Abstract

We describe 5 μm squircle InGaN-based red, green, and blue (RGB) monochromatic micro-light-emitting diodes (μLEDs) with an interpitch of 4 μm by pixilation of conductive p-GaN using a H2-plasma treatment. The p-GaN was passivated by H2 plasma and prevented the current’s injection into the InGaN quantum wells below. We observed that InGaN-based red μLEDs exhibited a broader full width at half-maximum and larger peak wavelength blueshift at 11.5115A/cm2 than the green/blue μLEDs. The on-wafer light output power density of the red μLEDs at a wavelength of 632 nm at 115A/cm2 was approximately 936mW/cm2, the highest value reported thus far for InGaN-based red μLEDs. This value was comparable with that of the green/blue μLEDs at 11.5A/cm2, indicating that the red μLEDs can satisfy the requirement of high brightness levels for specific displays. The color gamut based on InGaN RGB μLEDs covered 83.7% to 75.9% of the Rec. 2020 color space in the CIE 1931 diagram at 11.5 to 115A/cm2.

© 2021 Chinese Laser Press

1. INTRODUCTION

Owing to their high efficiency, brightness, and stability, InGaN-based micro-light-emitting diodes (μLEDs) have been considered as core devices in next-generation displays for a wide variety of applications, e.g.,  wall displays/televisions, smartphones/watches, head-up displays, pico-projectors, and augmented-reality (AR) glasses [13]. The full-color μLED displays require integration of red, green, and blue (RGB) μLEDs (R: AlGaInP; G and B: InGaN) on the same panel by pick-and-place technologies. However, the different material systems might cause mismatched far-field radiation patterns for RGB μLEDs [4], leading to a negative visual experience.

Most importantly, the high surface recombination velocities and long carrier diffusion lengths for AlGaInP materials will drastically reduce the efficiency of red μLEDs when the μLED dimensions shrink below 25 μm [57]. As a result, InGaN is gathering growing interest as an alternative red μLED candidate.

Despite the good performance of green/blue μLEDs, InGaN-based red μLEDs require an increase in the In-content in InGaN quantum wells (QWs), which will cause significant reduction in efficiency due to the degraded crystal quality of high-In-content InGaN QWs [8]. To solve this problem, special substrates/templates were proposed for high-In-content InGaN growth, such as InGaNOS [9], ScAlMgO4 (0001) [10], and porous GaN [11]. Our group grows high-In-content InGaN QWs by micro-flow-channel metalorganic vapor-phase epitaxy (MOVPE) [12] on sapphire substrates, and the red μLEDs [13] exhibited good efficiencies compared with other works [9,11]. However, the large blueshift of the peak wavelength for InGaN red μLEDs will make them look yellow or orange at high current densities, which cannot satisfy the requirement of the high dynamic operation range for micro-displays (like seamless AR glasses). Therefore, developing InGaN red μLEDs that operate in a high dynamic current density range is necessary.

Besides, ultrasmall (<10μm) InGaN μLEDs are usually fabricated by mesa etching, which physically removes the nitride materials and defines the dimensions of μLEDs [14,15]. This method is the most popular pixilation technique but introduces sidewall damage and reduces device efficiencies [1618]. Although it is possible to remove damage by chemical etching [19], the efficiencies of InGaN green/blue μLEDs still decrease as the dimension shrinks below 10 μm [20]. Meanwhile, ultra-small (<10μm) red μLEDs are seldom reported for both InGaN and AlGaInP materials [11].

To avoid the drawbacks of mesa etching, the research group from Samsung Ltd. proposed a new pixilation strategy [21] in which it tailored ion implantation to fabricate pixelated InGaN μLEDs and demonstrated high (2000−5000) pixels per inch (PPI) μLED displays with monolithically integrated thin-film transistor pixel circuits. However, this tailored ion implantation should be precisely controlled, which complicates the fabrication process. A simple strategy is more favorable for this kind of pixilation process.

In this work, we describe 5 μm squircle InGaN-based RGB monochromatic μLEDs with an interpitch of 4 μm using H2-plasma treatment for pixilation of conductive p-GaN. We examined the current-voltage curves to investigate the passivated p-GaN contacts and the electrical performances of the RGB μLEDs. The electroluminescence (EL) properties of the RGB monochromatic μLEDs, such as spectra and light output power (LOP), were investigated. Finally, we evaluated the uniformity and distinctiveness of the RGB μLEDs qualitatively and determined their color gamut in the CIE 1931 diagram.

2. EXPERIMENTAL DETAILS

InGaN-based red LED epitaxial wafers were grown on c-plane patterned sapphire substrates by MOVPE. Our previous work reported the epitaxial structures, which utilized the thick GaN template [22], hybrid InGaN QWs [23], and AlN/AlGaN hybrid barrier layers [24]. These epi-structures were designed to adjust strain, which helps to improve the crystal quality of InGaN red QWs. The n-type layer in our red LED structure is n-Al0.03Ga0.97N, which could realize extremely low resistivity by high Si doping [25]. The growth parameters were similar to those of our previous work [22], but we adjusted the growth temperature for high-In-content InGaN red QWs. The InGaN-based green/blue LED epitaxial wafers were purchased from a commercial supplier. The green/blue commercial epi-wafers can guarantee uniformity and are also suitable to be regarded as the reference samples because they are available for all research groups. Note that the n-type layer in the commercial green/blue LED structures is n-GaN.

