Abstract

In this study, a quaternary blending strategy was applied in the fabrication of organic photovoltaic devices and large-area modules. As a result, the ultimate quaternary organic solar cells (OSCs) deliver 16.71% efficiency for small-area devices and 13.25% for large-area (19.34cm2) modules (certified as 12.36%), which is one of the highest efficiencies for organic solar modules to date. Our results have proved the synergistic effects of multiple components in OSCs, providing an effective strategy for achieving high-performance organic photovoltaic devices and modules.

© 2021 Chinese Laser Press

1. INTRODUCTION

Donor–acceptor organic solar cells (OSCs) have achieved tremendous progress since the reports of bulk-heterojunction (BHJ) organic solar cells [1]. Early in its development, fullerenes and their derivatives led to an era of OSCs due to their excellent electron mobility, large electron acceptability, and isotropy of charge transport [24]. However, the inherent huge energy losses and weak photon-harvesting capacities of fullerenes limited their further applications [5,6]. Compared with fullerene acceptors, the non-fullerene acceptors (NFAs) usually have strong absorption in the near-infrared region (NIR), and their energy levels can be easily adjusted to match the donors, which have been proved to promote the power conversion efficiencies (PCEs) of OSCs [712]. Driven by the vigorous development of materials science, the PCEs of single-junction OSCs have recently exceeded 17% [1321]. Despite the impressive achievements made by NFAs, the single NFA usually suffers from incomplete absorption of the solar spectrum and relatively low charge mobility compared with perovskite components [22]. In order to make full use of the advantages of fullerene and NFAs, multicomponent blending is recommended to construct multiple devices. The incorporation of fullerene and NFAs into the BHJ layer provides a promising approach to improve the photovoltaic performance of OSCs.

The recent rapid progress of OSC materials, especially NFAs with variable molecular structures and tunable energy levels, enables a large material pool for realizing the potential of multicomponent BHJ solar cells [2329]. Li et al. [30] earlier reported an NFA-based binary system BDB-T:ITIC mixed with binary fullerenes as acceptor additives. Consequently, the optical band gaps of the NFA-blended films were reduced and the carrier transport processes were enhanced. As a result, the open-circuit voltage (VOC), the short-circuit current-density (JSC), and the fill factor (FF) were simultaneously improved, promoting an ultimate PCE up to 12.8%. Bi et al.[31] developed an individual nanostructure optimized quaternary system based on two donors and two acceptors. High crystallinity DR3TBDTT was dispersed in PTB7-Th to enhance the domain purity, while PC71BM was used as phase modifier to promote favorable FOIC packing. Thus, the nanoscale morphologies of the donors and the acceptors were optimized individually, which helped to increase carrier mobilities and suppress monomolecular recombination, thereby contributing to a champion PCE of 13.51%. Recent work from Ma et al. [32] proposed an efficient quaternary system combining a basic binary blend including fullerene and NFA. The third component, Br-ITIC, was added to maximize the photon harvesting, and PC71BM was used as the fourth component to optimize the molecular arrangement and phase separation of the active layer, leading to a PCE of 16.8%. Therefore, multicomponent blending is an effective strategy to promote the PCEs of OSCs. However, quaternary or ternary blending has rarely been applied in large-area photovoltaic modules.

In this work, a quaternary blending strategy was used in the fabrication of small-area photovoltaic devices and large-area photovoltaic modules. We have explored a quaternary system, including one polymer donor PM6, one fullerene acceptor PC71BM, and two NFAs Y6 and ITIC. The PC71BM was added as the third component in the PM6:Y6 system to optimize the charge transport. The ITIC was further added as the fourth component to maximize the photon harvesting. As a result, a champion PCE of 16.71% was achieved in the quaternary device after an optimization of photovoltaic parameters. Furthermore, a certified PCE of 12.36% was achieved for the large-area (19.34cm2) module, which is one of the highest efficiencies for inverted organic solar modules to date. The excellent photovoltaic performance demonstrates the great potential of using multicomponent organic solar modules for practical applications.

2. EXPERIMENT

A. Materials

The PM6, Y6, ITIC, and PC71BM were purchased from Solarmer Materials Inc. The ZnO precursor solution was prepared by dissolving zinc acetate dehydrate and ethanolamine in the solution of 2-methoxyethanol with a concentration of 0.5 mol/L.

B. Device Fabrication

The multiple OSCs were constructed with indium tin oxide (ITO)/ZnO/active layer/MoOx/Ag. For small-area device fabrication, the ZnO precursor solution was spin-coated on the oxygen plasma-pretreated ITO at 3000 r/min and baked at 200°C for 1 h in air. PM6, Y6, ITIC, and PC71BM were dissolved in chloroform with different mass ratios. The mass concentration of the polymer was kept at 7g/L. Chloronaphthalene (0.8%) was added to optimize the phase separation. The blend solutions were then spin-coated onto the ZnO layer at an optimized speed of 2400 r/min, obtaining the thickness of 100nm, and were subsequently annealed at 50°C for 10 min. Finally, a 10 nm thick MoOx layer was deposited as the anode interlayer by thermal evaporation under less than 5×105Pa, followed by deposition of 80 nm of Ag as the top electrode.

For large-area module fabrication, the modules were fabricated with a similar architecture to the small-area OSCs. The patterned ITO-coated glass substrates (6cm×6cm with P1 scribe) were spin-coated with a ZnO precursor solution at 3000 r/min and baked at 200°C for 1 h in air. The quaternary blend solution (PM6:Y6:ITIC:PC71BM=1:1.15:0.05:0.2) was prepared with a polymer weight concentration of 9g/L. Chloronaphthalene (0.8%) was added as additive. The quaternary solution was spin-coated on the ZnO layer at 5000 r/min in N2 atmosphere, and the films were subsequently thermally annealed at 50°C for 10 min. Then a 10 nm thick MoOx layer was deposited as the anode interlayer by thermal evaporation under less than 5×105Pa. Finally, 80 nm of Ag was thermally evaporated under less than 5×105Pa. The series connection is realized with the typical P1-P3 laser (532 nm, 10 ns) patterning method, as shown later in this paper, and the geometrical filling factor is 95.5%.

C. Characterization

The density-voltage (J-V) curves were measured by a Keithley 2400 source meter under AM 1.5 G light (100mWcm2) from an SAN-EI electric solar simulator. The light intensity was calibrated using a standard silicon solar cell. The typical small-device area of 0.063cm2 is defined by a shadow mask. For the large-area module, the total illumination area is 19.34cm2, and the external quantum efficiency (EQE) was recorded by QE-R from Enli Technology. The UV-vis absorption spectra were measured by a Agilent Carry 5000 UV-vis spectrometer. Atomic force microscopy (AFM) images of the sample surfaces were obtained on a Cypher S atomic force microscope.

