also robust against practical noise and experimental imperfection, even under realistic conditions. We also hope it may be a scalable and universal proposal for the realistic QIP in the near future.

This paper is organized as follows. In Section 2, we introduce the scheme and the basic idea for this hybrid setup; in Section 3, we introduce the basic theoretical mechanism for this scheme. The relevant C-NOT operation matrix analysis of this scheme is discussed in Section 4, and the relevant numerical simulations are carried out in Section 5 by solving the whole-system master equation. In Section 6, we discuss the effect on this scheme caused by system imperfections. Finally, we study the relevant experiment parameters of this setup according to the current experimental advancement in Section 7 and make a brief conclusion on this work in the last section.

2. SCHEME

The traditional C-NOT gate can be described by the unitary operator,

U^CNOT=|CC|I^s+|+CC+|σ^xs,
where |+C and |C stand for two general orthogonal quantum states of the control unit, which, respectively, mean “Yes” or “No,” or mean the switch is “On” or “Off.” We can model this control unit in plenty of different setups, such as light with polarization, atom, ion or artificial atom with two-level states, or chiral light [6166]. In Eq. (1), I^s and σ^xs are, respectively, the identity matrix and the Pauli matrix x-component for a qubit.

 figure: Fig. 1.

Fig. 1. Scheme diagrams. (a) This hybrid device consists of two parts, a chiral switch for emitting photon pulse and an optical microcavity embedded with a single NV center, both of which are connected with an optical nanofiber. The outputs are delivered to the optical microcavity through nanofiber. A single NV center, driven by a dichromatic microwave field, is planted in the optical microcavity, which will also interact with the optical modes near-resonantly. (b) Level diagram of the NV center ground triplet state and excited state, and the feasible transition channels. The brown and blue solid arrows indicate the dichromatic microwave driving fields (with frequencies ω1 and ω2, and Rabi frequencies Ω1 and Ω2) applied between the state |ms=0 and the state |ms=1. The red solid arrows indicate the optical transition between the state |ms=0 and the excited state |e, which is induced by σ+ modes.

Download Full Size | PPT Slide | PDF

In this work, our goal is to achieve a novel chiral C-NOT gate by engineering the quantum states of a single electronic spin through exquisite tailoring spin-photon interactions [67,68]. To make sure of the implementation of this logic gate, we should accomplish two major procedures: (i) the control unit and (ii) the C-NOT operation kernel in this project. Here, we first stress that this proposal can only work well at cryogenic temperatures, and we have illustrated a feasible scheme on this proposal in Figs. 1(a) and 1(b). Then we can make a detailed analysis.

  • (i) For the first procedure, we need to present a well-controlled switch for emitting a photon pulse. Here, we take advantage of propagation-direction-dependent emission in the research field of chiral quantum optics [8]. In recent years, with the rapid development of advanced photonic nanostructures, this exciting physics has been realized within different experimental facilities [8,9,11,1320]. Basing this work on these advanced achievements, we apply three major different routes for realizing a well-controlled optical routing to functionalize a chiral photon-pulse switch. All of them are plotted in Fig. 1(a), which includes setups (1), (2), and (3), respectively.

As illustrated in Fig. 1(a), realizing this chiral switch, three major different routes are considered in this work. The first potential route is illustrated in Fig. 1(a) [Scheme (1)]. In this scheme, we utilize M. D. Lukin group’s achievement on implementing the quantum entanglement between the polarization of a single optical photon and an NV center [48]. Therefore, this type of polarization-dependent optical transition indicates that we can implement a more feasible single-photon chiral switch by means of this polarization technology. Perhaps the I. Shomroni group may provide us with another interesting method for realizing this chiral switch, which is composed of a chip-based silica whispering-gallery-mode (WGM) microresonator (MR) that is strongly and magnetically coupled to a single atom [8,9,60]. By comparing these two types of methods, we believe that the one plotted in Scheme (1) may be more suitable for this system.

To realize this single-photon chiral switch, the details of this so-called optical polarization manipulation and selection are as follows [48]. As shown in setup (1), the NV center in diamond with a high purity plays the role of the polarized light source, and its chiral emission can be controlled by the MW signals conveniently. Specifically, the NV center prepared in a specific excited state |A2 will decay into two different long-lived spin states |1 by the emission of orthogonally polarized optical photons with the wavelength 637 nm and the polarization σ± owing to total angular momentum conservation. For instance, the state |A2 decays to the ground state |1 through polarized σ+ radiation and to state |+1 through polarized σ radiation. At first, we can initialize the NV into the ground state |0 with the off-resonant 532 nm laser, and then accurately manipulate the populations of the states |1 and |0 in time through the MW control. So, we can reach the goal of the implementation of a chiral photon emitter. Furthermore, in order to improve the efficiency of this chiral switch for emitting the determinately polarized photons into the cavity or not, we can also apply the general polarization filter to connect the chiral switch and the cavity. Therefore, we can achieve the basic goal: σ+ mode photons are transmitted into the cavity, while the photons of the σ mode are rare and filtered out. According to the relevant experimental report, we consider that the fidelity of this chiral switch for emitting and transmitting the σ+ mode photons into the cavity will reach more than 90% [48].

Setup (2) means the recent achievement on emitting the path-encoded photon utilizing an in-plane spin-photon interface accomplished by the I. J. Luxmoore group; we can also apply this type QD system to realize this chiral switch [11]. In this spin to the guided photon interface, the QD located at the center of the waveguide intersection will coherently emit the x (y)-polarization component of a circularly polarized state into the waveguides aligned along the y (x) direction, respectively. By collecting both polarization components while retaining their relative phase, the full polarization state of the photon is mapped to a path-encoded state; then we can implement a more feasible chiral switch by means of the polarization technology.

In setup (3), we can also apply the SP scheme to realize this chiral photon emitter, and these representative achievements come from the M. D. Lukin group and the H. X. Xu group [1315].

Furthermore, many other feasible schemes can also be applied to realize this type of chiral switch equivalently in this work [1620,58]. Therefore, for realizing the chiral control unit in this scheme, we can utilize many equivalent schemes to make this procedure function. Based on this type of nonreciprocal interaction in the different setups above, we can realize a well-controlled chiral photon-pulse switch, the so-called propagation-direction-dependent emitter. As a result, for this procedure, the photons with mode σ+ can be delivered into the cavity to drive the NV spin, while the photons with mode σ will be reflected away.

  • (ii) The second procedure is to provide a more reliable operation kernel (atom or artificial atom) to implement this logic gate operation more conveniently. Among all different quantum systems, NV centers in diamond are particularly attractive due to their excellent spin properties, even at ambient conditions. Especially, hybrid systems based on NV centers are reliable and promising setups for QIP due to their easy scalability and longer coherence time. As illustrated in Fig. 1(a), we consider a single NV center embedded in an optical microcavity. The input of the cavity is connected to the chiral switch of photon pulse through a nanofiber. So, the input signal (σ+ single-photon pulse) will induce the resonant transition from state |0 to the excited states with assistance of the cavity mode a^. The energy level structure of a single NV center is shown in Fig. 1(b). Here we choose one of its excited states as the unique excited state |e. The electronic ground triplet state |ms=0,±1 is the eigenstate of spin operator S^z with S^z|ms=ms|ms, and the zero-field splitting between the degenerate sublevels |ms=±1 and |ms=0 is D=2π×2.87GHz.

As we know, this photon pulse into the cavity may induce multiple and complex optical transitions between the triple ground states and the multilevel excited states. With the purpose of reducing these transitions to |0|e and discarding the optical transitions between |±1 and the other excited states, we can apply a strong homogeneous static magnetic field Bstatic to remove the degenerate states |ms=±1 with Zeeman splitting δ=2geμBBstatic. Due to the far detuning condition |δ±D|g, we can discard these unnecessary transitions and reduce NV to the unique optical transition, |0|e. As a result, this unique optical transition with interaction is described as (=1) H^1=νa^a^+g(a^|e0|+a^|0e|), with the coupling strength g and the fundamental frequency ν. Meanwhile, we introduce tunable dichromatic microwave driving fields to drive the transitions between states |ms=0 and |ms=±1. So, the Hamiltonian for describing these interactions is H^2=Ω2(|10|eiω1t+|+10|eiω2t+h.c.), with the tunable oscillating frequencies ω1 and ω2 and Rabi frequencies Ω1=Ω2=Ω1,2*Ω. The energy-level transitions for this scheme are also plotted in Fig. 1(b); the red solid arrow indicates the optical transition between the state |ms=0 and the excited state |e, which is induced by σ+ modes; the brown and blue solid arrows indicate the ground-state transitions between the states |ms=0 and |ms=±1, respectively.

3. BASIC THEORETICAL MECHANISM

Although this propagation-direction-dependent emitter is the key point of this chiral switch for realizing the quantum C-NOT gate, we can conveniently implement the control of the photon-pulse signal delivered into the cavity or not through different setups for this scheme. Here, we stress that the following two opposite cases should be taken into consideration. For Case (I), this chiral switch delivers a single-photon pulse (σ+ photon) into the optical microcavity, which will induce the optical transition between the states |0 and |e, and then we can make the definition as σ+|C for this control unit, while for Case (II), the incoming σ photon signal cannot be delivered into this cavity owing to this chiral switch; then, we can also define σ|+C for this control unit.

  • (I) The σ+ photon is delivered into the cavity to interact with the NV center and the control unit is |C, the so-called “Off” state. Then we can obtain the Hamiltonian in the Schrödinger picture (SP) for this operation unit as follows:
    H^SP(I)=H^NV+H^1+H^2.

Here, the three items in Eq. (2) above are, respectively, H^NV=ωe|ee|+ω+1|+1+1|+ω1|11|, H^1=νa^a^+g(a^|e0|+h.c.), and H^2=Ω2(|10|eiω1t+|+10|eiω2t+h.c.). The first item, H^NV, is the free Hamiltonian for describing the single NV center, the second item, H^1, characterizes the interaction between an NV electronic spin and the optical cavity, and the last item, H^2, stands for the dichromatic microwave driving fields acting on the NV center with the ground-state transitions |ms=0|ms=±1.

Then we apply a frame rotation (based on H^NV) and a transformation of representation [|()(|1+()|+1)/2] to Eq. (2). We can then obtain the equivalent expression in the interaction picture (IP),

H^IP(I)=(ga^|e0|+Ω2|0|)eiΔt+h.c.,
where the corresponding detunings satisfy the relations ωeν=ω1ω1=ω+1ω2Δ. Discarding the energy shift item a^a^|ee|, we can then achieve the effective Hamiltonian under the condition of large detuning (|Δ|g,Ω),
H^eff(I)Ξ1||+Ξ2|ee|+Λ(a^|e|+h.c.),
with Ξ1=Ω2/2Δ, Ξ2=g2/Δ, and Λ=2gΩ/2Δ. To make it easier, here we have isolated a subsystem comprising {|1p|,|1p|,|0p|e}, where |1(0)p denotes the state of cavity mode with only one (no) photon. Through solving the Schrödinger equation H^eff(I)|Ψ=E|Ψ, we can get two different dark states, |D1=|1p| and |D2=(2g|1p|Ω|0p|e)/2g2+Ω2, with the eigenvalue E=0.

Here in this scheme, we assume gΩ, and the dark state |D2|1p|. During this dynamical evolution process according to H^eff(I), we find the following rules. Once the photon and NV center are initially prepared in |1p|1, the system will undergo the dynamical evolution that follows the unique linear superposition of dark states |D1 and |D2 with expression (|D1+|D2)/2|1p|1. On the contrary, when the initial state is |1p|+1, another superposition (|D1|D2)/2|1p|+1 will be the unique target state for its evolution. As a result, for Case (I) we have realized a controlled invariant operation: |1p|±1|1p|±1, in which the control unit chiral switch is in the “Off” state (Appendix A).

  • (II) The σ photon is reflected away by this chiral switch, and no photon is delivered into the cavity. Therefore, the control unit is turned to state |+C, the so-called “On” state. Meanwhile, the triple ground-state transition |0|±1 of the NV center is always maintained by this classical dichromatic microwave field. So, we can describe the Hamiltonian in the SP as follows:
    H^SP(II)=H^NV+H^2.

In the same way, we can get the Hamiltonian with equivalent expression in the IP,

H^IP(II)=Ω2(|10|+|+10|)eiΔt+h.c.,
where the corresponding detunings satisfy the relations ω1ω1=ω+1ω2Δ. Then we can also achieve the effective Hamiltonian under the condition of large detuning (|Δ|Ω),
H^eff(II)=Ξ12(|1+1|+|+11|).

According to Eq. (7), we find that |±1 will undergo the state transition to each other (|1|+1) at the time of τN=Nπ/Ξ1 (N=1,2,3,). Therefore, for Case (II), we also have realized the spin-flip operation, which is also controlled by this chiral switch in the “On” state.

In a word, utilizing a chiral photon-pulse switch controlled by this nonreciprocal interaction, we can realize a complete quantum C-NOT operation with an NV center in this hybrid system.

4. C-NOT OPERATION MATRIX OF THIS SCHEME

To indicate this C-NOT logic operation process more clearly, we apply the relevant controlled operation gate matrices to our scheme [59]. Considering Eq. (1), the ideal C-NOT gate matrix can be expressed as

U^C-NOT=[1000010000010010],
in which, the upper left quadrant and lower right quadrant correspond to the identity matrix I^s and inversion matrix σ^xs, respectively.

In contrast to J. H. Plantenberg and J. E. Mooij group’s two-qubit C-NOT experimental demonstration [59], the major difference in this work is that the control unit (chiral switch) is independent of the operation qubit (NV spin); perhaps we may call it the single-qubit controlled C-NOT operation. This bichromatic drive is also independent of the state of the control unit (the chiral switch) in this scheme. During the whole controlled C-NOT operation in this scheme, the microwave bichromatic driving fields are always acting on the NV spins in both cases.