The schematic of fabrication processes via pixilation of the conductive p-GaN is shown in Fig. 1. The indium tin oxide (ITO) micro-pillars arrays (20×20) were fabricated by standard lithography and a lift-off process in sequence [Fig. 1(a)]. The micro-pillars were squircle, with a width of 5 μm. The average area of the single 5 μm squircle was 21.66μm2. The interpitch between the adjacent ITO micro-pillars was 4 μm. The ohmic contacts between ITO micro-pillars and p-GaN were formed by the rapid two-step annealing process [26]. Then, the exposed p-GaN areas were treated with H2 plasma at 300°C for 2 min. Due to the high-temperature treatment, the H atoms would be not only captured by the p-GaN surface but also diffuse inside the p-GaN layer [27,28]. As a result, the H atoms were bonded to the p-type dopant Mg atoms and passivated the exposed p-GaN, as shown in Fig. 1(b). Finally, an additional ITO layer was used to connect all ITO micro-pillars and the Cr/Au served as the n- and p-electrodes [Fig. 1(c)]. To improve transparency and conductivity of this additional ITO layer, we carried out a two-step rapid annealing process before depositing Cr/Au electrodes. We also fabricated blue LEDs without ITO micro-pillars for comparison. The blue LEDs underwent the same processes in Figs. 1(b) and 1(c) to investigate the current injection of the passivated p-GaN areas.

 figure: Fig. 1.

Fig. 1. Schematics of fabrication processes for InGaN-based RGB monochromatic μLEDs by pixilation of conductive p-GaN.

Download Full Size | PPT Slide | PDF

The InGaN-based RGB monochromatic μLEDs were characterized at a probe station using a semiconductor parameter analyzer at room temperature. The EL properties were measured by the on-wafer testing, which had a similar configuration to the previous work [29]. A CCD camera installed on the microscope at the probe station was used to capture the emission patterns of these RGB monochromatic μLEDs.

3. RESULTS AND DISCUSSION

We first examined the contacts between the passivated p-GaN and the ITO layer. The absolute current of the blue LED with the passivated p-GaN was measured under the applied voltage from 4 to 8 V, as shown in Fig. 2. The measured current of the blue LED was less than 1 μA even at the forward bias of 8 V, demonstrating the typical Schottky contact between the passivated p-GaN and the ITO layer. Therefore, we could realize the μLEDs by the pixilation of the conductive p-GaN, as explained in Fig. 1.

 figure: Fig. 2.

Fig. 2. |I|V curves of InGaN-based RGB μLEDs and the blue LED with passivated p-GaN.

Download Full Size | PPT Slide | PDF

The absolute current-voltage (|I|V) curves of the InGaN RGB monochromatic μLED arrays (20×20) are plotted in Fig. 2 under the different applied voltages. The absolute current is plotted on a logarithmic scale. At the forward voltage, the |I|V characteristics of RGB monochromatic μLEDs exhibited similar behavior. The curves could be separated into two linear parts with different slopes on the semi-logarithmic scale. The two linear parts of the |I|V curves in forward bias were the same as that of the μLEDs by mesa etching [13,29]. The turn-on voltage, usually defined as the transition point between the two linear parts, was between 2.0 and 3.0 V for these RGB monochromatic μLEDs. The green μLEDs exhibited the lowest turn-on voltage compared with the blue and red μLEDs.

In addition, we noticed that the currents at 4 V for the RGB μLEDs were above 103A, more than six orders of magnitude larger than that for the blue LED with passivated p-GaN. This result further illustrates that the current could only pass through the activated p-GaN areas covered by ITO micro-pillars for the RGB monochromatic μLED arrays. As a result, we could calculate the current density by using the measured currents divided by the ITO micro-pillar area. At around 12A/cm2, the forward voltage of RGB monochromatic μLED arrays was around 3.6, 2.7, and 2.7 V, respectively.

At the reverse voltage, the reverse current remained constant for green/blue monochromatic μLEDs. However, the reverse current for the red μLEDs increased after the reverse voltage was above 1V. This reverse current increase implied that some leakage channels existed in the InGaN red μLEDs, presumably caused by defects in the InGaN QWs [30].

Figure 3(a) shows the EL spectra of the RGB monochromatic μLEDs at 11.5 to 115A/cm2. The EL spectra of the red μLEDs were multiplied by tenfold in the figure. We observed that all EL spectra of the green/blue monochromatic μLEDs exhibited single peaks. However, the red μLEDs had a tiny additional peak located in the wavelength range of 460–480 nm. We presumed that this additional peak was mainly caused by the indium phase separation in high-In-content InGaN QWs [31,32].

 figure: Fig. 3.

Fig. 3. (a) EL spectra. (b) FWHM of RGB monochromatic μLEDs at 11.5 to 115A/cm2.

Download Full Size | PPT Slide | PDF

The peak wavelengths of the RGB monochromatic μLEDs exhibited the blueshift as the current density increased in Fig. 3(a). However, the blueshift values from 11.5 to 115A/cm2 were quite different for the RGB monochromatic μLEDs. The blue and green μLEDs showed a slight blueshift of the peak wavelength within 4 nm. However, the red μLED had a blueshift of approximately 34 nm from the peak wavelength of 666 nm at 11.5A/cm2 to 632 nm at 115A/cm2. This blueshift for the red μLED is similar to our previous amber μLEDs [29] and was mainly caused by the strong QCSE in the high-In-content InGaN QWs.