3. RESULTS AND DISCUSSION

Figure 1(a) depicts the chemical structures of the four photovoltaic materials. The UV-vis absorption spectra of neat PM6, Y6, ITIC, and PC71BM films are displayed in Fig. 1(b), covering the absorption range of 500–900 nm in the solar spectrum. The OSCs with an inverted structure of ITO/ZnO/active layer/MoOx/Ag were fabricated to evaluate the photovoltaic performance of the multiple devices, where the active layer consists of PM6, Y6, ITIC, and PC71BM with different mass ratios. The current density-voltage (J-V) curves of the multiple OSCs under illumination of AM 1.5 G (100mWcm2) are shown in Fig. 1(c), and the detailed photovoltaic parameters are summarized in Table 1. A champion PCE of 16.71% was achieved in the quaternary device (PM6:Y6:ITIC:PC71BM=11.150.050.2), which was significantly higher than those in the binary (15.47%) and the ternary ones (16.29%). Based on the binary PM6:Y6 system, PC71BM was added as the third component, leading to large increase of JSC and FF. The significant improvement in photovoltaic performance benefits from the more balanced charge transport, which is caused by the excellent electron mobility of the fullerene [33,34]. Then ITIC was added as the fourth component to optimize the photovoltaic parameters of the quaternary devices. Notably, the VOC of the quaternary devices can be adjusted near linearly by the increase of ITIC content. With the appropriate addition of the ITIC component, the PCE is further enhanced to 16.71% with JSC and FF slightly increased to 25.63mAcm2 and 76.22%, respectively. The EQE curves of the multiple OSCs are illustrated in Fig. 1(d). The optimal quaternary device exhibits a higher integrated JSC of 24.50mAcm2 than the reference values of the corresponding binary and ternary devices, which matches well with the JSC values calculated from the J-V curves.

 

Fig. 1. (a) Chemical structures and (b) normalized absorption spectra of PM6, Y6, ITIC, and PC71BM. (c) J-V curves and (d) EQE spectra of the multiple OSCs.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Photovoltaic Parameters of the Multiple OSCs

To investigate the surface morphology of the active layer films, we performed the morphology characterization using the AFM. As shown in Fig. 2, all the blend films exhibit uniform morphology with relatively low root-mean-square surface roughness (Rq) values, showing the good miscibility among the four components. The binary PM6:Y6 film possesses an Rq of approximately 1.18 nm, and it is decreased to 0.83 nm after the addition of the third component PC71BM. When adding an appropriate amount of the fourth component ITIC (1:1.15:0.05:0.2), the Rq is further optimized as 0.79 nm. The well-formed domain sizes and phase separation are beneficial for charge separation, which is consistent with J-V measurement. As the ITIC content is further increased, the Rq starts to increase instead, indicating a negative effect on the morphology caused by excess ITIC content.

 

Fig. 2. AFM height images and Rq values of the multiple OSCs. PM6:Y6:ITIC:PC71BM equals (a) 1:1.4:0:0, (b) 1:1.2:0:0.2, (c) 1:1.15:0.05:0.2, (d) 1:1.1:0.1:0.2, (e) 1:0.6:0.6:0.2, and (f) 1:0:1.2:0.2.

Download Full Size | PPT Slide | PDF

To evaluate the exciton dissociation and charge extraction processes in the multiple OSCs, the photocurrent density (Jph) versus the effective voltage (Veff) was carried out, where Jph and Veff were obtained by JlightJdark and V0Vbias, respectively. The JphVeff curves of the multiple devices are shown in Fig. 3. The Jph increases rapidly and eventually reaches a saturated state, indicating the sufficient dissociation and collection of the photogenerated charges. The Jph/Jsat values under short-circuit current were calculated to evaluate the exciton dissociation of the multiple devices, where the Jsat corresponds with the saturated photocurrent density at Veff=2V. As summarized in Table 2, the optimal quaternary device (1:1.15:0.05:0.2) exhibits the highest value of 0.961, which is slightly higher than the corresponding binary (0.953) and ternary devices (0.959), indicating more efficient exciton dissociation and charge collection. The appropriate addition of PC71BM and ITIC in the binary PM6:Y6 blend can provide more donor/acceptor interfaces for favorable exciton dissociation and charge transport, leading to increased JSC in multiple devices.

 

Fig. 3. JphVeff curves of the multiple OSCs.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. Photovoltaic Parameters Calculated from the JphVeff Curves of the Multiple OSCs

Based on the high performance of the quaternary OSCs, we manufactured a large-area photovoltaic module [Fig. 4(a)] with the optimal condition (1:1.15:0.05:0.2). The monolithic module is designed and realized by series connection of seven subcells. Laser engraving, known as the P1, P2, P3 laser patterning method, is used to connect the anode of one cell and the cathode of the subsequent cell. A realistic image of the module is shown in Fig. 4(b). The total illumination area is 19.34cm2, with geometrical filling factor of 95.5%. Figure 4(c) depicts the J-V curve of the large-area module. A PCE of 13.25% was realized, with a VOC of 6.024 V, a JSC of 3.11mAcm2, and an FF of 70.7%. It is noted here the efficiency is calculated based on the total illumination area, including both the photoactive area and the inactive connecting area, as defined by a photomask. A certified PCE of 12.36% was obtained, with a VOC of 6.06 V, a JSC of 3.07mAcm2, and an FF of 66.45% (Appendix A, Fig. 5). The PCE is the highest value in the inverted large-area module to date, and it is comparable to the performance of the state-of-the-art conventional modules (Table 3) [3539]. The large-area photovoltaic module can even charge a cellphone under an indoor LED lamp [Fig. 4(d) and Visualization 1], revealing a promising commercialization.

 

Fig. 4. (a) Device architecture, (b) realistic image, and (c) J-V curve of the large-area organic photovoltaic module. (d) The cellphone charged by the large-area organic photovoltaic module (see Visualization 1).

Download Full Size | PPT Slide | PDF

 

Fig. 5. Independent certification result of the large-area module based on the PM6:Y6:ITIC:PC71BM (1:1.15:0.05:0.2) device from the Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, confirming a high PCE of 12.36% (Certificate No. 19TR120402) (area=19.34cm2).

Download Full Size | PPT Slide | PDF

Tables Icon

Table 3. Partial PCE Comparison of the Large-area Modules with Areas over 10cm2 in Recent Years

4. CONCLUSION

In summary, we successfully fabricated a series of high-performance multiple OSCs. Fullerene and NFA (namely, PC71BM and ITIC) were sequentially added to the binary system to optimize the photovoltaic properties of the multiple blend films. With the strategy of integrating the advantages of multiple components, an optimized PCE up to 16.71% was obtained. Based on the exploration of quaternary devices, a large-area photovoltaic module was manufactured with a PCE of 13.25% (certified as 12.36%). The excellent performance of photovoltaic devices and large-area modules proves the synergy of multiple components, paving a way to the commercial application of the high-performance photovoltaic cells.

APPENDIX A

The main text presents the photovoltaic parameters of the large-area module measured in house. Here shows the independent certification result of the large-area module (Fig. 5). A certified PCE of 12.36% was obtained.