In Case (I), the σ+ mode photon is transmitted into the cavity, and we can obtain the identity operation approximately with the relation U^2×2sI^s. Here, we can describe this effective operation as

U^2×2s=[12(1+r)0012(1+r)],
with r=1/1+Ω2/2g21 when gΩ. For Case (II), there is no photon inside the cavity, and the microwave bichromatic driving fields dominate this inversion operation, which corresponds to the C-NOT operation of the NV spin. Here we stress that this inversion operation is a dynamical periodic process, and we can apply the universal method of the two-level Bloch sphere to express this operation equivalently [59]. For this operation unit matrix, we can add an additional single-qubit z-rotation with π2, which can ensure us the real inversion operation matrix σ^x. According to Eq. (7), this 2×2 matrix can be expressed as
X^2×2s=[icosΞ1t2sinΞ1t2sinΞ1t2icosΞ1t2],
with the effective coupling Ξ1=Ω2/2Δ. Combining the two cases above, we can rewrite this whole C-NOT operation matrix as
U^C-NOTR=[1+r200001+r20000icosΞ1t2sinΞ1t200sinΞ1t2icosΞ1t2].

Therefore, discarding the system dissipation and dispersion, we can obtain U^CNOTRU^CNOT with the condition of gΩ and Ξ1t=π. To quantify the basic fidelity of the scheme, we can utilize the definition F=Tr(U^C-NOTRU^C-NOTT)/4 [59]. Then we can get

F(t=πΞ1)=14(1+r+2sinΞ1t2)1.

5. NUMERICAL SIMULATIONS

To confirm the analysis results discussed above, let us make the corresponding numerical simulations to further exhibit the feasibility of this scheme. In general, for this proposal, this hybrid quantum system satisfies the whole dynamical evolution, which is dominated by the master equation,

dρ^dt=i[H^SP(I),(II),ρ^]+κD[a^]ρ^+γeD[σ^e]ρ^+γgD[σ^z]ρ^.

In Eq. (13), ρ^ is the density operator, including the freedom of cavity mode and NV center. H^SP(I) and H^SP(II) mean two different Hamiltonians for Case (I) and Case (II), respectively. We define an operator as D[o^]ρ^o^ρ^o^o^o^ρ^/2ρ^o^o^/2, and apply κ to describe the dissipation rate of the optical microcavity. Here, γe is the NV center’s average decay rate induced by the spontaneous emission from excited state |e to the ground states. For a single NV center, considering all of the spontaneous emission channels (such as |e|0 and |e|±1), |e|0 dominates this decay process with the highest probability. By utilizing this property, one can initialize the NV center to the state |0 conveniently. By discarding the other two weak transitions, we assume σ^e|0e|. In addition, we also apply γg to describe the NV center’s dephasing rate for this type of ground-state electron spin. In fact, this effect is mainly caused by the interactions from the crystal strain and the other adjacent electron spins or nuclear spins, so we define σ^z=(|+1+1||11|)/2.

First of all, for Case (I), when the control unit is engineered in |C state, the whole system is governed by the Hamiltonian H^SP(I). By solving the master equation (13) with two different initial states, |1p|1 and |1p|+1, we achieve the numerical results plotted in Figs. 2(a)–2(d). As shown in Figs. 2(a) and 2(c), although the coupling strength g is tuned from 5Ω to 10Ω, during the time interval [0,1/Ω], we can still maintain the fidelity to about more than 0.96 in this hybrid system; this is accompanied by some adverse factors, such as the cavity dissipation and NV center’s decay and dephasing. In addition, as illustrated in Figs. 2(b) and 2(d), with the same parameters and time interval [0,1/Ω], we can also achieve a high fidelity of more than 0.96 as we tune Δ from 25Ω to 50Ω, in spite of the adverse factors mentioned above.

 figure: Fig. 2.

Fig. 2. For Case (I), the dynamical evolution of the fidelity, (a) and (b) with the initial state |1p|1, and (c) and (d) with the initial state |1p|+1, in which (a) and (c) correspond to the dynamical fidelity versus the coupling strength g, with the coefficients g[5Ω,10Ω], Δ25Ω, κ0.1Ω, γeΩ, and γg0.001Ω; (b) and (d) correspond to the dynamical fidelity versus the detuning Δ, with the coefficients Δ[25Ω,50Ω], g=5Ω, κ0.1Ω, γeΩ, and γg0.001Ω.

Download Full Size | PPT Slide | PDF

Second, for Case (II), when the control unit is engineered in |+C state, the so-called “On” state, there is no photon signal to be delivered into the cavity. As a result, the whole system is governed by H^SP(II), which corresponds to the spin-flip operation. Taking the dissipation, decay, and dephasing into our consideration in the same way, we simulate this dynamical process and plot the corresponding results in Fig. 3. We note that we can accurately realize the spin-flip operation (|1|+1) with the fidelity of near to unity at the time τ1=50π/Ω in the first oscillating period.

 figure: Fig. 3.

Fig. 3. For Case (II), the dynamical evolution of the fidelity, with the initial state |1 and the coefficients Δ25Ω, κ0.1Ω, γeΩ, and γg0.001Ω, in which the solid gray line with the hollow square shows the fidelity of |0, the solid blue line with the open circle shows the fidelity of |1, and the solid red line with the hollow diamond shows the fidelity of |+1.

Download Full Size | PPT Slide | PDF

According to the simulation results for these two different cases above, we find that, in this proposal, we can not only perform the invariant operation with a high fidelity, so called I^ operation, but also realize a well-controlled spin-flip operation, so-called σ^x operation. These results above also indicate that we can implement a complete quantum C-NOT logic gate with high fidelity.

6. EXPERIMENTAL IMPERFECTIONS

We now discuss the experimental imperfections. In this scheme, the experimental imperfections are mainly focused on the physical dispersion of the dichromatic microwave driving fields with the Rabi frequencies Ω1,2 and oscillating frequencies ω1,2. As we have utilized the two-photon Raman transition process with the constraint of large detuning, a little change in each oscillating frequency ω1 or ω2 will not induce a significant impact on our scheme. So, there is no doubt about us discarding this possible dispersion factor.

However, we cannot guarantee these two Rabi frequencies Ω1,2 are exactly the same in the realistic demonstration of this scheme. Considering this possible factor, we can rewrite the Hamiltonian H^2 in Eqs. (2) and (5) with the expression,

H^2=Ω12|10|eiω1t+Ω22|+10|eiω2t+h.c..

Here, we assume Ω1=Ω+δΩ1 and Ω2=Ω+δΩ2, with δΩ1,δΩ2Ω. The dispersion factor is defined as δΩ1,2/Ω, with |δΩ1,2|/Ω(0,1).

In order to exhibit this dispersion effect on our scheme more visually, we should replace H^2 with H^2 in the Hamiltonians H^SP(I) and H^SP(II) and solve the master equation (13) numerically again. Then we plot these numerical results in Figs. 4(a)–4(d), and for convenience, we set Ω1=Ω+δΩ and Ω2=Ω, with δΩ/Ω[0.2,0.2].

 figure: Fig. 4.

Fig. 4. For Case (I), (a) and (b) the dynamical fidelity of state transitions |1p|±1|1p|±1 versus the dispersion δΩ[0.2Ω,0.2Ω], with the coefficients g5Ω, Δ25Ω, κ0.1Ω, γeΩ, and γg0.001Ω, while for Case (II), (c) and (d) the dynamical fidelity of states |1 and |0 during the process of state transitions |1|+1, versus the dispersion δΩ[0.2Ω,0.2Ω], with the coefficients Δ25Ω, κ0.1Ω, γeΩ, and γg0.001Ω.

Download Full Size | PPT Slide | PDF

For Case (I), the results are illustrated in Figs. 4(a) and 4(b), with the coefficients g=5Ω, Δ=25Ω, κ=0.1Ω, γe=1Ω, and γg=0.001Ω. We can implement the state transitions |1p|±1|1p|±1 with high fidelity of more than 0.94, when the dispersion satisfies |δΩ|Ω×20%, while for Case (II), the results are also illustrated in Figs. 4(c) and 4(d), with the coefficients Δ=25Ω, κ=0.1Ω, γe=1Ω, and γg=0.001Ω. These results show that we can accurately realize the spin-flip operation (|1|+1) with a fidelity near to unity. However, for the spin-flip time τN, this dispersion factor will inevitably cause a increasing time displacement on it as we increase the dispersion rate. In this scheme, we think there are two routes for us to manage this problem. The first route is to modulate the detuning Δ by adjusting the static magnetic field, which induces the Zeeman splitting of the ground states |±1. Then we can revise the parameter Ξ1 to the value without a dispersion factor. Another route is to recalibrate the evolution time for this hybrid system. These simulation results, accompanied with the experimental imperfection conditions, show that this scheme has strong fault tolerance.

To indicate the realistic feasibility of this scheme, we also make a reasonable estimation of the fidelity for this whole operation process, which includes the efficiency of the chiral switch, the dispersion, the cavity dissipation, and the decay rate and the dephasing rate of the NV center. In general, we suppose that the initial input state of this hybrid system is

|ψin=(cosα|σ++sinα|σ)(cosβ|+1+sinβ|1),
and the final state is expressed as
|ψout=cosα|σ+(cosβ|+1+sinβ|1)+sinα|σ(cosβ|1+sinβ|+1),
through this complete controlled NOT operation [56]. In this scheme, cosα and sinα are well-controlled parameters depending on this chiral switch, in which its efficiency is estimated as about 90% [48]. cosβ and sinβ stand for the general cofficients of the NV spin’s ground states in the cavity. In this cavity quantum electrodynamics-based hybrid system, if the σ+ polarized photons transmit into the cavity, the NV spin in the cavity remains unchanged; otherwise, if σ polarized photons are filtered out, the NV spin will implement the spin-flip operation. Therefore, we can complete the transformation |ψinCNOT|ψout in this scheme. For this ideal output state, |ψout, we define the fidelity as F=|ψout|ψoutNum|2 with the numerical simulation output state |ψoutNum. Then we plot the average fidelity of this whole operation in Fig. 5; the other parameters are set to be the same as in Fig. 4. The results show that without the efficiency of chiral switch consideration, we can implement this C-NOT operation with an average fidelity of about 0.95; otherwise, the theoretical fidelity for this whole operation will reach only about 0.86. Here we also state, although the initialization of the NV centers is a mature technology, it is still a challenge to achieve 100% efficiency in this area. Together with this factor, we consider the realistic fidelity will be further suppressed, and this numerical estimation is less than the result in Ref. [56]. However, owing to the inherent innovative and interesting nature of this scheme, we still hope it will be a useful attempt for implementing the quantum manipulation with integrated or hybrid optical quantum devices [6972].
 figure: Fig. 5.

Fig. 5. The estimation of the average fidelity for this whole C-NOT operation process versus the dispersion rate δΩ/Ω[0.2,0.2], in which, the black line with the open square means the average fidelity of the controlled spin-invariant operation, the red line with the open circle means the average fidelity of the controlled spin-flip operation, the blue line with the open up triangle means the whole average fidelity of this C-NOT operation, and the violet line with open down triangle means the whole average fidelity of the C-NOT operation accompanied with the realistic chiral switch efficiency (estimated as 0.9). The parameters are assumed as Δ25Ω, κ0.1Ω, γeΩ, and γg0.001Ω.

Download Full Size | PPT Slide | PDF

7. EXPERIMENTAL PARAMETERS

To examine the feasibility of our scheme in a realistic experiment, we now discuss the relevant experimental parameters. We first stress that this proposal can only work well at cryogenic temperatures during this whole scheme. According to the recent investigations and achievements on implementing a propagation-direction-dependent emitter, we can take advantage of these setups as our chiral photon-pulse switch for this proposal, with the efficiency of 95% [9,11,1320]. With the rapid development of advanced fabrication and nanotechnology and according to the recent achievements on fabricating a high-quality optical cavity with advanced nanomaterials and processing technology, we can suppose that the quality of the optical cavity in this theoretical work satisfies 107Q108 [7376]. Compared with its intrinsic frequency ν2π×470THz, we can assume its decay rate as κ/2π[0.1,1] MHz in which the coupling strength for the single NV center will reach near 100MHz [4751]. The Rabi frequency for this dichromatic microwave driving fields is tunable, and we can assume Ω1,2Ω2π×15MHz.

Here we stress that there are two essential steps for realizing this C-NOT operation completely in this scheme. For the first step, once the photon is transmitted into the cavity, we can implement the invariant operation (unit matrix I^) by means of optical waves and dichromatic microwaves. Once no photon exists in the cavity, then we can implement this second-step reversal operation (NOT gate σ^x) only through manipulating its ground states by this original dichromatic microwave. During this process, we can maintain the invariant operation in a short period (10 ns), but the reversal operation needs a much longer time (20μs) to finish. However, the reversal operation procedure is independent of its excited state or the optical domain. Therefore, in this order, we think the limitation of lifetime or coherence time for the excited state will not affect this second-step operation. While we exchange the order of these two steps, and the first step is the reversal operation, we have to finish this reversal operation first in a long period. After that, the coherence of the excited state vanishes early, so we need to initialize this setup again to ensure that the coherence time of the excited state is enough to implement another step: invariant operation.

The relaxation time of the NV center ranges from milliseconds to several seconds; an even longer time has been reported; however, the dephasing rate plays a kernel role in limiting its coherence time [7779]. In fact, the decoherence will be dominated by the hyperfine interaction with the C13 nuclear spins, which mainly form the nuclear spin bath. [In general, the single NV spin decoherence in diamond is mainly caused by the coupling of the surrounding electron or nuclear spins, such as the electron spins P1 centers, the nuclear spins N14 spins and C13 spins. In Type Ib diamond samples, the free-induction decay of the NV spin in an electron spin bath (P1 centers) can be neglected, and in high-purity Type II samples, the decay time caused by the electron spin bath will exceed 1 ms. The coupling to the host N14 nuclear spin induces the substantial coherent off-resonance errors, which have been solved experimentally.] With the development of dynamical decoupling techniques [8089], the dephasing time T2 of a single NV center in diamond can be more than 2 ms [9093]. According to the parametric estimation of our scheme, we need at least tens of microseconds to accomplish the relevant coherent operations. Therefore, the coherence time is sufficient for us to accomplish this type of quantum logic gate.