We also extracted and compared the FWHMs of the RGB monochromatic μLEDs, as shown in Fig. 3(b). The FWHMs at 11.5115A/cm2 were around 20–22 nm for the blue μLEDs. But this became broader, to 28–31 and 72–81 nm, for the green and red μLEDs, respectively. This result was reasonable because the In fluctuation would be increased in the high-In-content InGaN QWs. Besides, the FWHMs of the RGB monochromatic μLEDs became broader as the current density increased, which originated from the generated heat under the high current density operation [31]. The heat was usually generated at the vicinity of defects [33], so the higher defect densities in the red μLEDs would generate more heat and make the value of FWHM larger compared with the green/blue monochromatic μLEDs.

The on-wafer LOP density can be used to evaluate the brightness of μLEDs. Figure 4 shows that the calculated on-wafer LOP density of green μLEDs is slightly lower than that of blue μLEDs. However, the LOP density of the red μLEDs is almost one order of magnitude lower than that of the green/blue μLEDs at the same current density. Besides, the LOP density of the red μLEDs decreased faster as the current density decreased when compared with the green/blue μLEDs. The phenomenon can be explained by the dominant Shockley–Read–Hall (SRH) recombination at lower current densities. Compared with green/blue μLEDs, red μLEDs have more defects in the active region. These defects serve as the SRH recombination centers and suppress the radiative recombination, especially at the lower current densities [34]. Therefore, less percent of carriers contribute to the light output and result in further reduction of the LOP density for red μLEDs as the current density decreases.

 figure: Fig. 4.

Fig. 4. On-wafer LOP density of RGB monochromatic μLEDs at different current densities.

Download Full Size | PPT Slide | PDF

Because of the lower LOP density, the red μLEDs require to be operated at a higher current density to achieve a similar brightness to that of the green/blue μLEDs. Generally, AR head-mounted displays need to achieve very high brightness (1×105cd/m2), which requires the blue μLEDs operating at 10A/cm2 [21]. To achieve a similar brightness, we estimated that the red μLEDs should exhibit a similar level of the LOP density to the blue μLEDs. As a result, we found that red μLEDs needed to be operated at 115A/cm2 in Fig. 4, one order of magnitude higher than the operated current density for blue μLEDs (11.5A/cm2 in Fig. 4). Fortunately, even at such a high current density, our red μLEDs still have a peak wavelength of 632 nm [Fig. 3(a)], which guarantees the emission located at the red region. Therefore, we conclude that our red μLEDs can satisfy the very high brightness requirement for AR displays.

We also compared the performance of the red μLEDs with other works [9,11,13,35,36]. As shown in Table 1, the red μLEDs in this work realized the highest current density at the emission wavelength around 630 nm. As a result, the LOP density of the red μLEDs reaches approximately 936mW/cm2, which is the highest reported value so far for InGaN-based red μLEDs.

Tables Icon

Table 1. Comparison of LOP Density for InGaN-Based Red μLEDs

Figures 5(a)−5(c) show the EL emission images of RGB monochromatic μLED arrays at 115A/cm2. We adjusted the exposure time for the CCD camera to capture these images. The clear RGB μLED pixels in these figures imply that the pixilation of the conductive p-GaN in Fig. 1 worked well to realize ultrasmall μLEDs. Besides, Fig. 5(c) implies that our red μLEDs at 115A/cm2 look “red,” demonstrating the possibility of our red μLEDs to work as a “red color” for high brightness requirement. However, compared with the uniform luminescence of green/blue monochromatic μLED arrays, some bright and dark pixels could be observed for the red μLED arrays. This luminescence nonuniformity was caused by many defects in the red QWs [26,31], which should be further reduced in the future.

 figure: Fig. 5.

Fig. 5. (a)−(c) EL emission images of RGB monochromatic μLED arrays at 115A/cm2. The scale bar in the inset is 50 μm. (d) CIE 1931 diagram of RGB monochromatic μLED arrays at 11.5 and 115A/cm2.

Download Full Size | PPT Slide | PDF

We also calculated the coordinates of RGB monochromatic μLEDs at 11.5 and 115A/cm2 in the CIE 1931 diagram [Fig. 5(d)]. The primary RGB colors in Rec. 2020 are plotted as stars for comparison. Due to the blueshift of the emission wavelength in Fig. 3(a), the positions in CIE 1931 would move counterclockwise for green and red μLEDs but almost remain constant for blue μLEDs. The color gamut by the RGB monochromatic μLEDs covered 83.7% to 75.9% of the Rec. 2020 color space at 11.5 to 115A/cm2. The coverage values are quite comparable with RGB μLEDs using quantum dot color converters [37,38].

4. CONCLUSION AND PROSPECT

In summary, here we have demonstrated that the p-GaN was passivated after H2-plasma treatment and would form a Schottky contact with the ITO layer, which prevented the current injection into InGaN QWs. We utilized this pixilation method to realize 5 μm squircle InGaN-based RGB monochromatic μLEDs and maintained the good distinctiveness of the ultrasmall μLED pixels. A broader FWHM (72–81 nm) and a larger peak wavelength blueshift from 666 to 632 nm at 11.5115A/cm2 were observed for the red μLEDs. The on-wafer LOP density of the red μLEDs was obtained as 936mW/cm2, which is the highest reported value thus far for InGaN-based red μLEDs. However, the on-wafer LOP density of the red μLEDs was still lower than that of green/blue μLEDs by one order of magnitude, which required higher operation current densities for red μLEDs to achieve similar brightness. The color gamut based on InGaN RGB monochromatic μLEDs covered 83.7% and 75.9% of the Rec. 2020 color space in CIE 1931 at 11.5 and 115A/cm2, respectively.