Funding

National Key Research and Development Program of China (2017YFA0207700); National Key Research and Development Program of Zhejiang Province (2018C04SA170313); Outstanding Youth Fund of Natural Science Foundation of Zhejiang (LR18F050001); National Natural Science Foundation of China (61705194, 61804134).

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789–1791 (1995). [CrossRef]  

2. D. M. Guldi, B. M. Illescas, C. M. Atienza, M. Wielopolski, and N. Martin, “Fullerene for organic electronics,” Chem. Soc. Rev. 38, 1587–1597 (2009). [CrossRef]  

3. Q. Wei, T. Nishizawa, K. Tajima, and K. Hashimoto, “Self-organized buffer layers in organic solar cells,” Adv. Mater. 20, 2211–2216 (2008). [CrossRef]  

4. P. P. Khlyabich, B. Burkhart, and B. C. Thompson, “Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage,” J. Am. Chem. Soc. 133, 14534–14537 (2011). [CrossRef]  

5. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, “On the origin of the open-circuit voltage of polymer-fullerene solar cells,” Nat. Mater. 8, 904–909 (2009). [CrossRef]  

6. J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017). [CrossRef]  

7. B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018). [CrossRef]  

8. J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019). [CrossRef]  

9. K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019). [CrossRef]  

10. L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019). [CrossRef]  

11. Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020). [CrossRef]  

12. Z. Jia, Z. Chen, X. Chen, L. Bai, H. Zhu, and Y. M. Yang, “Understanding of the nearly linear tunable open-circuit voltages in ternary organic solar cells based on two non-fullerene acceptors,” J. Phys. Chem. Lett. 12, 151–156 (2020). [CrossRef]  

13. Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020). [CrossRef]  

14. J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020). [CrossRef]  

15. Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020). [CrossRef]  

16. C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020). [CrossRef]  

17. L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020). [CrossRef]  

18. L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020). [CrossRef]  

19. T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, and J. Min, “Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach,” Adv. Energy Mater. 10, 2000590 (2020). [CrossRef]  

20. X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, and F. Zhang, “Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss,” Adv. Energy Mater. 10, 2001404 (2020). [CrossRef]  

21. Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020). [CrossRef]  

22. T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, and Y. Yang, “Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+,” Sol. RRL 4, 1900467 (2019). [CrossRef]  

23. Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, “High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics 9, 190–198 (2015). [CrossRef]  

24. J. Hou, O. Inganas, R. H. Friend, and F. Gao, “Organic solar cells based on non-fullerene acceptors,” Nat. Mater. 17, 119–128 (2018). [CrossRef]  

25. G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018). [CrossRef]  

26. W. Huang, P. Cheng, Y. M. Yang, G. Li, and Y. Yang, “High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components,” Adv. Mater. 30, 1705706 (2018). [CrossRef]  

27. R. Yu, H. Yao, and J. Hou, “Recent progress in ternary organic solar cells based on nonfullerene acceptors,” Adv. Energy Mater. 8, 1702814 (2018). [CrossRef]  

28. J. Lee, S. M. Lee, S. Chen, T. Kumari, S. H. Kang, Y. Cho, and C. Yang, “Organic photovoltaics with multiple donor-acceptor pairs,” Adv. Mater. 31, 1804762 (2019). [CrossRef]  

29. X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020). [CrossRef]  

30. W. Li, D. Yan, F. Liu, T. Russell, C. Zhan, and J. Yao, “High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport,” Sci. China Chem. 61, 1609–1618 (2018). [CrossRef]  

31. Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019). [CrossRef]  

32. X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020). [CrossRef]  

33. R. Yu, H. Yao, Y. Cui, L. Hong, C. He, and J. Hou, “Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells,” Adv. Mater. 31, 1902302 (2019). [CrossRef]  

34. T. Yan, W. Song, J. Huang, R. Peng, L. Huang, and Z. Ge, “16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy,” Adv. Mater. 31, 1902210 (2019). [CrossRef]  

35. J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019). [CrossRef]  

36. C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020). [CrossRef]  

37. X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019). [CrossRef]  

38. S. Dong, T. Jia, K. Zhang, J. Jing, and F. Huang, “Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%,” Joule 4, 2004–2016 (2020). [CrossRef]  

39. R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789–1791 (1995).
    [Crossref]
  2. D. M. Guldi, B. M. Illescas, C. M. Atienza, M. Wielopolski, and N. Martin, “Fullerene for organic electronics,” Chem. Soc. Rev. 38, 1587–1597 (2009).
    [Crossref]
  3. Q. Wei, T. Nishizawa, K. Tajima, and K. Hashimoto, “Self-organized buffer layers in organic solar cells,” Adv. Mater. 20, 2211–2216 (2008).
    [Crossref]
  4. P. P. Khlyabich, B. Burkhart, and B. C. Thompson, “Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage,” J. Am. Chem. Soc. 133, 14534–14537 (2011).
    [Crossref]
  5. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, “On the origin of the open-circuit voltage of polymer-fullerene solar cells,” Nat. Mater. 8, 904–909 (2009).
    [Crossref]
  6. J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
    [Crossref]
  7. B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
    [Crossref]
  8. J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
    [Crossref]
  9. K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
    [Crossref]
  10. L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
    [Crossref]
  11. Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
    [Crossref]
  12. Z. Jia, Z. Chen, X. Chen, L. Bai, H. Zhu, and Y. M. Yang, “Understanding of the nearly linear tunable open-circuit voltages in ternary organic solar cells based on two non-fullerene acceptors,” J. Phys. Chem. Lett. 12, 151–156 (2020).
    [Crossref]
  13. Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
    [Crossref]
  14. J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
    [Crossref]
  15. Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
    [Crossref]
  16. C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
    [Crossref]
  17. L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
    [Crossref]
  18. L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
    [Crossref]
  19. T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, and J. Min, “Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach,” Adv. Energy Mater. 10, 2000590 (2020).
    [Crossref]
  20. X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, and F. Zhang, “Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss,” Adv. Energy Mater. 10, 2001404 (2020).
    [Crossref]
  21. Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
    [Crossref]
  22. T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, and Y. Yang, “Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+,” Sol. RRL 4, 1900467 (2019).
    [Crossref]
  23. Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, “High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics 9, 190–198 (2015).
    [Crossref]
  24. J. Hou, O. Inganas, R. H. Friend, and F. Gao, “Organic solar cells based on non-fullerene acceptors,” Nat. Mater. 17, 119–128 (2018).
    [Crossref]
  25. G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018).
    [Crossref]
  26. W. Huang, P. Cheng, Y. M. Yang, G. Li, and Y. Yang, “High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components,” Adv. Mater. 30, 1705706 (2018).
    [Crossref]
  27. R. Yu, H. Yao, and J. Hou, “Recent progress in ternary organic solar cells based on nonfullerene acceptors,” Adv. Energy Mater. 8, 1702814 (2018).
    [Crossref]
  28. J. Lee, S. M. Lee, S. Chen, T. Kumari, S. H. Kang, Y. Cho, and C. Yang, “Organic photovoltaics with multiple donor-acceptor pairs,” Adv. Mater. 31, 1804762 (2019).
    [Crossref]
  29. X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
    [Crossref]
  30. W. Li, D. Yan, F. Liu, T. Russell, C. Zhan, and J. Yao, “High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport,” Sci. China Chem. 61, 1609–1618 (2018).
    [Crossref]
  31. Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
    [Crossref]
  32. X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020).
    [Crossref]
  33. R. Yu, H. Yao, Y. Cui, L. Hong, C. He, and J. Hou, “Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells,” Adv. Mater. 31, 1902302 (2019).
    [Crossref]
  34. T. Yan, W. Song, J. Huang, R. Peng, L. Huang, and Z. Ge, “16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy,” Adv. Mater. 31, 1902210 (2019).
    [Crossref]
  35. J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
    [Crossref]
  36. C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
    [Crossref]
  37. X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
    [Crossref]
  38. S. Dong, T. Jia, K. Zhang, J. Jing, and F. Huang, “Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%,” Joule 4, 2004–2016 (2020).
    [Crossref]
  39. R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
    [Crossref]