8. CONCLUSION

In summary, by fabricating a hybrid device with a single NV center in an optical microcavity and a chiral photon-pulse switch, we have proposed a novel and efficient proposal for realizing a robust quantum C-NOT logic gate. In this scheme, we can implement the chiral control unit via several different setups, which will induce the propagation-direction-dependent photon emission. Then we can get a well-controlled switch for delivering the σ+ mode photon pulse into the optical microcavity and for reflecting or filtering out the σ mode. After that, we can achieve two steps of relevant C-NOT operations by engineering the interactions of the single NV center in the cavity with the assistance of dichromatic microwave driving fields. Taking the cavity dissipation, the NV decay and dephasing, the system dispersion, and even the efficiency of this chiral switch into our consideration, we also have carried out the analytical discussions and the numerical simulations of this scheme. In this theoretical attempt and during the whole dynamical operation, the primary adverse factors on destroying the fidelity are mainly focused on both decays of the cavity (MHz) and the excited state of the NV center (15MHz), and even the efficiency of this chiral switch (estimated as 0.9). However, with the development of the advanced micronanofabrication technologies, we are full of confidence in the preparation of a higher quality cavity with Q1010 in the near future. Applying other atoms (or artificial atoms) with a longer lifetime to this scheme may be a reasonable improvement as well. Although the realistic fidelity of this scheme is estimated as less than the achievement and results in Ref. [56], we still hope it will be a useful attempt for implementing quantum manipulation with integrated or hybrid optical quantum devices owing to its inherent innovative and interesting nature.

APPENDIX A: EIGEN SYSTEM OF HAMILTONIAN H^IP(I) and H^IP(II)

For Case (I), considering the Hamiltonian H^IP(I) in Eq. (3) of Section 3, we can rewrite this Hamiltonian with an equivalent expression,

H^IP(I)=Δ|00|+ga^|e0|+Ω2|0|+h.c..

Through solving the Schrödinger equation H^IP(I)|Ψ=E|Ψ, we can get its first dark state |D1|1p| with E=0. Then we can also write H^IP(I) in the matrix form with its subspace {|1p|,|1p|0,|0p|e},

H^IP(I)=[0Ω/20Ω/2Δg0g0],
with its eigen energies and eigenstates in Table 1, in which we assume Θ14g2+Δ2+2Ω2. On the other hand, we consider another Hamiltonian H^IP(II) in Case (II) with an equivalent expression,
H^IP(II)=Δ|00|+Ω2(|0|+h.c.).
Tables Icon

Table 1. Eigen System of H^IP(I)

Therefore, we can also express H^IP(II) in matrix form in its subspace {|+1,|1,|0},

H^IP(II)=[00Ω/200Ω/2Ω/2Ω/2Δ].

Its eigen energies and eigenstates are also plotted in Table 2, in which we also assume Θ2Δ2+2Ω2.

Tables Icon

Table 2. Eigen System of H^IP(II)

Funding

Hubei University of Automotive Technology (BK201906, BK202008); Hubei Provincial Department of Education (B2020079); National Natural Science Foundation of China (11504102, 11774282, 11774285); Natural Science Foundation of Hubei Province (2019CFB788, 2020CFB748).

Acknowledgment

We thank Sheng-Li Ma and Guang-Hui Wang for the helpful discussions on this work. Part of the simulations are coded in PYTHON using the QUTIP library [94,95].

Disclosures

The authors declare that there are no conflicts of interest related to this article.

REFERENCES

1. A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379–1418 (2015). [CrossRef]  

2. H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76, 127–137 (1998). [CrossRef]  

3. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015). [CrossRef]  

4. A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014). [CrossRef]  

5. J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012). [CrossRef]  

6. X. Liu and M. C. Hersam, “2D materials for quantum information science,” Nat. Rev. Mater. 4, 669–684 (2019). [CrossRef]  

7. M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018). [CrossRef]  

8. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017). [CrossRef]  

9. I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014). [CrossRef]  

10. I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015). [CrossRef]  

11. I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013). [CrossRef]  

12. C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110, 213604 (2013). [CrossRef]  

13. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007). [CrossRef]  

14. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011). [CrossRef]  

15. Q. Guo, T. Fu, J. Tang, D. Pan, S. Zhang, and H. Xu, “Routing a chiral Raman signal based on spin-orbit interaction of light,” Phys. Rev. Lett. 123, 183903 (2019). [CrossRef]  

16. K. Y. Bliokh, F. J. Rodrguez-Fortũno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015). [CrossRef]  

17. A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015). [CrossRef]  

18. K. Xia, F. Nori, and M. Xiao, “Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity,” Phys. Rev. Lett. 121, 203602 (2018). [CrossRef]  

19. S. Yoo and Q.-H. Park, “Chiral light-matter interaction in optical resonators,” Phys. Rev. Lett. 114, 203003 (2015). [CrossRef]  

20. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011). [CrossRef]  

21. R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014). [CrossRef]  

22. I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013). [CrossRef]  

23. K. Y. Bliokh and F. Nori, “Transverse spin of a surface polariton,” Phys. Rev. A 85, 061801 (2012). [CrossRef]  

24. Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013). [CrossRef]  

25. C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015). [CrossRef]  

26. T. Ramos, H. Pichler, A. J. Daley, and P. Zoller, “Quantum spin dimers from chiral dissipation in cold-atom chains,” Phys. Rev. Lett. 113, 237203 (2014). [CrossRef]  

27. R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing, “Nonreciprocal photon blockade,” Phys. Rev. Lett. 121, 153601 (2018). [CrossRef]  

28. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013). [CrossRef]  

29. N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013). [CrossRef]  

30. P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010). [CrossRef]  

31. P.-B. Li, Z.-L. Xiang, P. Rabl, and F. Nori, “Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes,” Phys. Rev. Lett. 117, 015502 (2016). [CrossRef]  

32. D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016). [CrossRef]  

33. D. A. Golter, T. K. Baldwin, and H. Wang, “Protecting a solid-state spin from decoherence using dressed spin states,” Phys. Rev. Lett. 113, 237601 (2014). [CrossRef]  

34. J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014). [CrossRef]  

35. S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013). [CrossRef]  

36. D. A. Golter and H. Wang, “Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond,” Phys. Rev. Lett. 112, 116403 (2014). [CrossRef]  

37. Y. Zhou, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions,” Phys. Rev. A 98, 052346 (2018). [CrossRef]  

38. B. Li, P.-B. Li, Y. Zhou, J. Liu, H.-R. Li, and F.-L. Li, “Interfacing a topological qubit with a spin qubit in a hybrid quantum system,” Phys. Rev. Appl. 11, 044026 (2019). [CrossRef]  

39. Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system,” Phys. Rev. A 96, 062333 (2017). [CrossRef]  

40. S.-L. Ma, P.-B. Li, A.-P. Fang, S.-Y. Gao, and F.-L. Li, “Dissipation-assisted generation of steady-state single-mode squeezing of collective excitations in a solid-state spin ensemble,” Phys. Rev. A 88, 013837 (2013). [CrossRef]  

41. X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011). [CrossRef]  

42. Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010). [CrossRef]  

43. D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, and A. S. Sørensen, “Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits,” Phys. Rev. Lett. 105, 210501 (2010). [CrossRef]  

44. P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, “Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,” Phys. Rev. Appl. 4, 044003 (2015). [CrossRef]  

45. X.-Y. Lü, Z.-L. Xiang, W. Cui, J. Q. You, and F. Nori, “Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers,” Phys. Rev. A 88, 012329 (2013). [CrossRef]  

46. W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, “Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit,” Phys. Rev. A 83, 022302 (2011). [CrossRef]  

47. Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006). [CrossRef]  

48. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010). [CrossRef]  

49. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011). [CrossRef]  

50. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009). [CrossRef]  

51. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012). [CrossRef]  

52. B. Li, P.-B. Li, Y. Zhou, S.-L. Ma, and F.-L. Li, “Quantum microwave-optical interface with nitrogen-vacancy centers in diamond,” Phys. Rev. A 96, 032342 (2017). [CrossRef]  

53. X.-M. Jin, M. S. Kim, and B. J. Smith, “Quantum photonics: feature introduction,” Photon. Res. 7, QP1–QP2 (2019). [CrossRef]  

54. X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018). [CrossRef]  

55. L. Gui-Lu, “General quantum interference principle and duality computer,” Commun. Theor. Phys. 45, 825–844 (2006). [CrossRef]  

56. H.-R. Wei and G. Lu Long, “Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities,” Sci. Rep. 5, 12918 (2015). [CrossRef]  

57. M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator,” Quantum Eng. 1, e9 (2019). [CrossRef]  

58. C. Valagiannopoulos, “Optimized quantum filtering of matter waves with respect to incidence direction and impinging energy,” Quantum Eng. 2, e52 (2020). [CrossRef]  

59. J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836–839 (2007). [CrossRef]  

60. N. Poli, C. W. Oates, P. Gill, and G. M. Tino, “Optical atomic clocks,” Riv. Nuovo Cimento 36, 555–624 (2014). [CrossRef]  

61. A. Galindo and M. A. Martn-Delgado, “Information and computation: classical and quantum aspects,” Rev. Mod. Phys. 74, 347–423 (2002). [CrossRef]  

62. S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8, 011018 (2018). [CrossRef]  

63. L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]  

64. Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004). [CrossRef]  

65. L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005). [CrossRef]  

66. Y. L. Zhou and C. Z. Li, “Robust quantum gates via a photon triggering electromagnetically induced transparency,” Phys. Rev. A 84, 044304 (2011). [CrossRef]  

67. D. Solenov, S. E. Economou, and T. L. Reinecke, “Two-qubit quantum gates for defect qubits in diamond and similar systems,” Phys. Rev. B 88, 161403 (2013). [CrossRef]  

68. G. Burkard, V. O. Shkolnikov, and D. D. Awschalom, “Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond,” Phys. Rev. B 95, 205420 (2017). [CrossRef]  

69. Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020). [CrossRef]  

70. Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018). [CrossRef]  

71. B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014). [CrossRef]  

72. C.-Y. Wang, J. Gao, Z.-Q. Jiao, L.-F. Qiao, R.-J. Ren, Z. Feng, Y. Chen, Z.-Q. Yan, Y. Wang, H. Tang, and X.-M. Jin, “Integrated measurement server for measurement-device-independent quantum key distribution network,” Opt. Express 27, 5982–5989 (2019). [CrossRef]  

73. X. Jiang and L. Yang, “Optothermal dynamics in whispering-gallery microresonators,” Light Sci. Appl. 9, 24 (2020). [CrossRef]  

74. L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018). [CrossRef]  

75. R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018). [CrossRef]  

76. Z. Fang, H. Luo, J. Lin, M. Wang, J. Zhang, R. Wu, J. Zhou, W. Chu, T. Lu, and Y. Cheng, “Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk,” Opt. Lett. 44, 5953–5956 (2019). [CrossRef]  

77. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009). [CrossRef]  

78. W. Yang and R.-B. Liu, “Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation,” Phys. Rev. Lett. 101, 180403 (2008). [CrossRef]  

79. T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018). [CrossRef]  

80. L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999). [CrossRef]  

81. W. M. Witzel and S. D. Sarma, “Multiple-pulse coherence enhancement of solid state spin qubits,” Phys. Rev. Lett. 98, 077601 (2007). [CrossRef]  

82. W. Yao, R.-B. Liu, and L. J. Sham, “Restoring coherence lost to a slow interacting mesoscopic spin bath,” Phys. Rev. Lett. 98, 077602 (2007). [CrossRef]  

83. G. S. Uhrig, “Keeping a quantum bit alive by optimized π-pulse sequences,” Phys. Rev. Lett. 98, 100504 (2007). [CrossRef]  

84. B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Dynamical decoupling of a single-electron spin at room temperature,” Phys. Rev. B 83, 081201 (2011). [CrossRef]  

85. C. A. Ryan, J. S. Hodges, and D. G. Cory, “Robust decoupling techniques to extend quantum coherence in diamond,” Phys. Rev. Lett. 105, 200402 (2010). [CrossRef]  

86. J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010). [CrossRef]  

87. N. Zhao, Z.-Y. Wang, and R.-B. Liu, “Anomalous decoherence effect in a quantum bath,” Phys. Rev. Lett. 106, 217205 (2011). [CrossRef]  

88. N. Zhao, S.-W. Ho, and R.-B. Liu, “Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths,” Phys. Rev. B 85, 115303 (2012). [CrossRef]  

89. N. Zhao, J. Wrachtrup, and R.-B. Liu, “Dynamical decoupling design for identifying weakly coupled nuclear spins in a bath,” Phys. Rev. A 90, 032319 (2014). [CrossRef]  

90. G. D. Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, “Universal dynamical decoupling of a single solid-state spin from a spin bath,” Science 330, 60–63 (2010). [CrossRef]  

91. M. J. Biercuk, M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, “Optimized dynamical decoupling in a model quantum memory,” Nature 458, 996–1000 (2009). [CrossRef]  

92. J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, “Preserving electron spin coherence in solids by optimal dynamical decoupling,” Nature 461, 1265–1268 (2009). [CrossRef]  

93. R. Hason, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008). [CrossRef]  

94. J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP: an open-source Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012). [CrossRef]  