To realize full-color displays, the research group from Samsung Ltd. utilized the pixilation of blue μLEDs by ion implantation and chose quantum dot color converters for red/green μLEDs [21]. They avoided the mass transfer process and realized the prototype of micro-displays. In the case of RGB monochromatic μLEDs, the full-color displays generally need to assemble individual RGB μLEDs side-by-side via mass transfer. But this integration method is not suitable for the proposed pixilation method in this work. Another approach is vertically stacking the monochromatic μLED arrays, which was demonstrated by Lee et al. for a dual-color μLED display [39] and by Yadavalli et al. for full-color μLED displays (R: AlGaInP; G and B: InGaN) [40]. Therefore, we can expect that this vertical stacking method can be used for integration of our pixelated RGB monochromatic μLED arrays for full-color ultrahigh-brightness and ultrahigh-definition displays in the future.

Funding

King Abdullah University of Science and Technology (BAS/1/1676-01-01).

Acknowledgment

The fabrication processes in this work were supported by Nanofabrication Core Labs in KAUST.

Disclosures

The authors declare no conflicts of interest.

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

REFERENCES

1. Z. Chen, S. Yan, and C. Danesh, “MicroLED technologies and applications: characteristics, fabrication, progress, and challenges,” J. Phys. D 54, 123001 (2021). [CrossRef]  

2. H. S. Wasisto, J. D. Prades, J. Gülink, and A. Waag, “Beyond solid-state lighting: miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs,” Appl. Phys. Rev. 6, 041315 (2019). [CrossRef]  

3. P. J. Parbrook, B. Corbett, J. Han, T.-Y. Seong, and H. Amano, “Micro-light emitting diode: from chips to applications,” Laser Photon. Rev. 15, 2000133 (2021). [CrossRef]  

4. F. Gou, E.-L. Hsiang, G. Tan, P.-T. Chou, Y.-L. Li, Y.-F. Lan, and S.-T. Wu, “Angular color shift of micro-LED displays,” Opt. Express 27, A746–A757 (2019). [CrossRef]  

5. J.-T. Oh, S.-Y. Lee, Y.-T. Moon, J. H. Moon, S. Park, K. Y. Hong, K. Y. Song, C. Oh, J.-I. Shim, H.-H. Jeong, J.-O. Song, H. Amano, and T.-Y. Seong, “Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures,” Opt. Express 26, 11194–11200 (2018). [CrossRef]  

6. M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Opt. Express 28, 5787–5793 (2020). [CrossRef]  

7. S. Sinha, F. G. Tarntair, C. H. Ho, Y. R. Wu, and R. H. Horng, “Investigation of electrical and optical properties of AlGaInP red vertical micro-light-emitting diodes with Cu/Invar/Cu metal substrates,” IEEE Trans. Electron Devices 68, 2818–2822 (2021). [CrossRef]  

8. B. Damilano and B. Gil, “Yellow-red emission from (Ga,In)N heterostructures,” J. Phys. D 48, 403001 (2015). [CrossRef]  

9. A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020). [CrossRef]  

10. T. Ozaki, M. Funato, and Y. Kawakami, “Red-emitting InxGa1-xN/lnyGa1-yN quantum wells grown on lattice-matched InyGa1-yN/ScAlMgO4(0001) templates,” Appl. Phys. Express 12, 011007 (2019). [CrossRef]  

11. S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020). [CrossRef]  

12. K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, “740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE,” J. Cryst. Growth 343, 13–16 (2012). [CrossRef]  

13. Z. Zhuang, D. Iida, and K. Ohkawa, “Investigation of InGaN-based red/green micro-light-emitting diodes,” Opt. Lett. 46, 1912–1915 (2021). [CrossRef]  

14. H. Yu, M. H. Memon, D. Wang, Z. Ren, H. Zhang, C. Huang, M. Tian, H. Sun, and S. Long, “AlGaN-based deep ultraviolet micro-LED emitting at 275 nm,” Opt. Lett. 46, 3271–3274 (2021). [CrossRef]  

15. J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021). [CrossRef]  

16. S. S. Konoplev, K. A. Bulashevich, and S. Y. Karpov, “From large-size to micro-LEDs: scaling trends revealed by modeling,” Phys. Status Solidi A 215, 1700508 (2018). [CrossRef]  

17. P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012). [CrossRef]  

18. J. Kou, C.-C. Shen, H. Shao, J. Che, X. Hou, C. Chu, K. Tian, Y. Zhang, Z.-H. Zhang, and H.-C. Kuo, “Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes,” Opt. Express 27, A643–A653 (2019). [CrossRef]  

19. M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019). [CrossRef]  

20. J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020). [CrossRef]  

21. J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021). [CrossRef]  

22. D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress,” Appl. Phys. Lett. 116, 162101 (2020). [CrossRef]  

23. D. Iida, K. Niwa, S. Kamiyama, and K. Ohkawa, “Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure,” Appl. Phys. Express 9, 111003 (2016). [CrossRef]  