2020 (16)

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

Z. Jia, Z. Chen, X. Chen, L. Bai, H. Zhu, and Y. M. Yang, “Understanding of the nearly linear tunable open-circuit voltages in ternary organic solar cells based on two non-fullerene acceptors,” J. Phys. Chem. Lett. 12, 151–156 (2020).
[Crossref]

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
[Crossref]

L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
[Crossref]

T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, and J. Min, “Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach,” Adv. Energy Mater. 10, 2000590 (2020).
[Crossref]

X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, and F. Zhang, “Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss,” Adv. Energy Mater. 10, 2001404 (2020).
[Crossref]

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020).
[Crossref]

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

S. Dong, T. Jia, K. Zhang, J. Jing, and F. Huang, “Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%,” Joule 4, 2004–2016 (2020).
[Crossref]

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

2019 (10)

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

R. Yu, H. Yao, Y. Cui, L. Hong, C. He, and J. Hou, “Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells,” Adv. Mater. 31, 1902302 (2019).
[Crossref]

T. Yan, W. Song, J. Huang, R. Peng, L. Huang, and Z. Ge, “16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy,” Adv. Mater. 31, 1902210 (2019).
[Crossref]

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

J. Lee, S. M. Lee, S. Chen, T. Kumari, S. H. Kang, Y. Cho, and C. Yang, “Organic photovoltaics with multiple donor-acceptor pairs,” Adv. Mater. 31, 1804762 (2019).
[Crossref]

T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, and Y. Yang, “Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+,” Sol. RRL 4, 1900467 (2019).
[Crossref]

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
[Crossref]

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

2018 (6)

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

W. Li, D. Yan, F. Liu, T. Russell, C. Zhan, and J. Yao, “High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport,” Sci. China Chem. 61, 1609–1618 (2018).
[Crossref]

J. Hou, O. Inganas, R. H. Friend, and F. Gao, “Organic solar cells based on non-fullerene acceptors,” Nat. Mater. 17, 119–128 (2018).
[Crossref]

G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018).
[Crossref]

W. Huang, P. Cheng, Y. M. Yang, G. Li, and Y. Yang, “High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components,” Adv. Mater. 30, 1705706 (2018).
[Crossref]

R. Yu, H. Yao, and J. Hou, “Recent progress in ternary organic solar cells based on nonfullerene acceptors,” Adv. Energy Mater. 8, 1702814 (2018).
[Crossref]

2017 (1)

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

2015 (1)

Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, “High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics 9, 190–198 (2015).
[Crossref]

2011 (1)

P. P. Khlyabich, B. Burkhart, and B. C. Thompson, “Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage,” J. Am. Chem. Soc. 133, 14534–14537 (2011).
[Crossref]

2009 (2)

K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, “On the origin of the open-circuit voltage of polymer-fullerene solar cells,” Nat. Mater. 8, 904–909 (2009).
[Crossref]

D. M. Guldi, B. M. Illescas, C. M. Atienza, M. Wielopolski, and N. Martin, “Fullerene for organic electronics,” Chem. Soc. Rev. 38, 1587–1597 (2009).
[Crossref]

2008 (1)

Q. Wei, T. Nishizawa, K. Tajima, and K. Hashimoto, “Self-organized buffer layers in organic solar cells,” Adv. Mater. 20, 2211–2216 (2008).
[Crossref]

1995 (1)

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789–1791 (1995).
[Crossref]

Ade, H.

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
[Crossref]

An, C.

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

An, K.

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

An, Q.

X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020).
[Crossref]

Atienza, C. M.

D. M. Guldi, B. M. Illescas, C. M. Atienza, M. Wielopolski, and N. Martin, “Fullerene for organic electronics,” Chem. Soc. Rev. 38, 1587–1597 (2009).
[Crossref]

Bai, L.

Z. Jia, Z. Chen, X. Chen, L. Bai, H. Zhu, and Y. M. Yang, “Understanding of the nearly linear tunable open-circuit voltages in ternary organic solar cells based on two non-fullerene acceptors,” J. Phys. Chem. Lett. 12, 151–156 (2020).
[Crossref]

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

Barlow, S.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Benduhn, J.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Bi, Z.

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

Bob, B.

Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, “High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics 9, 190–198 (2015).
[Crossref]

Brabec, C. J.

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Burkhart, B.

P. P. Khlyabich, B. Burkhart, and B. C. Thompson, “Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage,” J. Am. Chem. Soc. 133, 14534–14537 (2011).
[Crossref]

Cai, F.

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

Cao, Y.

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Chai, G.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

Chang, W.-H.

Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, “High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics 9, 190–198 (2015).
[Crossref]

Chang, Y.-M.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Chen, H.

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
[Crossref]

L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
[Crossref]

Chen, J.

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

Chen, K.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

Chen, S.

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

J. Lee, S. M. Lee, S. Chen, T. Kumari, S. H. Kang, Y. Cho, and C. Yang, “Organic photovoltaics with multiple donor-acceptor pairs,” Adv. Mater. 31, 1804762 (2019).
[Crossref]

Chen, W.

Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, “High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics 9, 190–198 (2015).
[Crossref]

Chen, X.

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

Z. Jia, Z. Chen, X. Chen, L. Bai, H. Zhu, and Y. M. Yang, “Understanding of the nearly linear tunable open-circuit voltages in ternary organic solar cells based on two non-fullerene acceptors,” J. Phys. Chem. Lett. 12, 151–156 (2020).
[Crossref]

T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, and Y. Yang, “Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+,” Sol. RRL 4, 1900467 (2019).
[Crossref]

T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, and Y. Yang, “Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+,” Sol. RRL 4, 1900467 (2019).
[Crossref]

Chen, Y.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

Chen, Y.-K.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Chen, Z.

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

Z. Jia, Z. Chen, X. Chen, L. Bai, H. Zhu, and Y. M. Yang, “Understanding of the nearly linear tunable open-circuit voltages in ternary organic solar cells based on two non-fullerene acceptors,” J. Phys. Chem. Lett. 12, 151–156 (2020).
[Crossref]

T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, and Y. Yang, “Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+,” Sol. RRL 4, 1900467 (2019).
[Crossref]

Cheng, P.