95. J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP 2: a Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 184, 1234–1240 (2013). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379–1418 (2015).
    [Crossref]
  2. H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76, 127–137 (1998).
    [Crossref]
  3. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
    [Crossref]
  4. A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
    [Crossref]
  5. J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
    [Crossref]
  6. X. Liu and M. C. Hersam, “2D materials for quantum information science,” Nat. Rev. Mater. 4, 669–684 (2019).
    [Crossref]
  7. M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
    [Crossref]
  8. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
    [Crossref]
  9. I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
    [Crossref]
  10. I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
    [Crossref]
  11. I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
    [Crossref]
  12. C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110, 213604 (2013).
    [Crossref]
  13. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
    [Crossref]
  14. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011).
    [Crossref]
  15. Q. Guo, T. Fu, J. Tang, D. Pan, S. Zhang, and H. Xu, “Routing a chiral Raman signal based on spin-orbit interaction of light,” Phys. Rev. Lett. 123, 183903 (2019).
    [Crossref]
  16. K. Y. Bliokh, F. J. Rodrguez-Fortũno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
    [Crossref]
  17. A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
    [Crossref]
  18. K. Xia, F. Nori, and M. Xiao, “Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity,” Phys. Rev. Lett. 121, 203602 (2018).
    [Crossref]
  19. S. Yoo and Q.-H. Park, “Chiral light-matter interaction in optical resonators,” Phys. Rev. Lett. 114, 203003 (2015).
    [Crossref]
  20. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011).
    [Crossref]
  21. R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
    [Crossref]
  22. I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013).
    [Crossref]
  23. K. Y. Bliokh and F. Nori, “Transverse spin of a surface polariton,” Phys. Rev. A 85, 061801 (2012).
    [Crossref]
  24. Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
    [Crossref]
  25. C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).
    [Crossref]
  26. T. Ramos, H. Pichler, A. J. Daley, and P. Zoller, “Quantum spin dimers from chiral dissipation in cold-atom chains,” Phys. Rev. Lett. 113, 237203 (2014).
    [Crossref]
  27. R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing, “Nonreciprocal photon blockade,” Phys. Rev. Lett. 121, 153601 (2018).
    [Crossref]
  28. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
    [Crossref]
  29. N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
    [Crossref]
  30. P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
    [Crossref]
  31. P.-B. Li, Z.-L. Xiang, P. Rabl, and F. Nori, “Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes,” Phys. Rev. Lett. 117, 015502 (2016).
    [Crossref]
  32. D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
    [Crossref]
  33. D. A. Golter, T. K. Baldwin, and H. Wang, “Protecting a solid-state spin from decoherence using dressed spin states,” Phys. Rev. Lett. 113, 237601 (2014).
    [Crossref]
  34. J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
    [Crossref]
  35. S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
    [Crossref]
  36. D. A. Golter and H. Wang, “Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond,” Phys. Rev. Lett. 112, 116403 (2014).
    [Crossref]
  37. Y. Zhou, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions,” Phys. Rev. A 98, 052346 (2018).
    [Crossref]
  38. B. Li, P.-B. Li, Y. Zhou, J. Liu, H.-R. Li, and F.-L. Li, “Interfacing a topological qubit with a spin qubit in a hybrid quantum system,” Phys. Rev. Appl. 11, 044026 (2019).
    [Crossref]
  39. Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system,” Phys. Rev. A 96, 062333 (2017).
    [Crossref]
  40. S.-L. Ma, P.-B. Li, A.-P. Fang, S.-Y. Gao, and F.-L. Li, “Dissipation-assisted generation of steady-state single-mode squeezing of collective excitations in a solid-state spin ensemble,” Phys. Rev. A 88, 013837 (2013).
    [Crossref]
  41. X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
    [Crossref]
  42. Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
    [Crossref]
  43. D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, and A. S. Sørensen, “Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits,” Phys. Rev. Lett. 105, 210501 (2010).
    [Crossref]
  44. P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, “Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,” Phys. Rev. Appl. 4, 044003 (2015).
    [Crossref]
  45. X.-Y. Lü, Z.-L. Xiang, W. Cui, J. Q. You, and F. Nori, “Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers,” Phys. Rev. A 88, 012329 (2013).
    [Crossref]
  46. W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, “Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit,” Phys. Rev. A 83, 022302 (2011).
    [Crossref]
  47. Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
    [Crossref]
  48. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
    [Crossref]
  49. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
    [Crossref]
  50. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  51. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
    [Crossref]
  52. B. Li, P.-B. Li, Y. Zhou, S.-L. Ma, and F.-L. Li, “Quantum microwave-optical interface with nitrogen-vacancy centers in diamond,” Phys. Rev. A 96, 032342 (2017).
    [Crossref]
  53. X.-M. Jin, M. S. Kim, and B. J. Smith, “Quantum photonics: feature introduction,” Photon. Res. 7, QP1–QP2 (2019).
    [Crossref]
  54. X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
    [Crossref]
  55. L. Gui-Lu, “General quantum interference principle and duality computer,” Commun. Theor. Phys. 45, 825–844 (2006).
    [Crossref]
  56. H.-R. Wei and G. Lu Long, “Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities,” Sci. Rep. 5, 12918 (2015).
    [Crossref]
  57. M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator,” Quantum Eng. 1, e9 (2019).
    [Crossref]
  58. C. Valagiannopoulos, “Optimized quantum filtering of matter waves with respect to incidence direction and impinging energy,” Quantum Eng. 2, e52 (2020).
    [Crossref]
  59. J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836–839 (2007).
    [Crossref]
  60. N. Poli, C. W. Oates, P. Gill, and G. M. Tino, “Optical atomic clocks,” Riv. Nuovo Cimento 36, 555–624 (2014).
    [Crossref]
  61. A. Galindo and M. A. Martn-Delgado, “Information and computation: classical and quantum aspects,” Rev. Mod. Phys. 74, 347–423 (2002).
    [Crossref]
  62. S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8, 011018 (2018).
    [Crossref]
  63. L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
    [Crossref]
  64. Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
    [Crossref]
  65. L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
    [Crossref]
  66. Y. L. Zhou and C. Z. Li, “Robust quantum gates via a photon triggering electromagnetically induced transparency,” Phys. Rev. A 84, 044304 (2011).
    [Crossref]
  67. D. Solenov, S. E. Economou, and T. L. Reinecke, “Two-qubit quantum gates for defect qubits in diamond and similar systems,” Phys. Rev. B 88, 161403 (2013).
    [Crossref]
  68. G. Burkard, V. O. Shkolnikov, and D. D. Awschalom, “Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond,” Phys. Rev. B 95, 205420 (2017).
    [Crossref]
  69. Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
    [Crossref]
  70. Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018).
    [Crossref]
  71. B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
    [Crossref]
  72. C.-Y. Wang, J. Gao, Z.-Q. Jiao, L.-F. Qiao, R.-J. Ren, Z. Feng, Y. Chen, Z.-Q. Yan, Y. Wang, H. Tang, and X.-M. Jin, “Integrated measurement server for measurement-device-independent quantum key distribution network,” Opt. Express 27, 5982–5989 (2019).
    [Crossref]
  73. X. Jiang and L. Yang, “Optothermal dynamics in whispering-gallery microresonators,” Light Sci. Appl. 9, 24 (2020).
    [Crossref]
  74. L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
    [Crossref]
  75. R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
    [Crossref]
  76. Z. Fang, H. Luo, J. Lin, M. Wang, J. Zhang, R. Wu, J. Zhou, W. Chu, T. Lu, and Y. Cheng, “Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk,” Opt. Lett. 44, 5953–5956 (2019).
    [Crossref]
  77. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
    [Crossref]
  78. W. Yang and R.-B. Liu, “Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation,” Phys. Rev. Lett. 101, 180403 (2008).
    [Crossref]
  79. T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
    [Crossref]
  80. L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
    [Crossref]
  81. W. M. Witzel and S. D. Sarma, “Multiple-pulse coherence enhancement of solid state spin qubits,” Phys. Rev. Lett. 98, 077601 (2007).
    [Crossref]
  82. W. Yao, R.-B. Liu, and L. J. Sham, “Restoring coherence lost to a slow interacting mesoscopic spin bath,” Phys. Rev. Lett. 98, 077602 (2007).
    [Crossref]
  83. G. S. Uhrig, “Keeping a quantum bit alive by optimized π-pulse sequences,” Phys. Rev. Lett. 98, 100504 (2007).
    [Crossref]
  84. B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Dynamical decoupling of a single-electron spin at room temperature,” Phys. Rev. B 83, 081201 (2011).
    [Crossref]
  85. C. A. Ryan, J. S. Hodges, and D. G. Cory, “Robust decoupling techniques to extend quantum coherence in diamond,” Phys. Rev. Lett. 105, 200402 (2010).
    [Crossref]
  86. J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
    [Crossref]
  87. N. Zhao, Z.-Y. Wang, and R.-B. Liu, “Anomalous decoherence effect in a quantum bath,” Phys. Rev. Lett. 106, 217205 (2011).
    [Crossref]
  88. N. Zhao, S.-W. Ho, and R.-B. Liu, “Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths,” Phys. Rev. B 85, 115303 (2012).
    [Crossref]
  89. N. Zhao, J. Wrachtrup, and R.-B. Liu, “Dynamical decoupling design for identifying weakly coupled nuclear spins in a bath,” Phys. Rev. A 90, 032319 (2014).
    [Crossref]
  90. G. D. Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, “Universal dynamical decoupling of a single solid-state spin from a spin bath,” Science 330, 60–63 (2010).
    [Crossref]
  91. M. J. Biercuk, M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, “Optimized dynamical decoupling in a model quantum memory,” Nature 458, 996–1000 (2009).
    [Crossref]
  92. J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, “Preserving electron spin coherence in solids by optimal dynamical decoupling,” Nature 461, 1265–1268 (2009).
    [Crossref]
  93. R. Hason, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
    [Crossref]
  94. J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP: an open-source Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
    [Crossref]
  95. J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP 2: a Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 184, 1234–1240 (2013).
    [Crossref]

2020 (3)

C. Valagiannopoulos, “Optimized quantum filtering of matter waves with respect to incidence direction and impinging energy,” Quantum Eng. 2, e52 (2020).
[Crossref]

Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
[Crossref]

X. Jiang and L. Yang, “Optothermal dynamics in whispering-gallery microresonators,” Light Sci. Appl. 9, 24 (2020).
[Crossref]

2019 (7)

C.-Y. Wang, J. Gao, Z.-Q. Jiao, L.-F. Qiao, R.-J. Ren, Z. Feng, Y. Chen, Z.-Q. Yan, Y. Wang, H. Tang, and X.-M. Jin, “Integrated measurement server for measurement-device-independent quantum key distribution network,” Opt. Express 27, 5982–5989 (2019).
[Crossref]

M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator,” Quantum Eng. 1, e9 (2019).
[Crossref]

B. Li, P.-B. Li, Y. Zhou, J. Liu, H.-R. Li, and F.-L. Li, “Interfacing a topological qubit with a spin qubit in a hybrid quantum system,” Phys. Rev. Appl. 11, 044026 (2019).
[Crossref]

X.-M. Jin, M. S. Kim, and B. J. Smith, “Quantum photonics: feature introduction,” Photon. Res. 7, QP1–QP2 (2019).
[Crossref]

X. Liu and M. C. Hersam, “2D materials for quantum information science,” Nat. Rev. Mater. 4, 669–684 (2019).
[Crossref]

Q. Guo, T. Fu, J. Tang, D. Pan, S. Zhang, and H. Xu, “Routing a chiral Raman signal based on spin-orbit interaction of light,” Phys. Rev. Lett. 123, 183903 (2019).
[Crossref]

Z. Fang, H. Luo, J. Lin, M. Wang, J. Zhang, R. Wu, J. Zhou, W. Chu, T. Lu, and Y. Cheng, “Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk,” Opt. Lett. 44, 5953–5956 (2019).
[Crossref]

2018 (10)

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

K. Xia, F. Nori, and M. Xiao, “Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity,” Phys. Rev. Lett. 121, 203602 (2018).
[Crossref]

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing, “Nonreciprocal photon blockade,” Phys. Rev. Lett. 121, 153601 (2018).
[Crossref]

Y. Zhou, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions,” Phys. Rev. A 98, 052346 (2018).
[Crossref]

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8, 011018 (2018).
[Crossref]

L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
[Crossref]

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
[Crossref]

Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018).
[Crossref]

2017 (4)

G. Burkard, V. O. Shkolnikov, and D. D. Awschalom, “Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond,” Phys. Rev. B 95, 205420 (2017).
[Crossref]

B. Li, P.-B. Li, Y. Zhou, S.-L. Ma, and F.-L. Li, “Quantum microwave-optical interface with nitrogen-vacancy centers in diamond,” Phys. Rev. A 96, 032342 (2017).
[Crossref]

Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system,” Phys. Rev. A 96, 062333 (2017).
[Crossref]

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref]

2016 (2)

P.-B. Li, Z.-L. Xiang, P. Rabl, and F. Nori, “Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes,” Phys. Rev. Lett. 117, 015502 (2016).
[Crossref]

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

2015 (9)

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).
[Crossref]

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379–1418 (2015).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

S. Yoo and Q.-H. Park, “Chiral light-matter interaction in optical resonators,” Phys. Rev. Lett. 114, 203003 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodrguez-Fortũno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
[Crossref]

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, “Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,” Phys. Rev. Appl. 4, 044003 (2015).
[Crossref]

H.-R. Wei and G. Lu Long, “Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities,” Sci. Rep. 5, 12918 (2015).
[Crossref]

2014 (10)

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

N. Poli, C. W. Oates, P. Gill, and G. M. Tino, “Optical atomic clocks,” Riv. Nuovo Cimento 36, 555–624 (2014).
[Crossref]

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

T. Ramos, H. Pichler, A. J. Daley, and P. Zoller, “Quantum spin dimers from chiral dissipation in cold-atom chains,” Phys. Rev. Lett. 113, 237203 (2014).
[Crossref]

D. A. Golter and H. Wang, “Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond,” Phys. Rev. Lett. 112, 116403 (2014).
[Crossref]

D. A. Golter, T. K. Baldwin, and H. Wang, “Protecting a solid-state spin from decoherence using dressed spin states,” Phys. Rev. Lett. 113, 237601 (2014).
[Crossref]

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

N. Zhao, J. Wrachtrup, and R.-B. Liu, “Dynamical decoupling design for identifying weakly coupled nuclear spins in a bath,” Phys. Rev. A 90, 032319 (2014).
[Crossref]

2013 (11)

J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP 2: a Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 184, 1234–1240 (2013).
[Crossref]

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013).
[Crossref]

Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref]

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[Crossref]

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110, 213604 (2013).
[Crossref]

D. Solenov, S. E. Economou, and T. L. Reinecke, “Two-qubit quantum gates for defect qubits in diamond and similar systems,” Phys. Rev. B 88, 161403 (2013).
[Crossref]

X.-Y. Lü, Z.-L. Xiang, W. Cui, J. Q. You, and F. Nori, “Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers,” Phys. Rev. A 88, 012329 (2013).
[Crossref]

S.-L. Ma, P.-B. Li, A.-P. Fang, S.-Y. Gao, and F.-L. Li, “Dissipation-assisted generation of steady-state single-mode squeezing of collective excitations in a solid-state spin ensemble,” Phys. Rev. A 88, 013837 (2013).
[Crossref]

2012 (5)

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref]