24. D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, and K. Ohkawa, “Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers,” J. Cryst. Growth 448, 105–108 (2016). [CrossRef]  

25. T. Sugiyama, D. Iida, T. Yasuda, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Extremely low-resistivity and high-carrier-concentration Si-doped Al0.05Ga0.95N,” Appl. Phys. Express 6, 121002 (2013). [CrossRef]  

26. Z. Zhuang, D. Iida, P. Kirilenko, M. Velazquez-Rizo, and K. Ohkawa, “Optimal ITO transparent conductive layers for InGaN-based amber/red light-emitting diodes,” Opt. Express 28, 12311–12321 (2020). [CrossRef]  

27. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN,” J. Appl. Phys. 94, 3960–3965 (2003). [CrossRef]  

28. H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019). [CrossRef]  

29. Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “606-nm InGaN amber micro-light-emitting diodes with an on-wafer external quantum efficiency of 0.56%,” IEEE Electron Device Letters 42, 1029–1032 (2021). [CrossRef]  

30. T. Zhi, T. Tao, B. Liu, Z. Xie, P. Chen, and R. Zhang, “Reverse leakage current characteristics of GaN/InGaN multiple quantum-wells blue and green light-emitting diodes,” IEEE Photon. J. 8, 1601606 (2016). [CrossRef]  

31. Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116, 173501 (2020). [CrossRef]  

32. J. I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7, 071003 (2014). [CrossRef]  

33. S. Okamoto, N. Saito, K. Ito, B. Ma, K. Morita, D. Iida, K. Ohkawa, and Y. Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers,” Appl. Phys. Lett. 116, 142107 (2020). [CrossRef]  

34. D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012). [CrossRef]  

35. Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “630-nm red InGaN micro-light-emitting diodes (<20 μm × 20 μm) exceeding 1 mW/mm2 for full-color micro-displays,” Photon. Res. 9, 1796–1802 (2021). [CrossRef]  

36. Y. Chen, “Plessey achieves native red InGaN LEDs on silicon for full color micro LED displays,” https://www.ledinside.com/news/2019/12/plessey_ingan_red_led_microled (2019).

37. J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020). [CrossRef]  

38. S.-W. H. Chen, Y.-M. Huang, K. J. Singh, Y.-C. Hsu, F.-J. Liou, J. Song, J. Choi, P.-T. Lee, C.-C. Lin, Z. Chen, J. Han, T. Wu, and H.-C. Kuo, “Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist,” Photon. Res. 8, 630–636 (2020). [CrossRef]  

39. C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017). [CrossRef]  

40. K. Yadavalli, C.-L. Chuang, and H. El-Ghoroury, “Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications,” Proc. SPIE 11310, 113100Z (2020). [CrossRef]  

References

  • View by:

  1. Z. Chen, S. Yan, and C. Danesh, “MicroLED technologies and applications: characteristics, fabrication, progress, and challenges,” J. Phys. D 54, 123001 (2021).
    [Crossref]
  2. H. S. Wasisto, J. D. Prades, J. Gülink, and A. Waag, “Beyond solid-state lighting: miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs,” Appl. Phys. Rev. 6, 041315 (2019).
    [Crossref]
  3. P. J. Parbrook, B. Corbett, J. Han, T.-Y. Seong, and H. Amano, “Micro-light emitting diode: from chips to applications,” Laser Photon. Rev. 15, 2000133 (2021).
    [Crossref]
  4. F. Gou, E.-L. Hsiang, G. Tan, P.-T. Chou, Y.-L. Li, Y.-F. Lan, and S.-T. Wu, “Angular color shift of micro-LED displays,” Opt. Express 27, A746–A757 (2019).
    [Crossref]
  5. J.-T. Oh, S.-Y. Lee, Y.-T. Moon, J. H. Moon, S. Park, K. Y. Hong, K. Y. Song, C. Oh, J.-I. Shim, H.-H. Jeong, J.-O. Song, H. Amano, and T.-Y. Seong, “Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures,” Opt. Express 26, 11194–11200 (2018).
    [Crossref]
  6. M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Opt. Express 28, 5787–5793 (2020).
    [Crossref]
  7. S. Sinha, F. G. Tarntair, C. H. Ho, Y. R. Wu, and R. H. Horng, “Investigation of electrical and optical properties of AlGaInP red vertical micro-light-emitting diodes with Cu/Invar/Cu metal substrates,” IEEE Trans. Electron Devices 68, 2818–2822 (2021).
    [Crossref]
  8. B. Damilano and B. Gil, “Yellow-red emission from (Ga,In)N heterostructures,” J. Phys. D 48, 403001 (2015).
    [Crossref]
  9. A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
    [Crossref]
  10. T. Ozaki, M. Funato, and Y. Kawakami, “Red-emitting InxGa1-xN/lnyGa1-yN quantum wells grown on lattice-matched InyGa1-yN/ScAlMgO4(0001) templates,” Appl. Phys. Express 12, 011007 (2019).
    [Crossref]
  11. S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020).
    [Crossref]
  12. K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, “740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE,” J. Cryst. Growth 343, 13–16 (2012).
    [Crossref]
  13. Z. Zhuang, D. Iida, and K. Ohkawa, “Investigation of InGaN-based red/green micro-light-emitting diodes,” Opt. Lett. 46, 1912–1915 (2021).
    [Crossref]
  14. H. Yu, M. H. Memon, D. Wang, Z. Ren, H. Zhang, C. Huang, M. Tian, H. Sun, and S. Long, “AlGaN-based deep ultraviolet micro-LED emitting at 275 nm,” Opt. Lett. 46, 3271–3274 (2021).
    [Crossref]
  15. J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
    [Crossref]
  16. S. S. Konoplev, K. A. Bulashevich, and S. Y. Karpov, “From large-size to micro-LEDs: scaling trends revealed by modeling,” Phys. Status Solidi A 215, 1700508 (2018).
    [Crossref]
  17. P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012).
    [Crossref]
  18. J. Kou, C.-C. Shen, H. Shao, J. Che, X. Hou, C. Chu, K. Tian, Y. Zhang, Z.-H. Zhang, and H.-C. Kuo, “Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes,” Opt. Express 27, A643–A653 (2019).
    [Crossref]
  19. M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019).
    [Crossref]
  20. J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
    [Crossref]
  21. J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
    [Crossref]
  22. D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress,” Appl. Phys. Lett. 116, 162101 (2020).
    [Crossref]
  23. D. Iida, K. Niwa, S. Kamiyama, and K. Ohkawa, “Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure,” Appl. Phys. Express 9, 111003 (2016).
    [Crossref]
  24. D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, and K. Ohkawa, “Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers,” J. Cryst. Growth 448, 105–108 (2016).
    [Crossref]
  25. T. Sugiyama, D. Iida, T. Yasuda, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Extremely low-resistivity and high-carrier-concentration Si-doped Al0.05Ga0.95N,” Appl. Phys. Express 6, 121002 (2013).
    [Crossref]
  26. Z. Zhuang, D. Iida, P. Kirilenko, M. Velazquez-Rizo, and K. Ohkawa, “Optimal ITO transparent conductive layers for InGaN-based amber/red light-emitting diodes,” Opt. Express 28, 12311–12321 (2020).
    [Crossref]
  27. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN,” J. Appl. Phys. 94, 3960–3965 (2003).
    [Crossref]
  28. H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
    [Crossref]
  29. Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “606-nm InGaN amber micro-light-emitting diodes with an on-wafer external quantum efficiency of 0.56%,” IEEE Electron Device Letters 42, 1029–1032 (2021).
    [Crossref]
  30. T. Zhi, T. Tao, B. Liu, Z. Xie, P. Chen, and R. Zhang, “Reverse leakage current characteristics of GaN/InGaN multiple quantum-wells blue and green light-emitting diodes,” IEEE Photon. J. 8, 1601606 (2016).
    [Crossref]
  31. Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116, 173501 (2020).
    [Crossref]
  32. J. I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7, 071003 (2014).
    [Crossref]
  33. S. Okamoto, N. Saito, K. Ito, B. Ma, K. Morita, D. Iida, K. Ohkawa, and Y. Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers,” Appl. Phys. Lett. 116, 142107 (2020).
    [Crossref]
  34. D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012).
    [Crossref]
  35. Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “630-nm red InGaN micro-light-emitting diodes (<20 μm × 20 μm) exceeding 1 mW/mm2 for full-color micro-displays,” Photon. Res. 9, 1796–1802 (2021).
    [Crossref]
  36. Y. Chen, “Plessey achieves native red InGaN LEDs on silicon for full color micro LED displays,” https://www.ledinside.com/news/2019/12/plessey_ingan_red_led_microled (2019).
  37. J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
    [Crossref]
  38. S.-W. H. Chen, Y.-M. Huang, K. J. Singh, Y.-C. Hsu, F.-J. Liou, J. Song, J. Choi, P.-T. Lee, C.-C. Lin, Z. Chen, J. Han, T. Wu, and H.-C. Kuo, “Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist,” Photon. Res. 8, 630–636 (2020).
    [Crossref]
  39. C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
    [Crossref]
  40. K. Yadavalli, C.-L. Chuang, and H. El-Ghoroury, “Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications,” Proc. SPIE 11310, 113100Z (2020).
    [Crossref]

2021 (9)

Z. Chen, S. Yan, and C. Danesh, “MicroLED technologies and applications: characteristics, fabrication, progress, and challenges,” J. Phys. D 54, 123001 (2021).
[Crossref]

P. J. Parbrook, B. Corbett, J. Han, T.-Y. Seong, and H. Amano, “Micro-light emitting diode: from chips to applications,” Laser Photon. Rev. 15, 2000133 (2021).
[Crossref]

S. Sinha, F. G. Tarntair, C. H. Ho, Y. R. Wu, and R. H. Horng, “Investigation of electrical and optical properties of AlGaInP red vertical micro-light-emitting diodes with Cu/Invar/Cu metal substrates,” IEEE Trans. Electron Devices 68, 2818–2822 (2021).
[Crossref]

Z. Zhuang, D. Iida, and K. Ohkawa, “Investigation of InGaN-based red/green micro-light-emitting diodes,” Opt. Lett. 46, 1912–1915 (2021).
[Crossref]

H. Yu, M. H. Memon, D. Wang, Z. Ren, H. Zhang, C. Huang, M. Tian, H. Sun, and S. Long, “AlGaN-based deep ultraviolet micro-LED emitting at 275 nm,” Opt. Lett. 46, 3271–3274 (2021).
[Crossref]

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “606-nm InGaN amber micro-light-emitting diodes with an on-wafer external quantum efficiency of 0.56%,” IEEE Electron Device Letters 42, 1029–1032 (2021).
[Crossref]

Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “630-nm red InGaN micro-light-emitting diodes (<20 μm × 20 μm) exceeding 1 mW/mm2 for full-color micro-displays,” Photon. Res. 9, 1796–1802 (2021).
[Crossref]

2020 (11)

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

S.-W. H. Chen, Y.-M. Huang, K. J. Singh, Y.-C. Hsu, F.-J. Liou, J. Song, J. Choi, P.-T. Lee, C.-C. Lin, Z. Chen, J. Han, T. Wu, and H.-C. Kuo, “Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist,” Photon. Res. 8, 630–636 (2020).
[Crossref]

Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116, 173501 (2020).
[Crossref]

D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress,” Appl. Phys. Lett. 116, 162101 (2020).
[Crossref]

M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Opt. Express 28, 5787–5793 (2020).
[Crossref]

J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
[Crossref]

Z. Zhuang, D. Iida, P. Kirilenko, M. Velazquez-Rizo, and K. Ohkawa, “Optimal ITO transparent conductive layers for InGaN-based amber/red light-emitting diodes,” Opt. Express 28, 12311–12321 (2020).
[Crossref]

S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020).
[Crossref]

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

S. Okamoto, N. Saito, K. Ito, B. Ma, K. Morita, D. Iida, K. Ohkawa, and Y. Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers,” Appl. Phys. Lett. 116, 142107 (2020).
[Crossref]

K. Yadavalli, C.-L. Chuang, and H. El-Ghoroury, “Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications,” Proc. SPIE 11310, 113100Z (2020).
[Crossref]

2019 (6)

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

T. Ozaki, M. Funato, and Y. Kawakami, “Red-emitting InxGa1-xN/lnyGa1-yN quantum wells grown on lattice-matched InyGa1-yN/ScAlMgO4(0001) templates,” Appl. Phys. Express 12, 011007 (2019).
[Crossref]

F. Gou, E.-L. Hsiang, G. Tan, P.-T. Chou, Y.-L. Li, Y.-F. Lan, and S.-T. Wu, “Angular color shift of micro-LED displays,” Opt. Express 27, A746–A757 (2019).
[Crossref]

H. S. Wasisto, J. D. Prades, J. Gülink, and A. Waag, “Beyond solid-state lighting: miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs,” Appl. Phys. Rev. 6, 041315 (2019).
[Crossref]

J. Kou, C.-C. Shen, H. Shao, J. Che, X. Hou, C. Chu, K. Tian, Y. Zhang, Z.-H. Zhang, and H.-C. Kuo, “Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes,” Opt. Express 27, A643–A653 (2019).
[Crossref]

M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019).
[Crossref]

2018 (2)

2017 (1)

2016 (3)

T. Zhi, T. Tao, B. Liu, Z. Xie, P. Chen, and R. Zhang, “Reverse leakage current characteristics of GaN/InGaN multiple quantum-wells blue and green light-emitting diodes,” IEEE Photon. J. 8, 1601606 (2016).
[Crossref]

D. Iida, K. Niwa, S. Kamiyama, and K. Ohkawa, “Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure,” Appl. Phys. Express 9, 111003 (2016).
[Crossref]

D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, and K. Ohkawa, “Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers,” J. Cryst. Growth 448, 105–108 (2016).
[Crossref]

2015 (1)

B. Damilano and B. Gil, “Yellow-red emission from (Ga,In)N heterostructures,” J. Phys. D 48, 403001 (2015).
[Crossref]

2014 (1)

J. I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7, 071003 (2014).
[Crossref]

2013 (1)

T. Sugiyama, D. Iida, T. Yasuda, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Extremely low-resistivity and high-carrier-concentration Si-doped Al0.05Ga0.95N,” Appl. Phys. Express 6, 121002 (2013).
[Crossref]

2012 (3)

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012).
[Crossref]

K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, “740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE,” J. Cryst. Growth 343, 13–16 (2012).
[Crossref]

D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012).
[Crossref]

2003 (1)

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN,” J. Appl. Phys. 94, 3960–3965 (2003).
[Crossref]

Akasaki, I.

T. Sugiyama, D. Iida, T. Yasuda, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Extremely low-resistivity and high-carrier-concentration Si-doped Al0.05Ga0.95N,” Appl. Phys. Express 6, 121002 (2013).
[Crossref]

Alugubelli, S. R.

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

Amano, H.

Baek, Y. H.

J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
[Crossref]

Baik, K. H.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN,” J. Appl. Phys. 94, 3960–3965 (2003).
[Crossref]

Bakir, B. B.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

Barbier, F.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

Bulashevich, K. A.

S. S. Konoplev, K. A. Bulashevich, and S. Y. Karpov, “From large-size to micro-LEDs: scaling trends revealed by modeling,” Phys. Status Solidi A 215, 1700508 (2018).
[Crossref]

Che, J.

Chen, D.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

Chen, H.

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

Chen, P.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

T. Zhi, T. Tao, B. Liu, Z. Xie, P. Chen, and R. Zhang, “Reverse leakage current characteristics of GaN/InGaN multiple quantum-wells blue and green light-emitting diodes,” IEEE Photon. J. 8, 1601606 (2016).
[Crossref]

Chen, S.-W. H.

Chen, Z.

Chen, Z. Z.

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012).
[Crossref]

Chenot, S.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

Cho, J.