W. Huang, P. Cheng, Y. M. Yang, G. Li, and Y. Yang, “High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components,” Adv. Mater. 30, 1705706 (2018).
[Crossref]

Cho, Y.

J. Lee, S. M. Lee, S. Chen, T. Kumari, S. H. Kang, Y. Cho, and C. Yang, “Organic photovoltaics with multiple donor-acceptor pairs,” Adv. Mater. 31, 1804762 (2019).
[Crossref]

Chow, P. C. Y.

G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018).
[Crossref]

Cui, Y.

L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
[Crossref]

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

R. Yu, H. Yao, Y. Cui, L. Hong, C. He, and J. Hou, “Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells,” Adv. Mater. 31, 1902302 (2019).
[Crossref]

Ding, L.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

Dong, S.

S. Dong, T. Jia, K. Zhang, J. Jing, and F. Huang, “Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%,” Joule 4, 2004–2016 (2020).
[Crossref]

Dou, L.

Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, “High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics 9, 190–198 (2015).
[Crossref]

Douglas, C. J.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Du, X.

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Duan, H.-S.

Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, “High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics 9, 190–198 (2015).
[Crossref]

Facchetti, A.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Fan, B.

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Fan, Y.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Friend, R. H.

J. Hou, O. Inganas, R. H. Friend, and F. Gao, “Organic solar cells based on non-fullerene acceptors,” Nat. Mater. 17, 119–128 (2018).
[Crossref]

Gadisa, A.

K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, “On the origin of the open-circuit voltage of polymer-fullerene solar cells,” Nat. Mater. 8, 904–909 (2009).
[Crossref]

Gao, B.

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

Gao, F.

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

J. Hou, O. Inganas, R. H. Friend, and F. Gao, “Organic solar cells based on non-fullerene acceptors,” Nat. Mater. 17, 119–128 (2018).
[Crossref]

Gao, J.

X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, and F. Zhang, “Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss,” Adv. Energy Mater. 10, 2001404 (2020).
[Crossref]

X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020).
[Crossref]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789–1791 (1995).
[Crossref]

Gao, K.

L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
[Crossref]

Ge, Z.

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

T. Yan, W. Song, J. Huang, R. Peng, L. Huang, and Z. Ge, “16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy,” Adv. Mater. 31, 1902210 (2019).
[Crossref]

Gou, L.

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

Guldi, D. M.

D. M. Guldi, B. M. Illescas, C. M. Atienza, M. Wielopolski, and N. Martin, “Fullerene for organic electronics,” Chem. Soc. Rev. 38, 1587–1597 (2009).
[Crossref]

Guo, J.

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

Hashimoto, K.

Q. Wei, T. Nishizawa, K. Tajima, and K. Hashimoto, “Self-organized buffer layers in organic solar cells,” Adv. Mater. 20, 2211–2216 (2008).
[Crossref]

He, C.

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

R. Yu, H. Yao, Y. Cui, L. Hong, C. He, and J. Hou, “Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells,” Adv. Mater. 31, 1902302 (2019).
[Crossref]

Heeger, A. J.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789–1791 (1995).
[Crossref]

Ho, H.-L.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Hong, L.

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

R. Yu, H. Yao, Y. Cui, L. Hong, C. He, and J. Hou, “Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells,” Adv. Mater. 31, 1902302 (2019).
[Crossref]

Hou, J.

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
[Crossref]

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

R. Yu, H. Yao, Y. Cui, L. Hong, C. He, and J. Hou, “Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells,” Adv. Mater. 31, 1902302 (2019).
[Crossref]

J. Hou, O. Inganas, R. H. Friend, and F. Gao, “Organic solar cells based on non-fullerene acceptors,” Nat. Mater. 17, 119–128 (2018).
[Crossref]

R. Yu, H. Yao, and J. Hou, “Recent progress in ternary organic solar cells based on nonfullerene acceptors,” Adv. Energy Mater. 8, 1702814 (2018).
[Crossref]

Hu, X.

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

Hu, Y.

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

Hu, Z.

T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, and J. Min, “Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach,” Adv. Energy Mater. 10, 2000590 (2020).
[Crossref]

X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, and F. Zhang, “Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss,” Adv. Energy Mater. 10, 2001404 (2020).
[Crossref]

X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020).
[Crossref]

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

Huang, F.

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

S. Dong, T. Jia, K. Zhang, J. Jing, and F. Huang, “Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%,” Joule 4, 2004–2016 (2020).
[Crossref]

T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, and J. Min, “Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach,” Adv. Energy Mater. 10, 2000590 (2020).
[Crossref]

G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018).
[Crossref]

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Huang, J.

T. Yan, W. Song, J. Huang, R. Peng, L. Huang, and Z. Ge, “16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy,” Adv. Mater. 31, 1902210 (2019).
[Crossref]

Huang, L.

T. Yan, W. Song, J. Huang, R. Peng, L. Huang, and Z. Ge, “16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy,” Adv. Mater. 31, 1902210 (2019).
[Crossref]

Huang, W.

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

W. Huang, P. Cheng, Y. M. Yang, G. Li, and Y. Yang, “High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components,” Adv. Mater. 30, 1705706 (2018).
[Crossref]

Huang, Y.-C.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Huang, Z.

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

Hummelen, J. C.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789–1791 (1995).
[Crossref]

Illescas, B. M.

D. M. Guldi, B. M. Illescas, C. M. Atienza, M. Wielopolski, and N. Martin, “Fullerene for organic electronics,” Chem. Soc. Rev. 38, 1587–1597 (2009).
[Crossref]

Inganas, O.

J. Hou, O. Inganas, R. H. Friend, and F. Gao, “Organic solar cells based on non-fullerene acceptors,” Nat. Mater. 17, 119–128 (2018).
[Crossref]

K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, “On the origin of the open-circuit voltage of polymer-fullerene solar cells,” Nat. Mater. 8, 904–909 (2009).
[Crossref]

Jang, S.

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

Jen, A. K.

L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
[Crossref]

Jia, T.

S. Dong, T. Jia, K. Zhang, J. Jing, and F. Huang, “Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%,” Joule 4, 2004–2016 (2020).
[Crossref]

Jia, Z.

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

Z. Jia, Z. Chen, X. Chen, L. Bai, H. Zhu, and Y. M. Yang, “Understanding of the nearly linear tunable open-circuit voltages in ternary organic solar cells based on two non-fullerene acceptors,” J. Phys. Chem. Lett. 12, 151–156 (2020).
[Crossref]

Jiang, K.

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
[Crossref]

G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018).
[Crossref]

Jiang, T.

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, and Y. Yang, “Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+,” Sol. RRL 4, 1900467 (2019).
[Crossref]

Jiang, Y.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

Jin, K.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

Jing, J.

S. Dong, T. Jia, K. Zhang, J. Jing, and F. Huang, “Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%,” Joule 4, 2004–2016 (2020).
[Crossref]

Jiu, T.