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse spin of a surface polariton,” Phys. Rev. A 85, 061801 (2012).
[Crossref]

J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP: an open-source Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

N. Zhao, S.-W. Ho, and R.-B. Liu, “Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths,” Phys. Rev. B 85, 115303 (2012).
[Crossref]

2011 (8)

N. Zhao, Z.-Y. Wang, and R.-B. Liu, “Anomalous decoherence effect in a quantum bath,” Phys. Rev. Lett. 106, 217205 (2011).
[Crossref]

B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Dynamical decoupling of a single-electron spin at room temperature,” Phys. Rev. B 83, 081201 (2011).
[Crossref]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011).
[Crossref]

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011).
[Crossref]

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[Crossref]

X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
[Crossref]

W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, “Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit,” Phys. Rev. A 83, 022302 (2011).
[Crossref]

Y. L. Zhou and C. Z. Li, “Robust quantum gates via a photon triggering electromagnetically induced transparency,” Phys. Rev. A 84, 044304 (2011).
[Crossref]

2010 (7)

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, and A. S. Sørensen, “Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits,” Phys. Rev. Lett. 105, 210501 (2010).
[Crossref]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
[Crossref]

C. A. Ryan, J. S. Hodges, and D. G. Cory, “Robust decoupling techniques to extend quantum coherence in diamond,” Phys. Rev. Lett. 105, 200402 (2010).
[Crossref]

J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
[Crossref]

G. D. Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, “Universal dynamical decoupling of a single solid-state spin from a spin bath,” Science 330, 60–63 (2010).
[Crossref]

2009 (4)

M. J. Biercuk, M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, “Optimized dynamical decoupling in a model quantum memory,” Nature 458, 996–1000 (2009).
[Crossref]

J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, “Preserving electron spin coherence in solids by optimal dynamical decoupling,” Nature 461, 1265–1268 (2009).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

2008 (2)

W. Yang and R.-B. Liu, “Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation,” Phys. Rev. Lett. 101, 180403 (2008).
[Crossref]

R. Hason, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[Crossref]

2007 (5)

W. M. Witzel and S. D. Sarma, “Multiple-pulse coherence enhancement of solid state spin qubits,” Phys. Rev. Lett. 98, 077601 (2007).
[Crossref]

W. Yao, R.-B. Liu, and L. J. Sham, “Restoring coherence lost to a slow interacting mesoscopic spin bath,” Phys. Rev. Lett. 98, 077602 (2007).
[Crossref]

G. S. Uhrig, “Keeping a quantum bit alive by optimized π-pulse sequences,” Phys. Rev. Lett. 98, 100504 (2007).
[Crossref]

J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836–839 (2007).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

2006 (2)

L. Gui-Lu, “General quantum interference principle and duality computer,” Commun. Theor. Phys. 45, 825–844 (2006).
[Crossref]

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[Crossref]

2005 (1)

L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

2004 (2)

L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[Crossref]

2002 (1)

A. Galindo and M. A. Martn-Delgado, “Information and computation: classical and quantum aspects,” Rev. Mod. Phys. 74, 347–423 (2002).
[Crossref]

1999 (1)

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
[Crossref]

1998 (1)

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76, 127–137 (1998).
[Crossref]

Achanta, V. G.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[Crossref]

Achard, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref]

Aguado, R.

D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, and A. S. Sørensen, “Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits,” Phys. Rev. Lett. 105, 210501 (2010).
[Crossref]

Aharonovich, I.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[Crossref]

Aiello, A.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
[Crossref]

Albrecht, B.

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

Amezcua, M.

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

Angerer, A.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

Appel, P.

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

Arakawa, Y.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011).
[Crossref]

Ashhab, S.

Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

Astner, T.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

Atatüre, M.

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

Auffeves, A.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Awschalom, D. D.

G. Burkard, V. O. Shkolnikov, and D. D. Awschalom, “Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond,” Phys. Rev. B 95, 205420 (2017).
[Crossref]

R. Hason, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[Crossref]

Balasubramanian, G.

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Baldwin, T. K.

D. A. Golter, T. K. Baldwin, and H. Wang, “Protecting a solid-state spin from decoherence using dressed spin states,” Phys. Rev. Lett. 113, 237601 (2014).
[Crossref]

Banzer, P.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
[Crossref]

Bao, K.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011).
[Crossref]

Barbieri, M.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Barfuss, A.

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

Bar-Gill, N.

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref]

Barthe, M. F.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Baur, A.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Beausoleil, R. G.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref]

Becher, C.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Bechler, O.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Beck, J.

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Bennett, S. D.

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

Bergonzo, P.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Bertet, P.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Biercuk, M. J.

M. J. Biercuk, M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, “Optimized dynamical decoupling in a model quantum memory,” Nature 458, 996–1000 (2009).
[Crossref]

M. J. Biercuk, M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, “Optimized dynamical decoupling in a model quantum memory,” Nature 458, 996–1000 (2009).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodrguez-Fortũno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse spin of a surface polariton,” Phys. Rev. A 85, 061801 (2012).
[Crossref]

Bo, F.

Bollinger, J. J.

M. J. Biercuk, M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, “Optimized dynamical decoupling in a model quantum memory,” Nature 458, 996–1000 (2009).
[Crossref]

Budker, D.

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref]

Burkard, G.

G. Burkard, V. O. Shkolnikov, and D. D. Awschalom, “Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond,” Phys. Rev. B 95, 205420 (2017).
[Crossref]

Chai, Z.

M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator,” Quantum Eng. 1, e9 (2019).
[Crossref]

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
[Crossref]

Chang, D.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Chang, D. E.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Chen, Y.

Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
[Crossref]

C.-Y. Wang, J. Gao, Z.-Q. Jiao, L.-F. Qiao, R.-J. Ren, Z. Feng, Y. Chen, Z.-Q. Yan, Y. Wang, H. Tang, and X.-M. Jin, “Integrated measurement server for measurement-device-independent quantum key distribution network,” Opt. Express 27, 5982–5989 (2019).
[Crossref]

Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018).
[Crossref]

Cheng, Y.

Childress, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

Choi, K.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Chu, W.

Chu, Y.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

Cook, A. K.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[Crossref]

Cory, D. G.

C. A. Ryan, J. S. Hodges, and D. G. Cory, “Robust decoupling techniques to extend quantum coherence in diamond,” Phys. Rev. Lett. 105, 200402 (2010).
[Crossref]

Cui, W.

X.-Y. Lü, Z.-L. Xiang, W. Cui, J. Q. You, and F. Nori, “Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers,” Phys. Rev. A 88, 012329 (2013).
[Crossref]

Daiss, S.

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8, 011018 (2018).
[Crossref]

Daley, A. J.

T. Ramos, H. Pichler, A. J. Daley, and P. Zoller, “Quantum spin dimers from chiral dissipation in cold-atom chains,” Phys. Rev. Lett. 113, 237203 (2014).
[Crossref]

Dayan, B.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

de Groot, P. C.

J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836–839 (2007).
[Crossref]

Delaney, P.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Demler, E. A.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Deng, Z. J.

W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, “Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit,” Phys. Rev. A 83, 022302 (2011).
[Crossref]

Dobrovitski, V. V.

G. D. Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, “Universal dynamical decoupling of a single solid-state spin from a spin bath,” Science 330, 60–63 (2010).
[Crossref]

R. Hason, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[Crossref]

Doherty, M. W.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Dolde, F.

B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Dynamical decoupling of a single-electron spin at room temperature,” Phys. Rev. B 83, 081201 (2011).
[Crossref]

Dou, J.-P.

Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
[Crossref]

Dréau, A.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Du, J.

J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, “Preserving electron spin coherence in solids by optimal dynamical decoupling,” Nature 461, 1265–1268 (2009).
[Crossref]

Duan, L.-M.

L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref]

Dutt, M. V. G.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

Economou, S. E.

D. Solenov, S. E. Economou, and T. L. Reinecke, “Two-qubit quantum gates for defect qubits in diamond and similar systems,” Phys. Rev. B 88, 161403 (2013).
[Crossref]

El-Ella, H.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Englund, D.

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

Esteve, D.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Everitt, M. S.

X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
[Crossref]

Fang, A.-P.

S.-L. Ma, P.-B. Li, A.-P. Fang, S.-Y. Gao, and F.-L. Li, “Dissipation-assisted generation of steady-state single-mode squeezing of collective excitations in a solid-state spin ensemble,” Phys. Rev. A 88, 013837 (2013).
[Crossref]

Fang, W.

Fang, Z.

Z. Fang, H. Luo, J. Lin, M. Wang, J. Zhang, R. Wu, J. Zhou, W. Chu, T. Lu, and Y. Cheng, “Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk,” Opt. Lett. 44, 5953–5956 (2019).
[Crossref]

M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator,” Quantum Eng. 1, e9 (2019).
[Crossref]

Faraon, A.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref]

Fedder, H.

B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Dynamical decoupling of a single-electron spin at room temperature,” Phys. Rev. B 83, 081201 (2011).
[Crossref]

Feiguin, A. E.

R. Hason, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[Crossref]

Feng, M.

W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, “Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit,” Phys. Rev. A 83, 022302 (2011).
[Crossref]

Feng, Z.

Fischer, M.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Fong, B. H.

J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
[Crossref]

Fox, A. M.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[Crossref]

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013).
[Crossref]

Fu, T.

Q. Guo, T. Fu, J. Tang, D. Pan, S. Zhang, and H. Xu, “Routing a chiral Raman signal based on spin-orbit interaction of light,” Phys. Rev. Lett. 123, 183903 (2019).
[Crossref]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Galindo, A.

A. Galindo and M. A. Martn-Delgado, “Information and computation: classical and quantum aspects,” Rev. Mod. Phys. 74, 347–423 (2002).
[Crossref]

Gao, J.

Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
[Crossref]

C.-Y. Wang, J. Gao, Z.-Q. Jiao, L.-F. Qiao, R.-J. Ren, Z. Feng, Y. Chen, Z.-Q. Yan, Y. Wang, H. Tang, and X.-M. Jin, “Integrated measurement server for measurement-device-independent quantum key distribution network,” Opt. Express 27, 5982–5989 (2019).
[Crossref]

Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018).
[Crossref]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[Crossref]

Gao, S.-Y.

P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, “Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,” Phys. Rev. Appl. 4, 044003 (2015).
[Crossref]

S.-L. Ma, P.-B. Li, A.-P. Fang, S.-Y. Gao, and F.-L. Li, “Dissipation-assisted generation of steady-state single-mode squeezing of collective excitations in a solid-state spin ensemble,” Phys. Rev. A 88, 013837 (2013).
[Crossref]

Gates, J. C.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Gill, P.

N. Poli, C. W. Oates, P. Gill, and G. M. Tino, “Optical atomic clocks,” Riv. Nuovo Cimento 36, 555–624 (2014).
[Crossref]

Goban, A.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Golter, D. A.

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

D. A. Golter, T. K. Baldwin, and H. Wang, “Protecting a solid-state spin from decoherence using dressed spin states,” Phys. Rev. Lett. 113, 237601 (2014).
[Crossref]

D. A. Golter and H. Wang, “Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond,” Phys. Rev. Lett. 112, 116403 (2014).
[Crossref]

Gong, Q.

Greentree, A. D.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[Crossref]

Gsell, S.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Guendelman, G.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Gugler, J.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

Gui-Lu, L.

L. Gui-Lu, “General quantum interference principle and duality computer,” Commun. Theor. Phys. 45, 825–844 (2006).
[Crossref]

Guo, G.-C.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[Crossref]

Guo, Q.

Q. Guo, T. Fu, J. Tang, D. Pan, S. Zhang, and H. Xu, “Routing a chiral Raman signal based on spin-orbit interaction of light,” Phys. Rev. Lett. 123, 183903 (2019).
[Crossref]

Gyure, M. F.

J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
[Crossref]

Gywat, O.

R. Hason, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[Crossref]

Hacker, B.

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8, 011018 (2018).
[Crossref]

Håkanson, U.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011).
[Crossref]

Halas, N. J.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011).
[Crossref]

Hall, L. T.

B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Dynamical decoupling of a single-electron spin at room temperature,” Phys. Rev. B 83, 081201 (2011).
[Crossref]

Han, Z.-F.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[Crossref]

Hansen, S. L.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Hanson, R.

G. D. Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, “Universal dynamical decoupling of a single solid-state spin from a spin bath,” Science 330, 60–63 (2010).
[Crossref]

Harmans, C. J. P. M.

J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836–839 (2007).
[Crossref]

Hason, R.

R. Hason, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[Crossref]

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

Hepp, C.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Hersam, M. C.

X. Liu and M. C. Hersam, “2D materials for quantum information science,” Nat. Rev. Mater. 4, 669–684 (2019).
[Crossref]

Ho, S.-W.

N. Zhao, S.-W. Ho, and R.-B. Liu, “Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths,” Phys. Rev. B 85, 115303 (2012).
[Crossref]

Hodges, J. S.

C. A. Ryan, J. S. Hodges, and D. G. Cory, “Robust decoupling techniques to extend quantum coherence in diamond,” Phys. Rev. Lett. 105, 200402 (2010).
[Crossref]

Hollenberg, L. C. L.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Dynamical decoupling of a single-electron spin at room temperature,” Phys. Rev. B 83, 081201 (2011).
[Crossref]

Hood, J.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Hu, Y.

W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, “Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit,” Phys. Rev. A 83, 022302 (2011).
[Crossref]

Huang, R.

R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing, “Nonreciprocal photon blockade,” Phys. Rev. Lett. 121, 153601 (2018).
[Crossref]

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref]

Hugues, M.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[Crossref]

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013).
[Crossref]

Humphreys, P. C.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Hung, C.-L.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Isoya, J.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Itano, W. M.

M. J. Biercuk, M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, “Optimized dynamical decoupling in a model quantum memory,” Nature 458, 996–1000 (2009).
[Crossref]

Iwamoto, S.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011).
[Crossref]

Jacques, V.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
[Crossref]

Jarmola, A.

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref]

Javadi, A.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Jelezko, F.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Dynamical decoupling of a single-electron spin at room temperature,” Phys. Rev. B 83, 081201 (2011).
[Crossref]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Jiang, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

Jiang, X.

X. Jiang and L. Yang, “Optothermal dynamics in whispering-gallery microresonators,” Light Sci. Appl. 9, 24 (2020).
[Crossref]

Jiao, Z.-Q.

Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
[Crossref]

C.-Y. Wang, J. Gao, Z.-Q. Jiao, L.-F. Qiao, R.-J. Ren, Z. Feng, Y. Chen, Z.-Q. Yan, Y. Wang, H. Tang, and X.-M. Jin, “Integrated measurement server for measurement-device-independent quantum key distribution network,” Opt. Express 27, 5982–5989 (2019).
[Crossref]

Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018).
[Crossref]

Jin, X.-M.

Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
[Crossref]

C.-Y. Wang, J. Gao, Z.-Q. Jiao, L.-F. Qiao, R.-J. Ren, Z. Feng, Y. Chen, Z.-Q. Yan, Y. Wang, H. Tang, and X.-M. Jin, “Integrated measurement server for measurement-device-independent quantum key distribution network,” Opt. Express 27, 5982–5989 (2019).
[Crossref]

X.-M. Jin, M. S. Kim, and B. J. Smith, “Quantum photonics: feature introduction,” Photon. Res. 7, QP1–QP2 (2019).
[Crossref]

Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018).
[Crossref]

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Jing, H.

R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing, “Nonreciprocal photon blockade,” Phys. Rev. Lett. 121, 153601 (2018).
[Crossref]

Johansson, J. R.

J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP 2: a Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 184, 1234–1240 (2013).
[Crossref]

J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP: an open-source Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

Junge, C.

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).
[Crossref]

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110, 213604 (2013).
[Crossref]

Kakuyanagi, K.

X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
[Crossref]

Karimoto, S.

X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
[Crossref]

Kasture, S.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[Crossref]

Kemp, A.

X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
[Crossref]

Kim, M. S.

Kimble, H.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Kimble, H. J.

L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref]

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76, 127–137 (1998).
[Crossref]

Kipfstuhl, L.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Kiršanske, G.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Kling, L.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Knill, E.

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
[Crossref]

Kolesov, R.

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Kolthammer, W. S.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Konishi, K.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011).
[Crossref]

Kubo, Y.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Kumagai, N.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011).
[Crossref]

Kundys, D.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Kuwata-Gonokami, M.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011).
[Crossref]

Lange, G. D.

G. D. Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, “Universal dynamical decoupling of a single solid-state spin from a spin bath,” Science 330, 60–63 (2010).
[Crossref]

Langford, N. K.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Lee, E. H.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Lee, J.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Lee, S.-Y.

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

Leuchs, G.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
[Crossref]

Li, B.

B. Li, P.-B. Li, Y. Zhou, J. Liu, H.-R. Li, and F.-L. Li, “Interfacing a topological qubit with a spin qubit in a hybrid quantum system,” Phys. Rev. Appl. 11, 044026 (2019).
[Crossref]

Y. Zhou, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions,” Phys. Rev. A 98, 052346 (2018).
[Crossref]

Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system,” Phys. Rev. A 96, 062333 (2017).
[Crossref]

B. Li, P.-B. Li, Y. Zhou, S.-L. Ma, and F.-L. Li, “Quantum microwave-optical interface with nitrogen-vacancy centers in diamond,” Phys. Rev. A 96, 032342 (2017).
[Crossref]

Li, C. Z.

Y. L. Zhou and C. Z. Li, “Robust quantum gates via a photon triggering electromagnetically induced transparency,” Phys. Rev. A 84, 044304 (2011).
[Crossref]

Li, F.-L.

B. Li, P.-B. Li, Y. Zhou, J. Liu, H.-R. Li, and F.-L. Li, “Interfacing a topological qubit with a spin qubit in a hybrid quantum system,” Phys. Rev. Appl. 11, 044026 (2019).
[Crossref]

Y. Zhou, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions,” Phys. Rev. A 98, 052346 (2018).
[Crossref]

Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system,” Phys. Rev. A 96, 062333 (2017).
[Crossref]

B. Li, P.-B. Li, Y. Zhou, S.-L. Ma, and F.-L. Li, “Quantum microwave-optical interface with nitrogen-vacancy centers in diamond,” Phys. Rev. A 96, 032342 (2017).
[Crossref]

P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, “Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,” Phys. Rev. Appl. 4, 044003 (2015).
[Crossref]

S.-L. Ma, P.-B. Li, A.-P. Fang, S.-Y. Gao, and F.-L. Li, “Dissipation-assisted generation of steady-state single-mode squeezing of collective excitations in a solid-state spin ensemble,” Phys. Rev. A 88, 013837 (2013).
[Crossref]

Li, H.-R.

B. Li, P.-B. Li, Y. Zhou, J. Liu, H.-R. Li, and F.-L. Li, “Interfacing a topological qubit with a spin qubit in a hybrid quantum system,” Phys. Rev. Appl. 11, 044026 (2019).
[Crossref]

Li, P.-B.

B. Li, P.-B. Li, Y. Zhou, J. Liu, H.-R. Li, and F.-L. Li, “Interfacing a topological qubit with a spin qubit in a hybrid quantum system,” Phys. Rev. Appl. 11, 044026 (2019).
[Crossref]

Y. Zhou, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions,” Phys. Rev. A 98, 052346 (2018).
[Crossref]

Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system,” Phys. Rev. A 96, 062333 (2017).
[Crossref]

B. Li, P.-B. Li, Y. Zhou, S.-L. Ma, and F.-L. Li, “Quantum microwave-optical interface with nitrogen-vacancy centers in diamond,” Phys. Rev. A 96, 032342 (2017).
[Crossref]

P.-B. Li, Z.-L. Xiang, P. Rabl, and F. Nori, “Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes,” Phys. Rev. Lett. 117, 015502 (2016).
[Crossref]

P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, “Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,” Phys. Rev. Appl. 4, 044003 (2015).
[Crossref]

S.-L. Ma, P.-B. Li, A.-P. Fang, S.-Y. Gao, and F.-L. Li, “Dissipation-assisted generation of steady-state single-mode squeezing of collective excitations in a solid-state spin ensemble,” Phys. Rev. A 88, 013837 (2013).
[Crossref]

Li, X.-X.

Y. Zhou, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions,” Phys. Rev. A 98, 052346 (2018).
[Crossref]

Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system,” Phys. Rev. A 96, 062333 (2017).
[Crossref]

Liao, J.-Q.

R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing, “Nonreciprocal photon blockade,” Phys. Rev. Lett. 121, 153601 (2018).
[Crossref]

Lidar, D. A.

J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
[Crossref]

Lin, J.

Lin, X.-F.

Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018).
[Crossref]

Lin, X.-M.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[Crossref]

Liu, J.

B. Li, P.-B. Li, Y. Zhou, J. Liu, H.-R. Li, and F.-L. Li, “Interfacing a topological qubit with a spin qubit in a hybrid quantum system,” Phys. Rev. Appl. 11, 044026 (2019).
[Crossref]

Liu, R. B.

J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, “Preserving electron spin coherence in solids by optimal dynamical decoupling,” Nature 461, 1265–1268 (2009).
[Crossref]

Liu, R.-B.

N. Zhao, J. Wrachtrup, and R.-B. Liu, “Dynamical decoupling design for identifying weakly coupled nuclear spins in a bath,” Phys. Rev. A 90, 032319 (2014).
[Crossref]

N. Zhao, S.-W. Ho, and R.-B. Liu, “Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths,” Phys. Rev. B 85, 115303 (2012).
[Crossref]

N. Zhao, Z.-Y. Wang, and R.-B. Liu, “Anomalous decoherence effect in a quantum bath,” Phys. Rev. Lett. 106, 217205 (2011).
[Crossref]

W. Yang and R.-B. Liu, “Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation,” Phys. Rev. Lett. 101, 180403 (2008).
[Crossref]

W. Yao, R.-B. Liu, and L. J. Sham, “Restoring coherence lost to a slow interacting mesoscopic spin bath,” Phys. Rev. Lett. 98, 077602 (2007).
[Crossref]

Liu, X.

X. Liu and M. C. Hersam, “2D materials for quantum information science,” Nat. Rev. Mater. 4, 669–684 (2019).
[Crossref]

Liu, Y.-C.

P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, “Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,” Phys. Rev. Appl. 4, 044003 (2015).
[Crossref]

Lloyd, S.

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
[Crossref]

Lodahl, P.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref]

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

Loke, T.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Loncar, M.

Lovsky, Y.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Lu, T.

Lu, Y.-Q.

Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
[Crossref]

Lü, X.-Y.

X.-Y. Lü, Z.-L. Xiang, W. Cui, J. Q. You, and F. Nori, “Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers,” Phys. Rev. A 88, 012329 (2013).
[Crossref]

Lu Long, G.

H.-R. Wei and G. Lu Long, “Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities,” Sci. Rep. 5, 12918 (2015).
[Crossref]

Lukin, M. D.

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, and A. S. Sørensen, “Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits,” Phys. Rev. Lett. 105, 210501 (2010).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Luo, H.

Luxmoore, I. J.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013).
[Crossref]

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[Crossref]

Ma, S.-L.

Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system,” Phys. Rev. A 96, 062333 (2017).
[Crossref]

B. Li, P.-B. Li, Y. Zhou, S.-L. Ma, and F.-L. Li, “Quantum microwave-optical interface with nitrogen-vacancy centers in diamond,” Phys. Rev. A 96, 032342 (2017).
[Crossref]

S.-L. Ma, P.-B. Li, A.-P. Fang, S.-Y. Gao, and F.-L. Li, “Dissipation-assisted generation of steady-state single-mode squeezing of collective excitations in a solid-state spin ensemble,” Phys. Rev. A 88, 013837 (2013).
[Crossref]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref]

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

Majer, J.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

Maletinsky, P.

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

Manson, N. B.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Marcos, D.

D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, and A. S. Sørensen, “Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits,” Phys. Rev. Lett. 105, 210501 (2010).
[Crossref]

Markham, M.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Markham, M. L.

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
[Crossref]

Marshall, G. D.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Martin, M.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Martn-Delgado, M. A.

A. Galindo and M. A. Martn-Delgado, “Information and computation: classical and quantum aspects,” Rev. Mod. Phys. 74, 347–423 (2002).
[Crossref]

Matthews, J. C. F.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Mauser, N. J.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

Maze, J.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

McClung, A.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Metcalf, B. J.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Midolo, L.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Miranowicz, A.

R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing, “Nonreciprocal photon blockade,” Phys. Rev. Lett. 121, 153601 (2018).
[Crossref]

Mitsch, R.

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

Mizuochi, N.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Mohn, P.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

Mooij, J. E.

J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836–839 (2007).
[Crossref]

Mücklich, F.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Muniz, J.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Munro, W. J.

X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
[Crossref]

Nakano, H.

X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
[Crossref]

Nation, P. D.

J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP 2: a Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 184, 1234–1240 (2013).
[Crossref]

J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP: an open-source Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

Naydenov, B.

B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Dynamical decoupling of a single-electron spin at room temperature,” Phys. Rev. B 83, 081201 (2011).
[Crossref]

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
[Crossref]

Nemoto, K.

X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
[Crossref]

Neu, E.

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Neugebauer, M.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
[Crossref]

Neumann, P.

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Nomura, M.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011).
[Crossref]

Nordlander, P.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011).
[Crossref]

Nori, F.

K. Xia, F. Nori, and M. Xiao, “Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity,” Phys. Rev. Lett. 121, 203602 (2018).
[Crossref]

R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing, “Nonreciprocal photon blockade,” Phys. Rev. Lett. 121, 153601 (2018).
[Crossref]

P.-B. Li, Z.-L. Xiang, P. Rabl, and F. Nori, “Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes,” Phys. Rev. Lett. 117, 015502 (2016).
[Crossref]

K. Y. Bliokh, F. J. Rodrguez-Fortũno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

X.-Y. Lü, Z.-L. Xiang, W. Cui, J. Q. You, and F. Nori, “Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers,” Phys. Rev. A 88, 012329 (2013).
[Crossref]

J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP 2: a Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 184, 1234–1240 (2013).
[Crossref]

J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP: an open-source Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse spin of a surface polariton,” Phys. Rev. A 85, 061801 (2012).
[Crossref]

O’Brien, J. L.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

O’Gara, S.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

O’Shea, D.

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).
[Crossref]

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110, 213604 (2013).
[Crossref]

Oates, C. W.

N. Poli, C. W. Oates, P. Gill, and G. M. Tino, “Optical atomic clocks,” Riv. Nuovo Cimento 36, 555–624 (2014).
[Crossref]

Ong, F. R.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Onoda, S.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

Oo, T.

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

Otterbach, J.

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

Oulton, R.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013).
[Crossref]

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[Crossref]

Painter, O.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Pan, D.

Q. Guo, T. Fu, J. Tang, D. Pan, S. Zhang, and H. Xu, “Routing a chiral Raman signal based on spin-orbit interaction of light,” Phys. Rev. Lett. 123, 183903 (2019).
[Crossref]

Park, Q.-H.

S. Yoo and Q.-H. Park, “Chiral light-matter interaction in optical resonators,” Phys. Rev. Lett. 114, 203003 (2015).
[Crossref]

Park, Y.-S.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[Crossref]

Pauly, C.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Pham, L. M.

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref]

Pichler, H.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref]

T. Ramos, H. Pichler, A. J. Daley, and P. Zoller, “Quantum spin dimers from chiral dissipation in cold-atom chains,” Phys. Rev. Lett. 113, 237203 (2014).
[Crossref]

Plantenberg, J. H.

J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836–839 (2007).
[Crossref]

Poli, N.

N. Poli, C. W. Oates, P. Gill, and G. M. Tino, “Optical atomic clocks,” Riv. Nuovo Cimento 36, 555–624 (2014).
[Crossref]

Prawer, S.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[Crossref]

Pregnolato, T.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Putz, S.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

Qiang, X.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Qiao, L.

Qiao, L.-F.

C.-Y. Wang, J. Gao, Z.-Q. Jiao, L.-F. Qiao, R.-J. Ren, Z. Feng, Y. Chen, Z.-Q. Yan, Y. Wang, H. Tang, and X.-M. Jin, “Integrated measurement server for measurement-device-independent quantum key distribution network,” Opt. Express 27, 5982–5989 (2019).
[Crossref]

Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018).
[Crossref]

Rabl, P.