L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
[Crossref]

Johnson, P. A.

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Jung, H.

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

Kan, Y.

L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
[Crossref]

Kang, S. H.

J. Lee, S. M. Lee, S. Chen, T. Kumari, S. H. Kang, Y. Cho, and C. Yang, “Organic photovoltaics with multiple donor-acceptor pairs,” Adv. Mater. 31, 1804762 (2019).
[Crossref]

Khlyabich, P. P.

P. P. Khlyabich, B. Burkhart, and B. C. Thompson, “Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage,” J. Am. Chem. Soc. 133, 14534–14537 (2011).
[Crossref]

Kim, D. H.

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

Kim, H. K.

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
[Crossref]

Kim, J. Y.

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

Kim, T.

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

Kumari, T.

J. Lee, S. M. Lee, S. Chen, T. Kumari, S. H. Kang, Y. Cho, and C. Yang, “Organic photovoltaics with multiple donor-acceptor pairs,” Adv. Mater. 31, 1804762 (2019).
[Crossref]

Kwon, S. N.

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

Lai, J. Y. L.

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
[Crossref]

Lau, T.-K.

L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
[Crossref]

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Leclerc, M.

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Lee, C.-C.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Lee, C.-H.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Lee, J.

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

J. Lee, S. M. Lee, S. Chen, T. Kumari, S. H. Kang, Y. Cho, and C. Yang, “Organic photovoltaics with multiple donor-acceptor pairs,” Adv. Mater. 31, 1804762 (2019).
[Crossref]

Lee, S. M.

J. Lee, S. M. Lee, S. Chen, T. Kumari, S. H. Kang, Y. Cho, and C. Yang, “Organic photovoltaics with multiple donor-acceptor pairs,” Adv. Mater. 31, 1804762 (2019).
[Crossref]

Lee, Y.

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

Li, C.-H.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Li, C.-Z.

L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
[Crossref]

Li, G.

W. Huang, P. Cheng, Y. M. Yang, G. Li, and Y. Yang, “High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components,” Adv. Mater. 30, 1705706 (2018).
[Crossref]

Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, “High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics 9, 190–198 (2015).
[Crossref]

Li, H.

L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
[Crossref]

Li, J.

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

Li, N.

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Li, S.

L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
[Crossref]

Li, W.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

W. Li, D. Yan, F. Liu, T. Russell, C. Zhan, and J. Yao, “High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport,” Sci. China Chem. 61, 1609–1618 (2018).
[Crossref]

Li, W.-L.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Li, Y.

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
[Crossref]

T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, and J. Min, “Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach,” Adv. Energy Mater. 10, 2000590 (2020).
[Crossref]

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Liao, C.-Y.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Liao, Q.

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

Liu, C.

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

Liu, F.

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

W. Li, D. Yan, F. Liu, T. Russell, C. Zhan, and J. Yao, “High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport,” Sci. China Chem. 61, 1609–1618 (2018).
[Crossref]

Liu, J.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

Liu, L.

L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
[Crossref]

Liu, Q.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

Liu, T.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, and Y. Yang, “Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+,” Sol. RRL 4, 1900467 (2019).
[Crossref]

Liu, X.

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

Liu, Y.

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

Liu, Z.

X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020).
[Crossref]

Lu, X.

L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
[Crossref]

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Luo, Z.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

Ma, K.

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

Ma, Q.

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

Ma, R.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

Ma, W.

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Ma, X.

X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, and F. Zhang, “Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss,” Adv. Energy Mater. 10, 2001404 (2020).
[Crossref]

X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020).
[Crossref]

Manca, J. V.

K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, “On the origin of the open-circuit voltage of polymer-fullerene solar cells,” Nat. Mater. 8, 904–909 (2009).
[Crossref]

Marder, S. R.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Marks, T. J.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Martin, N.

D. M. Guldi, B. M. Illescas, C. M. Atienza, M. Wielopolski, and N. Martin, “Fullerene for organic electronics,” Chem. Soc. Rev. 38, 1587–1597 (2009).
[Crossref]

McGarry, K. A.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Meng, L.

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

Meng, X.

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

Min, J.

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, and J. Min, “Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach,” Adv. Energy Mater. 10, 2000590 (2020).
[Crossref]

Na, S. I.

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

Naveed, H. B.

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

Neher, D.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Nishizawa, T.

Q. Wei, T. Nishizawa, K. Tajima, and K. Hashimoto, “Self-organized buffer layers in organic solar cells,” Adv. Mater. 20, 2211–2216 (2008).
[Crossref]

Pan, F.

T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, and J. Min, “Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach,” Adv. Energy Mater. 10, 2000590 (2020).
[Crossref]

Peng, H.

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Peng, R.

T. Yan, W. Song, J. Huang, R. Peng, L. Huang, and Z. Ge, “16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy,” Adv. Mater. 31, 1902210 (2019).
[Crossref]

Peng, Z.

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
[Crossref]

Piersimoni, F.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Qin, J.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

Qiu, B.

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

Riede, M. K.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Russell, T.

W. Li, D. Yan, F. Liu, T. Russell, C. Zhan, and J. Yao, “High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport,” Sci. China Chem. 61, 1609–1618 (2018).
[Crossref]

Seo, Y. H.

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

Sha, W. E. I.

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, and Y. Yang, “Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+,” Sol. RRL 4, 1900467 (2019).
[Crossref]

Shen, W.

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

Shi, M.

L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
[Crossref]

T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, and J. Min, “Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach,” Adv. Energy Mater. 10, 2000590 (2020).
[Crossref]

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

Song, W.

T. Yan, W. Song, J. Huang, R. Peng, L. Huang, and Z. Ge, “16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy,” Adv. Mater. 31, 1902210 (2019).
[Crossref]

Spoltore, D.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Sui, X.

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

Sun, C.

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

Sun, H.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

Sun, K.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

Sun, R.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, and J. Min, “Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach,” Adv. Energy Mater. 10, 2000590 (2020).
[Crossref]

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

Sun, Y.

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

Tajima, K.

Q. Wei, T. Nishizawa, K. Tajima, and K. Hashimoto, “Self-organized buffer layers in organic solar cells,” Adv. Mater. 20, 2211–2216 (2008).
[Crossref]

Tan, L.

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

Tan, P. H.-S.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Tang, X.

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Tao, F.

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

Teng, N.-W.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Thompson, B. C.

P. P. Khlyabich, B. Burkhart, and B. C. Thompson, “Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage,” J. Am. Chem. Soc. 133, 14534–14537 (2011).
[Crossref]

Tropiano, M.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Tvingstedt, K.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, “On the origin of the open-circuit voltage of polymer-fullerene solar cells,” Nat. Mater. 8, 904–909 (2009).
[Crossref]

Ulanski, J.

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Ullbrich, S.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Vak, D.

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

Vandewal, K.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, “On the origin of the open-circuit voltage of polymer-fullerene solar cells,” Nat. Mater. 8, 904–909 (2009).
[Crossref]

Wan, Y.

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

Wang, B.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Wang, G.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Wang, J.

X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020).
[Crossref]

X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, and F. Zhang, “Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss,” Adv. Energy Mater. 10, 2001404 (2020).
[Crossref]

L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
[Crossref]

Wang, R.

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

Wang, T.

T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, and J. Min, “Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach,” Adv. Energy Mater. 10, 2000590 (2020).
[Crossref]

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

Wang, Y.

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

Wasielewski, M. R.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Weerasinghe, H.

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

Wei, Q.

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
[Crossref]

Q. Wei, T. Nishizawa, K. Tajima, and K. Hashimoto, “Self-organized buffer layers in organic solar cells,” Adv. Mater. 20, 2211–2216 (2008).
[Crossref]

Wei, Z.

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

Wielopolski, M.

D. M. Guldi, B. M. Illescas, C. M. Atienza, M. Wielopolski, and N. Martin, “Fullerene for organic electronics,” Chem. Soc. Rev. 38, 1587–1597 (2009).
[Crossref]

Woo, H. Y.

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

Wu, Q.

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

Wu, Y.

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

Wu, Z.

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

Wudl, F.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789–1791 (1995).
[Crossref]

Xian, K.

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

Xiao, M.

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

Xiao, Y.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

Xiao, Z.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

Xie, G.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

Xie, R.

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Xie, Y.

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

Xin, J.

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Xing, Z.

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

Xiong, J.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

Xu, C.

X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, and F. Zhang, “Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss,” Adv. Energy Mater. 10, 2001404 (2020).
[Crossref]

X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020).
[Crossref]

Xu, J.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

Xu, X.

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

Xu, Y.

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

Xue, L.

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

Yan, D.

W. Li, D. Yan, F. Liu, T. Russell, C. Zhan, and J. Yao, “High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport,” Sci. China Chem. 61, 1609–1618 (2018).
[Crossref]

Yan, H.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
[Crossref]

G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018).
[Crossref]

Yan, T.

T. Yan, W. Song, J. Huang, R. Peng, L. Huang, and Z. Ge, “16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy,” Adv. Mater. 31, 1902210 (2019).
[Crossref]

Yang, C.

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

J. Lee, S. M. Lee, S. Chen, T. Kumari, S. H. Kang, Y. Cho, and C. Yang, “Organic photovoltaics with multiple donor-acceptor pairs,” Adv. Mater. 31, 1804762 (2019).
[Crossref]

Yang, S.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

Yang, W.

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

Yang, Y.

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, and Y. Yang, “Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+,” Sol. RRL 4, 1900467 (2019).
[Crossref]

W. Huang, P. Cheng, Y. M. Yang, G. Li, and Y. Yang, “High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components,” Adv. Mater. 30, 1705706 (2018).
[Crossref]

Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, “High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics 9, 190–198 (2015).
[Crossref]

Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, “High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics 9, 190–198 (2015).
[Crossref]

Yang, Y. M.

Z. Jia, Z. Chen, X. Chen, L. Bai, H. Zhu, and Y. M. Yang, “Understanding of the nearly linear tunable open-circuit voltages in ternary organic solar cells based on two non-fullerene acceptors,” J. Phys. Chem. Lett. 12, 151–156 (2020).
[Crossref]

W. Huang, P. Cheng, Y. M. Yang, G. Li, and Y. Yang, “High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components,” Adv. Mater. 30, 1705706 (2018).
[Crossref]

Yao, H.

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

R. Yu, H. Yao, Y. Cui, L. Hong, C. He, and J. Hou, “Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells,” Adv. Mater. 31, 1902302 (2019).
[Crossref]

R. Yu, H. Yao, and J. Hou, “Recent progress in ternary organic solar cells based on nonfullerene acceptors,” Adv. Energy Mater. 8, 1702814 (2018).
[Crossref]

Yao, J.

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

W. Li, D. Yan, F. Liu, T. Russell, C. Zhan, and J. Yao, “High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport,” Sci. China Chem. 61, 1609–1618 (2018).
[Crossref]

Ye, L.

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
[Crossref]

Ying, L.

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Yip, H.-L.

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Young, R. M.

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Yu, G.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789–1791 (1995).
[Crossref]

Yu, J.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

Yu, R.

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

R. Yu, H. Yao, Y. Cui, L. Hong, C. He, and J. Hou, “Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells,” Adv. Mater. 31, 1902302 (2019).
[Crossref]

R. Yu, H. Yao, and J. Hou, “Recent progress in ternary organic solar cells based on nonfullerene acceptors,” Adv. Energy Mater. 8, 1702814 (2018).
[Crossref]

Yuan, J.

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
[Crossref]

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Zeika, O.

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

Zhan, C.

W. Li, D. Yan, F. Liu, T. Russell, C. Zhan, and J. Yao, “High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport,” Sci. China Chem. 61, 1609–1618 (2018).
[Crossref]

Zhan, L.

L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
[Crossref]

Zhang, C.

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

Zhang, F.

X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, and F. Zhang, “Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss,” Adv. Energy Mater. 10, 2001404 (2020).
[Crossref]

X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020).
[Crossref]

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

Zhang, G.

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018).
[Crossref]

Zhang, H.

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

Zhang, J.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018).
[Crossref]

G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018).
[Crossref]

Zhang, K.

S. Dong, T. Jia, K. Zhang, J. Jing, and F. Huang, “Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%,” Joule 4, 2004–2016 (2020).
[Crossref]

Zhang, L.

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

Zhang, T.

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

Zhang, X.

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, and F. Zhang, “Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss,” Adv. Energy Mater. 10, 2001404 (2020).
[Crossref]

X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020).
[Crossref]

Zhang, Y.

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Zhang, Z.

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

Zhang, Z. G.

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

Zhao, C.

L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
[Crossref]

Zhao, J.

G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018).
[Crossref]

Zhao, M.

L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
[Crossref]

Zhong, W.

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Zhou, K.

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

Zhou, L.

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Zhou, Q.

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

Zhou, W.

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

Zhu, C.

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Zhu, H.

Z. Jia, Z. Chen, X. Chen, L. Bai, H. Zhu, and Y. M. Yang, “Understanding of the nearly linear tunable open-circuit voltages in ternary organic solar cells based on two non-fullerene acceptors,” J. Phys. Chem. Lett. 12, 151–156 (2020).
[Crossref]

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, and Y. Yang, “Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+,” Sol. RRL 4, 1900467 (2019).
[Crossref]

Zhu, Q.

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

Zhu, Z.

G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018).
[Crossref]

Zou, Y.