P.-B. Li, Z.-L. Xiang, P. Rabl, and F. Nori, “Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes,” Phys. Rev. Lett. 117, 015502 (2016).
[Crossref]

P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, “Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,” Phys. Rev. Appl. 4, 044003 (2015).
[Crossref]

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

Ralph, T. C.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Ramos, T.

T. Ramos, H. Pichler, A. J. Daley, and P. Zoller, “Quantum spin dimers from chiral dissipation in cold-atom chains,” Phys. Rev. Lett. 113, 237203 (2014).
[Crossref]

Ramsay, A. J.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013).
[Crossref]

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[Crossref]

Rauschenbeutel, A.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref]

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110, 213604 (2013).
[Crossref]

Reinecke, T. L.

D. Solenov, S. E. Economou, and T. L. Reinecke, “Two-qubit quantum gates for defect qubits in diamond and similar systems,” Phys. Rev. B 88, 161403 (2013).
[Crossref]

Reiserer, A.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379–1418 (2015).
[Crossref]

Rempe, G.

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8, 011018 (2018).
[Crossref]

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379–1418 (2015).
[Crossref]

Rempp, F.

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
[Crossref]

Ren, R.-J.

Riedrich-Möller, J.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Ristè, D.

G. D. Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, “Universal dynamical decoupling of a single solid-state spin from a spin bath,” Science 330, 60–63 (2010).
[Crossref]

Ritter, S.

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8, 011018 (2018).
[Crossref]

Roch, J.-F.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Rodrguez-Fortuno, F. J.

K. Y. Bliokh, F. J. Rodrguez-Fortũno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Rong, X.

J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, “Preserving electron spin coherence in solids by optimal dynamical decoupling,” Nature 461, 1265–1268 (2009).
[Crossref]

Rosenblum, S.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Ryan, C. A.

C. A. Ryan, J. S. Hodges, and D. G. Cory, “Robust decoupling techniques to extend quantum coherence in diamond,” Phys. Rev. Lett. 105, 200402 (2010).
[Crossref]

Saito, S.

X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
[Crossref]

Santagati, R.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref]

Sarma, S. D.

W. M. Witzel and S. D. Sarma, “Multiple-pulse coherence enhancement of solid state spin qubits,” Phys. Rev. Lett. 98, 077601 (2007).
[Crossref]

Sayrin, C.

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

Schmiedmayer, J.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

Schneeweiss, P.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref]

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

Schreck, M.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Sham, L. J.

W. Yao, R.-B. Liu, and L. J. Sham, “Restoring coherence lost to a slow interacting mesoscopic spin bath,” Phys. Rev. Lett. 98, 077602 (2007).
[Crossref]

Shen, W.-G.

Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
[Crossref]

Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018).
[Crossref]

Shiga, N.

M. J. Biercuk, M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, “Optimized dynamical decoupling in a model quantum memory,” Nature 458, 996–1000 (2009).
[Crossref]

Shin, C.

B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Dynamical decoupling of a single-electron spin at room temperature,” Phys. Rev. B 83, 081201 (2011).
[Crossref]

Shkolnikov, V. O.

G. Burkard, V. O. Shkolnikov, and D. D. Awschalom, “Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond,” Phys. Rev. B 95, 205420 (2017).
[Crossref]

Shomroni, I.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Skolnick, M. S.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[Crossref]

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013).
[Crossref]

Smith, B. J.

X.-M. Jin, M. S. Kim, and B. J. Smith, “Quantum photonics: feature introduction,” Photon. Res. 7, QP1–QP2 (2019).
[Crossref]

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Smith, P. G. R.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Solenov, D.

D. Solenov, S. E. Economou, and T. L. Reinecke, “Two-qubit quantum gates for defect qubits in diamond and similar systems,” Phys. Rev. B 88, 161403 (2013).
[Crossref]

Söllner, I.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Song, J. D.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Sørensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, and A. S. Sørensen, “Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits,” Phys. Rev. Lett. 105, 210501 (2010).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Spring, J. B.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Steiner, M.

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
[Crossref]

Stewart, K. A.

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

Stobbe, S.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref]

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

Sumiya, H.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

Sun, K.

Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018).
[Crossref]

Tang, H.

Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
[Crossref]

C.-Y. Wang, J. Gao, Z.-Q. Jiao, L.-F. Qiao, R.-J. Ren, Z. Feng, Y. Chen, Z.-Q. Yan, Y. Wang, H. Tang, and X.-M. Jin, “Integrated measurement server for measurement-device-independent quantum key distribution network,” Opt. Express 27, 5982–5989 (2019).
[Crossref]

Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018).
[Crossref]

Tang, J.

Q. Guo, T. Fu, J. Tang, D. Pan, S. Zhang, and H. Xu, “Routing a chiral Raman signal based on spin-orbit interaction of light,” Phys. Rev. Lett. 123, 183903 (2019).
[Crossref]

Taylor, J. M.

D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, and A. S. Sørensen, “Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits,” Phys. Rev. Lett. 105, 210501 (2010).
[Crossref]

Teissier, J.

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

Thijssen, A. C. T.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013).
[Crossref]

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[Crossref]

Thomas-Peter, N.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Thompson, M. G.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Tino, G. M.

N. Poli, C. W. Oates, P. Gill, and G. M. Tino, “Optical atomic clocks,” Riv. Nuovo Cimento 36, 555–624 (2014).
[Crossref]

Tissler, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Togan, E.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

Tokura, Y.

X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
[Crossref]

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

Trupke, M.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

Twitchen, D.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Twitchen, D. J.

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
[Crossref]

Uhrig, G. S.

G. S. Uhrig, “Keeping a quantum bit alive by optimized π-pulse sequences,” Phys. Rev. Lett. 98, 100504 (2007).
[Crossref]

Uys, H.

M. J. Biercuk, M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, “Optimized dynamical decoupling in a model quantum memory,” Nature 458, 996–1000 (2009).
[Crossref]

Valagiannopoulos, C.

C. Valagiannopoulos, “Optimized quantum filtering of matter waves with respect to incidence direction and impinging energy,” Quantum Eng. 2, e52 (2020).
[Crossref]

Vamivakas, N.

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

VanDevender, A. P.

M. J. Biercuk, M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, “Optimized dynamical decoupling in a model quantum memory,” Nature 458, 996–1000 (2009).
[Crossref]

Viola, L.

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
[Crossref]

Vion, D.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Volz, J.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref]

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).
[Crossref]

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110, 213604 (2013).
[Crossref]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Wald, S.

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

Walmsley, I. A.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Walsworth, R. L.

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref]

Wandt, M.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Wang, B.

L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

Wang, C.

Wang, C.-Y.

Wang, H.

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

D. A. Golter, T. K. Baldwin, and H. Wang, “Protecting a solid-state spin from decoherence using dressed spin states,” Phys. Rev. Lett. 113, 237601 (2014).
[Crossref]

D. A. Golter and H. Wang, “Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond,” Phys. Rev. Lett. 112, 116403 (2014).
[Crossref]

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[Crossref]

Wang, J.

L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
[Crossref]

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Wang, J. B.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Wang, L.

Wang, M.

Z. Fang, H. Luo, J. Lin, M. Wang, J. Zhang, R. Wu, J. Zhou, W. Chu, T. Lu, and Y. Cheng, “Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk,” Opt. Lett. 44, 5953–5956 (2019).
[Crossref]

M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator,” Quantum Eng. 1, e9 (2019).
[Crossref]

Wang, Y.

Wang, Z. H.

G. D. Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, “Universal dynamical decoupling of a single solid-state spin from a spin bath,” Science 330, 60–63 (2010).
[Crossref]

Wang, Z.-Y.

N. Zhao, Z.-Y. Wang, and R.-B. Liu, “Anomalous decoherence effect in a quantum bath,” Phys. Rev. Lett. 106, 217205 (2011).
[Crossref]

Wasley, N. A.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[Crossref]

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013).
[Crossref]

Wei, H.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011).
[Crossref]

Wei, H.-R.

H.-R. Wei and G. Lu Long, “Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities,” Sci. Rep. 5, 12918 (2015).
[Crossref]

Welte, S.

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8, 011018 (2018).
[Crossref]

West, J. R.

J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
[Crossref]

Wilkes, C. M.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Witzel, W. M.

W. M. Witzel and S. D. Sarma, “Multiple-pulse coherence enhancement of solid state spin qubits,” Phys. Rev. Lett. 98, 077601 (2007).
[Crossref]

Wolff, S.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

Wrachtrup, J.

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

N. Zhao, J. Wrachtrup, and R.-B. Liu, “Dynamical decoupling design for identifying weakly coupled nuclear spins in a bath,” Phys. Rev. A 90, 032319 (2014).
[Crossref]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Dynamical decoupling of a single-electron spin at room temperature,” Phys. Rev. B 83, 081201 (2011).
[Crossref]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Wu, R.

Wubs, M.

D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, and A. S. Sørensen, “Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits,” Phys. Rev. Lett. 105, 210501 (2010).
[Crossref]

Xia, K.

K. Xia, F. Nori, and M. Xiao, “Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity,” Phys. Rev. Lett. 121, 203602 (2018).
[Crossref]

Xia, K.-Y.

Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
[Crossref]

Xiang, Z.-L.

P.-B. Li, Z.-L. Xiang, P. Rabl, and F. Nori, “Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes,” Phys. Rev. Lett. 117, 015502 (2016).
[Crossref]

P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, “Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,” Phys. Rev. Appl. 4, 044003 (2015).
[Crossref]

X.-Y. Lü, Z.-L. Xiang, W. Cui, J. Q. You, and F. Nori, “Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers,” Phys. Rev. A 88, 012329 (2013).
[Crossref]

Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

Xiao, M.

K. Xia, F. Nori, and M. Xiao, “Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity,” Phys. Rev. Lett. 121, 203602 (2018).
[Crossref]

Xiao, Y.-F.

L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
[Crossref]

P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, “Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,” Phys. Rev. Appl. 4, 044003 (2015).
[Crossref]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[Crossref]

Xu, H.

Q. Guo, T. Fu, J. Tang, D. Pan, S. Zhang, and H. Xu, “Routing a chiral Raman signal based on spin-orbit interaction of light,” Phys. Rev. Lett. 123, 183903 (2019).
[Crossref]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011).
[Crossref]

Yan, Z.-Q.

Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
[Crossref]

C.-Y. Wang, J. Gao, Z.-Q. Jiao, L.-F. Qiao, R.-J. Ren, Z. Feng, Y. Chen, Z.-Q. Yan, Y. Wang, H. Tang, and X.-M. Jin, “Integrated measurement server for measurement-device-independent quantum key distribution network,” Opt. Express 27, 5982–5989 (2019).
[Crossref]

Yang, J.

J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, “Preserving electron spin coherence in solids by optimal dynamical decoupling,” Nature 461, 1265–1268 (2009).
[Crossref]

Yang, L.

X. Jiang and L. Yang, “Optothermal dynamics in whispering-gallery microresonators,” Light Sci. Appl. 9, 24 (2020).
[Crossref]

Yang, W.

W. Yang and R.-B. Liu, “Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation,” Phys. Rev. Lett. 101, 180403 (2008).
[Crossref]

Yang, W. L.

W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, “Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit,” Phys. Rev. A 83, 022302 (2011).
[Crossref]

Yang, Y.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[Crossref]

Yao, N.

Yao, N. Y.

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

Yao, W.

W. Yao, R.-B. Liu, and L. J. Sham, “Restoring coherence lost to a slow interacting mesoscopic spin bath,” Phys. Rev. Lett. 98, 077602 (2007).
[Crossref]

Yin, Z. Q.

W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, “Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit,” Phys. Rev. A 83, 022302 (2011).
[Crossref]

Yoo, S.

S. Yoo and Q.-H. Park, “Chiral light-matter interaction in optical resonators,” Phys. Rev. Lett. 114, 203003 (2015).
[Crossref]

You, J. Q.

Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

X.-Y. Lü, Z.-L. Xiang, W. Cui, J. Q. You, and F. Nori, “Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers,” Phys. Rev. A 88, 012329 (2013).
[Crossref]

Yu, S.-P.

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodrguez-Fortũno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Zhang, J.

Zhang, M.

Zhang, S.

Q. Guo, T. Fu, J. Tang, D. Pan, S. Zhang, and H. Xu, “Routing a chiral Raman signal based on spin-orbit interaction of light,” Phys. Rev. Lett. 123, 183903 (2019).
[Crossref]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011).
[Crossref]

Zhao, N.

N. Zhao, J. Wrachtrup, and R.-B. Liu, “Dynamical decoupling design for identifying weakly coupled nuclear spins in a bath,” Phys. Rev. A 90, 032319 (2014).
[Crossref]

N. Zhao, S.-W. Ho, and R.-B. Liu, “Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths,” Phys. Rev. B 85, 115303 (2012).
[Crossref]

N. Zhao, Z.-Y. Wang, and R.-B. Liu, “Anomalous decoherence effect in a quantum bath,” Phys. Rev. Lett. 106, 217205 (2011).
[Crossref]

J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, “Preserving electron spin coherence in solids by optimal dynamical decoupling,” Nature 461, 1265–1268 (2009).
[Crossref]

Zheng, D.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

Zhou, J.

Zhou, X.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

Zhou, Y.

B. Li, P.-B. Li, Y. Zhou, J. Liu, H.-R. Li, and F.-L. Li, “Interfacing a topological qubit with a spin qubit in a hybrid quantum system,” Phys. Rev. Appl. 11, 044026 (2019).
[Crossref]

Y. Zhou, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions,” Phys. Rev. A 98, 052346 (2018).
[Crossref]

Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system,” Phys. Rev. A 96, 062333 (2017).
[Crossref]

B. Li, P.-B. Li, Y. Zhou, S.-L. Ma, and F.-L. Li, “Quantum microwave-optical interface with nitrogen-vacancy centers in diamond,” Phys. Rev. A 96, 032342 (2017).
[Crossref]

Zhou, Y. L.

Y. L. Zhou and C. Z. Li, “Robust quantum gates via a photon triggering electromagnetically induced transparency,” Phys. Rev. A 84, 044304 (2011).
[Crossref]

Zhu, X.