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
[Crossref]

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

Adv. Energy Mater. (4)

T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, and J. Min, “Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach,” Adv. Energy Mater. 10, 2000590 (2020).
[Crossref]

X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, and F. Zhang, “Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss,” Adv. Energy Mater. 10, 2001404 (2020).
[Crossref]

R. Yu, H. Yao, and J. Hou, “Recent progress in ternary organic solar cells based on nonfullerene acceptors,” Adv. Energy Mater. 8, 1702814 (2018).
[Crossref]

J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, and S. I. Na, “Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency,” Adv. Energy Mater. 9, 1901805 (2019).
[Crossref]

Adv. Mater. (9)

X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, and Y. Chen, “A general approach for lab-to-manufacturing translation on flexible organic solar cells,” Adv. Mater. 31, 1903649 (2019).
[Crossref]

W. Huang, P. Cheng, Y. M. Yang, G. Li, and Y. Yang, “High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components,” Adv. Mater. 30, 1705706 (2018).
[Crossref]

J. Lee, S. M. Lee, S. Chen, T. Kumari, S. H. Kang, Y. Cho, and C. Yang, “Organic photovoltaics with multiple donor-acceptor pairs,” Adv. Mater. 31, 1804762 (2019).
[Crossref]

R. Yu, H. Yao, Y. Cui, L. Hong, C. He, and J. Hou, “Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells,” Adv. Mater. 31, 1902302 (2019).
[Crossref]

T. Yan, W. Song, J. Huang, R. Peng, L. Huang, and Z. Ge, “16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy,” Adv. Mater. 31, 1902210 (2019).
[Crossref]

L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, and Y. Li, “Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity,” Adv. Mater. 32, 1907604 (2020).
[Crossref]

Q. Wei, T. Nishizawa, K. Tajima, and K. Hashimoto, “Self-organized buffer layers in organic solar cells,” Adv. Mater. 20, 2211–2216 (2008).
[Crossref]

L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, and J. Hou, “Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency,” Adv. Mater. 31, 1903441 (2019).
[Crossref]

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, and J. Hou, “Single-junction organic photovoltaic cells with approaching 18% efficiency,” Adv. Mater. 32, 1908205 (2020).
[Crossref]

Chem. Rev. (1)

G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells,” Chem. Rev. 118, 3447–3507 (2018).
[Crossref]

Chem. Soc. Rev. (1)

D. M. Guldi, B. M. Illescas, C. M. Atienza, M. Wielopolski, and N. Martin, “Fullerene for organic electronics,” Chem. Soc. Rev. 38, 1587–1597 (2009).
[Crossref]

Energy Environ. Sci. (2)

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, and Y. Li, “Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell,” Energy Environ. Sci. 13, 2459–2466 (2020).
[Crossref]

L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, and H. Chen, “Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model,” Energy Environ. Sci. 13, 635–645 (2020).
[Crossref]

J. Am. Chem. Soc. (1)

P. P. Khlyabich, B. Burkhart, and B. C. Thompson, “Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage,” J. Am. Chem. Soc. 133, 14534–14537 (2011).
[Crossref]

J. Phys. Chem. Lett. (1)

Z. Jia, Z. Chen, X. Chen, L. Bai, H. Zhu, and Y. M. Yang, “Understanding of the nearly linear tunable open-circuit voltages in ternary organic solar cells based on two non-fullerene acceptors,” J. Phys. Chem. Lett. 12, 151–156 (2020).
[Crossref]

Joule (7)

Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, and H. Yan, “Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%,” Joule 4, 1236–1247 (2020).
[Crossref]

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule 3, 1140–1151 (2019).
[Crossref]

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, and H. Yan, “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells,” Joule 3, 3020–3033 (2019).
[Crossref]

X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, and Y. Yang, “Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers,” Joule 4, 1594–1606 (2020).
[Crossref]

S. Dong, T. Jia, K. Zhang, J. Jing, and F. Huang, “Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%,” Joule 4, 2004–2016 (2020).
[Crossref]

R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, “A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency,” Joule 4, 407–419 (2020).
[Crossref]

C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, and A. Facchetti, “Processing strategies for an organic photovoltaic module with over 10% efficiency,” Joule 4, 189–206 (2020).
[Crossref]

Nano Energy (3)

Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, and W. Ma, “Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells,” Nano Energy 66, 104176 (2019).
[Crossref]

X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, and F. Zhang, “Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology,” Nano Energy 70, 104496 (2020).
[Crossref]

Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, and Y. Li, “Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%,” Nano Energy 78, 105272 (2020).
[Crossref]

Nat. Commun. (1)

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, “Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells,” Nat. Commun. 11, 2726 (2020).
[Crossref]

Nat. Energy (2)

J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, and K. Vandewal, “Intrinsic non-radiative voltage losses in fullerene-based organic solar cells,” Nat. Energy 2, 17053 (2017).
[Crossref]

B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, and Y. Cao, “Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics,” Nat. Energy 3, 1051–1058 (2018).
[Crossref]

Nat. Mater. (2)

K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, “On the origin of the open-circuit voltage of polymer-fullerene solar cells,” Nat. Mater. 8, 904–909 (2009).
[Crossref]

J. Hou, O. Inganas, R. H. Friend, and F. Gao, “Organic solar cells based on non-fullerene acceptors,” Nat. Mater. 17, 119–128 (2018).
[Crossref]

Nat. Photonics (1)

Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, “High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics 9, 190–198 (2015).
[Crossref]

Sci. Bull. (1)

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, “18% efficiency organic solar cells,” Sci. Bull. 65, 272–275 (2020).
[Crossref]

Sci. China Chem. (1)

W. Li, D. Yan, F. Liu, T. Russell, C. Zhan, and J. Yao, “High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport,” Sci. China Chem. 61, 1609–1618 (2018).
[Crossref]

Science (1)

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789–1791 (1995).
[Crossref]

Sol. RRL (1)

T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, and Y. Yang, “Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+,” Sol. RRL 4, 1900467 (2019).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       The cellphone can be charged using a large-area organic photovoltaic module under an indoor LED lamp.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Chemical structures and (b) normalized absorption spectra of PM6, Y6, ITIC, and PC71BM. (c) J-V curves and (d) EQE spectra of the multiple OSCs.
Fig. 2.
Fig. 2. AFM height images and Rq values of the multiple OSCs. PM6:Y6:ITIC:PC71BM equals (a) 1:1.4:0:0, (b) 1:1.2:0:0.2, (c) 1:1.15:0.05:0.2, (d) 1:1.1:0.1:0.2, (e) 1:0.6:0.6:0.2, and (f) 1:0:1.2:0.2.
Fig. 3.
Fig. 3. JphVeff curves of the multiple OSCs.
Fig. 4.
Fig. 4. (a) Device architecture, (b) realistic image, and (c) J-V curve of the large-area organic photovoltaic module. (d) The cellphone charged by the large-area organic photovoltaic module (see Visualization 1).
Fig. 5.
Fig. 5. Independent certification result of the large-area module based on the PM6:Y6:ITIC:PC71BM (1:1.15:0.05:0.2) device from the Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, confirming a high PCE of 12.36% (Certificate No. 19TR120402) (area=19.34cm2).

Tables (3)

Tables Icon

Table 1. Photovoltaic Parameters of the Multiple OSCs

Tables Icon

Table 2. Photovoltaic Parameters Calculated from the JphVeff Curves of the Multiple OSCs

Tables Icon

Table 3. Partial PCE Comparison of the Large-area Modules with Areas over 10cm2 in Recent Years