X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
[Crossref]

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

Zoller, P.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref]

T. Ramos, H. Pichler, A. J. Daley, and P. Zoller, “Quantum spin dimers from chiral dissipation in cold-atom chains,” Phys. Rev. Lett. 113, 237203 (2014).
[Crossref]

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

Appl. Phys. Lett. (1)

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, and M. S. Skolnick, “Optical control of the emission direction of a quantum dot,” Appl. Phys. Lett. 103, 241102 (2013).
[Crossref]

Commun. Theor. Phys. (1)

L. Gui-Lu, “General quantum interference principle and duality computer,” Commun. Theor. Phys. 45, 825–844 (2006).
[Crossref]

Comput. Phys. Commun. (2)

J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP: an open-source Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP 2: a Python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 184, 1234–1240 (2013).
[Crossref]

Light Sci. Appl. (1)

X. Jiang and L. Yang, “Optothermal dynamics in whispering-gallery microresonators,” Light Sci. Appl. 9, 24 (2020).
[Crossref]

Nano Lett. (1)

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[Crossref]

Nat. Commun. (3)

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
[Crossref]

A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimble, “Atom–light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

Nat. Mater. (2)

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, “Solid-state electron spin lifetime limited by phononic vacuum modes,” Nat. Mater. 17, 313–317 (2018).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Nat. Nanotechnol. (2)

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2012).
[Crossref]

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Nat. Photonics (6)

K. Y. Bliokh, F. J. Rodrguez-Fortũno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
[Crossref]

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12, 534–539 (2018).
[Crossref]

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Quantum teleportation on a photonic chip,” Nat. Photonics 8, 770–774 (2014).
[Crossref]

Nat. Phys. (2)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010).
[Crossref]

Nat. Rev. Mater. (2)

X. Liu and M. C. Hersam, “2D materials for quantum information science,” Nat. Rev. Mater. 4, 669–684 (2019).
[Crossref]

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

Nature (6)

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref]

J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836–839 (2007).
[Crossref]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref]

X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, and K. Nemoto, “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond,” Nature 478, 221–224 (2011).
[Crossref]

M. J. Biercuk, M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, “Optimized dynamical decoupling in a model quantum memory,” Nature 458, 996–1000 (2009).
[Crossref]

J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, “Preserving electron spin coherence in solids by optimal dynamical decoupling,” Nature 461, 1265–1268 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Photon. Res. (1)

Phys. Rep. (1)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Phys. Rev. A (11)

Y. Zhou, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions,” Phys. Rev. A 98, 052346 (2018).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse spin of a surface polariton,” Phys. Rev. A 85, 061801 (2012).
[Crossref]

B. Li, P.-B. Li, Y. Zhou, S.-L. Ma, and F.-L. Li, “Quantum microwave-optical interface with nitrogen-vacancy centers in diamond,” Phys. Rev. A 96, 032342 (2017).
[Crossref]

Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system,” Phys. Rev. A 96, 062333 (2017).
[Crossref]

S.-L. Ma, P.-B. Li, A.-P. Fang, S.-Y. Gao, and F.-L. Li, “Dissipation-assisted generation of steady-state single-mode squeezing of collective excitations in a solid-state spin ensemble,” Phys. Rev. A 88, 013837 (2013).
[Crossref]

X.-Y. Lü, Z.-L. Xiang, W. Cui, J. Q. You, and F. Nori, “Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers,” Phys. Rev. A 88, 012329 (2013).
[Crossref]

W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, “Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit,” Phys. Rev. A 83, 022302 (2011).
[Crossref]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[Crossref]

L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

Y. L. Zhou and C. Z. Li, “Robust quantum gates via a photon triggering electromagnetically induced transparency,” Phys. Rev. A 84, 044304 (2011).
[Crossref]

N. Zhao, J. Wrachtrup, and R.-B. Liu, “Dynamical decoupling design for identifying weakly coupled nuclear spins in a bath,” Phys. Rev. A 90, 032319 (2014).
[Crossref]

Phys. Rev. Appl. (2)

P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, “Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,” Phys. Rev. Appl. 4, 044003 (2015).
[Crossref]

B. Li, P.-B. Li, Y. Zhou, J. Liu, H.-R. Li, and F.-L. Li, “Interfacing a topological qubit with a spin qubit in a hybrid quantum system,” Phys. Rev. Appl. 11, 044026 (2019).
[Crossref]

Phys. Rev. B (4)

D. Solenov, S. E. Economou, and T. L. Reinecke, “Two-qubit quantum gates for defect qubits in diamond and similar systems,” Phys. Rev. B 88, 161403 (2013).
[Crossref]

G. Burkard, V. O. Shkolnikov, and D. D. Awschalom, “Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond,” Phys. Rev. B 95, 205420 (2017).
[Crossref]

N. Zhao, S.-W. Ho, and R.-B. Liu, “Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths,” Phys. Rev. B 85, 115303 (2012).
[Crossref]

B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Dynamical decoupling of a single-electron spin at room temperature,” Phys. Rev. B 83, 081201 (2011).
[Crossref]

Phys. Rev. Lett. (29)

C. A. Ryan, J. S. Hodges, and D. G. Cory, “Robust decoupling techniques to extend quantum coherence in diamond,” Phys. Rev. Lett. 105, 200402 (2010).
[Crossref]

J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
[Crossref]

N. Zhao, Z.-Y. Wang, and R.-B. Liu, “Anomalous decoherence effect in a quantum bath,” Phys. Rev. Lett. 106, 217205 (2011).
[Crossref]

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
[Crossref]

W. M. Witzel and S. D. Sarma, “Multiple-pulse coherence enhancement of solid state spin qubits,” Phys. Rev. Lett. 98, 077601 (2007).
[Crossref]

W. Yao, R.-B. Liu, and L. J. Sham, “Restoring coherence lost to a slow interacting mesoscopic spin bath,” Phys. Rev. Lett. 98, 077602 (2007).
[Crossref]

G. S. Uhrig, “Keeping a quantum bit alive by optimized π-pulse sequences,” Phys. Rev. Lett. 98, 100504 (2007).
[Crossref]

L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref]

W. Yang and R.-B. Liu, “Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation,” Phys. Rev. Lett. 101, 180403 (2008).
[Crossref]

Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, and X.-M. Jin, “Vector vortex beam emitter embedded in a photonic chip,” Phys. Rev. Lett. 124, 153601 (2020).
[Crossref]

Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, and X.-M. Jin, “Mapping twisted light into and out of a photonic chip,” Phys. Rev. Lett. 121, 233602 (2018).
[Crossref]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[Crossref]

D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, and A. S. Sørensen, “Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits,” Phys. Rev. Lett. 105, 210501 (2010).
[Crossref]

T. Ramos, H. Pichler, A. J. Daley, and P. Zoller, “Quantum spin dimers from chiral dissipation in cold-atom chains,” Phys. Rev. Lett. 113, 237203 (2014).
[Crossref]

R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing, “Nonreciprocal photon blockade,” Phys. Rev. Lett. 121, 153601 (2018).
[Crossref]

P.-B. Li, Z.-L. Xiang, P. Rabl, and F. Nori, “Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes,” Phys. Rev. Lett. 117, 015502 (2016).
[Crossref]

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

D. A. Golter, T. K. Baldwin, and H. Wang, “Protecting a solid-state spin from decoherence using dressed spin states,” Phys. Rev. Lett. 113, 237601 (2014).
[Crossref]

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

D. A. Golter and H. Wang, “Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond,” Phys. Rev. Lett. 112, 116403 (2014).
[Crossref]

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[Crossref]

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110, 213604 (2013).
[Crossref]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011).
[Crossref]

Q. Guo, T. Fu, J. Tang, D. Pan, S. Zhang, and H. Xu, “Routing a chiral Raman signal based on spin-orbit interaction of light,” Phys. Rev. Lett. 123, 183903 (2019).
[Crossref]

K. Xia, F. Nori, and M. Xiao, “Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity,” Phys. Rev. Lett. 121, 203602 (2018).
[Crossref]

S. Yoo and Q.-H. Park, “Chiral light-matter interaction in optical resonators,” Phys. Rev. Lett. 114, 203003 (2015).
[Crossref]

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011).
[Crossref]

Phys. Rev. X (2)

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).
[Crossref]

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8, 011018 (2018).
[Crossref]

Phys. Scr. (1)

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76, 127–137 (1998).
[Crossref]

Quantum Eng. (2)

M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator,” Quantum Eng. 1, e9 (2019).
[Crossref]

C. Valagiannopoulos, “Optimized quantum filtering of matter waves with respect to incidence direction and impinging energy,” Quantum Eng. 2, e52 (2020).
[Crossref]

Rev. Mod. Phys. (4)

A. Galindo and M. A. Martn-Delgado, “Information and computation: classical and quantum aspects,” Rev. Mod. Phys. 74, 347–423 (2002).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379–1418 (2015).
[Crossref]

Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

Riv. Nuovo Cimento (1)

N. Poli, C. W. Oates, P. Gill, and G. M. Tino, “Optical atomic clocks,” Riv. Nuovo Cimento 36, 555–624 (2014).
[Crossref]

Sci. Rep. (1)

H.-R. Wei and G. Lu Long, “Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities,” Sci. Rep. 5, 12918 (2015).
[Crossref]

Science (3)

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

G. D. Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, “Universal dynamical decoupling of a single solid-state spin from a spin bath,” Science 330, 60–63 (2010).
[Crossref]

R. Hason, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Scheme diagrams. (a) This hybrid device consists of two parts, a chiral switch for emitting photon pulse and an optical microcavity embedded with a single NV center, both of which are connected with an optical nanofiber. The outputs are delivered to the optical microcavity through nanofiber. A single NV center, driven by a dichromatic microwave field, is planted in the optical microcavity, which will also interact with the optical modes near-resonantly. (b) Level diagram of the NV center ground triplet state and excited state, and the feasible transition channels. The brown and blue solid arrows indicate the dichromatic microwave driving fields (with frequencies ω1 and ω2, and Rabi frequencies Ω1 and Ω2) applied between the state |ms=0 and the state |ms=1. The red solid arrows indicate the optical transition between the state |ms=0 and the excited state |e, which is induced by σ+ modes.
Fig. 2.
Fig. 2. For Case (I), the dynamical evolution of the fidelity, (a) and (b) with the initial state |1p|1, and (c) and (d) with the initial state |1p|+1, in which (a) and (c) correspond to the dynamical fidelity versus the coupling strength g, with the coefficients g[5Ω,10Ω], Δ25Ω, κ0.1Ω, γeΩ, and γg0.001Ω; (b) and (d) correspond to the dynamical fidelity versus the detuning Δ, with the coefficients Δ[25Ω,50Ω], g=5Ω, κ0.1Ω, γeΩ, and γg0.001Ω.
Fig. 3.
Fig. 3. For Case (II), the dynamical evolution of the fidelity, with the initial state |1 and the coefficients Δ25Ω, κ0.1Ω, γeΩ, and γg0.001Ω, in which the solid gray line with the hollow square shows the fidelity of |0, the solid blue line with the open circle shows the fidelity of |1, and the solid red line with the hollow diamond shows the fidelity of |+1.
Fig. 4.
Fig. 4. For Case (I), (a) and (b) the dynamical fidelity of state transitions |1p|±1|1p|±1 versus the dispersion δΩ[0.2Ω,0.2Ω], with the coefficients g5Ω, Δ25Ω, κ0.1Ω, γeΩ, and γg0.001Ω, while for Case (II), (c) and (d) the dynamical fidelity of states |1 and |0 during the process of state transitions |1|+1, versus the dispersion δΩ[0.2Ω,0.2Ω], with the coefficients Δ25Ω, κ0.1Ω, γeΩ, and γg0.001Ω.
Fig. 5.
Fig. 5. The estimation of the average fidelity for this whole C-NOT operation process versus the dispersion rate δΩ/Ω[0.2,0.2], in which, the black line with the open square means the average fidelity of the controlled spin-invariant operation, the red line with the open circle means the average fidelity of the controlled spin-flip operation, the blue line with the open up triangle means the whole average fidelity of this C-NOT operation, and the violet line with open down triangle means the whole average fidelity of the C-NOT operation accompanied with the realistic chiral switch efficiency (estimated as 0.9). The parameters are assumed as Δ25Ω, κ0.1Ω, γeΩ, and γg0.001Ω.

Tables (2)

Tables Icon

Table 1. Eigen System of H^IP(I)

Tables Icon

Table 2. Eigen System of H^IP(II)

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

U^CNOT=|CC|I^s+|+CC+|σ^xs,
H^SP(I)=H^NV+H^1+H^2.
H^IP(I)=(ga^|e0|+Ω2|0|)eiΔt+h.c.,
H^eff(I)Ξ1||+Ξ2|ee|+Λ(a^|e|+h.c.),
H^SP(II)=H^NV+H^2.
H^IP(II)=Ω2(|10|+|+10|)eiΔt+h.c.,
H^eff(II)=Ξ12(|1+1|+|+11|).
U^C-NOT=[1000010000010010],
U^2×2s=[12(1+r)0012(1+r)],
X^2×2s=[icosΞ1t2sinΞ1t2sinΞ1t2icosΞ1t2],
U^C-NOTR=[1+r200001+r20000icosΞ1t2sinΞ1t200sinΞ1t2icosΞ1t2].
F(t=πΞ1)=14(1+r+2sinΞ1t2)1.
dρ^dt=i[H^SP(I),(II),ρ^]+κD[a^]ρ^+γeD[σ^e]ρ^+γgD[σ^z]ρ^.
H^2=Ω12|10|eiω1t+Ω22|+10|eiω2t+h.c..
|ψin=(cosα|σ++sinα|σ)(cosβ|+1+sinβ|1),
|ψout=cosα|σ+(cosβ|+1+sinβ|1)+sinα|σ(cosβ|1+sinβ|+1),
H^IP(I)=Δ|00|+ga^|e0|+Ω2|0|+h.c..
H^IP(I)=[0Ω/20Ω/2Δg0g0],
H^IP(II)=Δ|00|+Ω2(|0|+h.c.).
H^IP(II)=[00Ω/200Ω/2Ω/2Ω/2Δ].

Metrics