D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012).
[Crossref]

Choi, H.

Choi, J.

Choi, J. H.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Choi, S.-B.

Choi, S.-Y.

Chou, P.-T.

Chu, C.

Chuang, C.-L.

K. Yadavalli, C.-L. Chuang, and H. El-Ghoroury, “Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications,” Proc. SPIE 11310, 113100Z (2020).
[Crossref]

Chung, D.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Corbett, B.

P. J. Parbrook, B. Corbett, J. Han, T.-Y. Seong, and H. Amano, “Micro-light emitting diode: from chips to applications,” Laser Photon. Rev. 15, 2000133 (2021).
[Crossref]

Damilano, B.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

B. Damilano and B. Gil, “Yellow-red emission from (Ga,In)N heterostructures,” J. Phys. D 48, 403001 (2015).
[Crossref]

Danesh, C.

Z. Chen, S. Yan, and C. Danesh, “MicroLED technologies and applications: characteristics, fabrication, progress, and challenges,” J. Phys. D 54, 123001 (2021).
[Crossref]

Dawson, M. D.

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012).
[Crossref]

DenBaars, S. P.

S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020).
[Crossref]

M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Opt. Express 28, 5787–5793 (2020).
[Crossref]

J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
[Crossref]

M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019).
[Crossref]

Deura, M.

K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, “740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE,” J. Cryst. Growth 343, 13–16 (2012).
[Crossref]

Dussaigne, A.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

El-Ghoroury, H.

K. Yadavalli, C.-L. Chuang, and H. El-Ghoroury, “Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications,” Proc. SPIE 11310, 113100Z (2020).
[Crossref]

Fang, Y.-H.

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

Fu, H.

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

Fu, K.

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

Funato, M.

T. Ozaki, M. Funato, and Y. Kawakami, “Red-emitting InxGa1-xN/lnyGa1-yN quantum wells grown on lattice-matched InyGa1-yN/ScAlMgO4(0001) templates,” Appl. Phys. Express 12, 011007 (2019).
[Crossref]

Gasse, A.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

Gil, B.

B. Damilano and B. Gil, “Yellow-red emission from (Ga,In)N heterostructures,” J. Phys. D 48, 403001 (2015).
[Crossref]

Gong, Z.

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012).
[Crossref]

Gordon, M. J.

S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020).
[Crossref]

J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
[Crossref]

Gou, F.

Govorkov, A. V.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN,” J. Appl. Phys. 94, 3960–3965 (2003).
[Crossref]

Grenier, A.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

Gu, E. D.

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012).
[Crossref]

Guilhabert, B.

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012).
[Crossref]

Gülink, J.

H. S. Wasisto, J. D. Prades, J. Gülink, and A. Waag, “Beyond solid-state lighting: miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs,” Appl. Phys. Rev. 6, 041315 (2019).
[Crossref]

Gupta, C.

S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020).
[Crossref]

Han, J.

P. J. Parbrook, B. Corbett, J. Han, T.-Y. Seong, and H. Amano, “Micro-light emitting diode: from chips to applications,” Laser Photon. Rev. 15, 2000133 (2021).
[Crossref]

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

S.-W. H. Chen, Y.-M. Huang, K. J. Singh, Y.-C. Hsu, F.-J. Liou, J. Song, J. Choi, P.-T. Lee, C.-C. Lin, Z. Chen, J. Han, T. Wu, and H.-C. Kuo, “Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist,” Photon. Res. 8, 630–636 (2020).
[Crossref]

Han, J. H.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Han, S.-H.

D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012).
[Crossref]

Hashimoto, R.

J. I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7, 071003 (2014).
[Crossref]

Hirahara, S.

D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, and K. Ohkawa, “Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers,” J. Cryst. Growth 448, 105–108 (2016).
[Crossref]

Hirako, A.

K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, “740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE,” J. Cryst. Growth 343, 13–16 (2012).
[Crossref]

Ho, C. H.

S. Sinha, F. G. Tarntair, C. H. Ho, Y. R. Wu, and R. H. Horng, “Investigation of electrical and optical properties of AlGaInP red vertical micro-light-emitting diodes with Cu/Invar/Cu metal substrates,” IEEE Trans. Electron Devices 68, 2818–2822 (2021).
[Crossref]

Hong, K. Y.

Horng, R. H.

S. Sinha, F. G. Tarntair, C. H. Ho, Y. R. Wu, and R. H. Horng, “Investigation of electrical and optical properties of AlGaInP red vertical micro-light-emitting diodes with Cu/Invar/Cu metal substrates,” IEEE Trans. Electron Devices 68, 2818–2822 (2021).
[Crossref]

Hou, X.

Hsiang, E.-L.

Hsu, Y.-C.

Hu, S.

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

Huang, C.

Huang, X.

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

Huang, Y.-M.

Hwang, D.

M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019).
[Crossref]

Hwang, J. I.

J. I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7, 071003 (2014).
[Crossref]

Hwang, S.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Iida, D.

Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “630-nm red InGaN micro-light-emitting diodes (<20 μm × 20 μm) exceeding 1 mW/mm2 for full-color micro-displays,” Photon. Res. 9, 1796–1802 (2021).
[Crossref]

Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “606-nm InGaN amber micro-light-emitting diodes with an on-wafer external quantum efficiency of 0.56%,” IEEE Electron Device Letters 42, 1029–1032 (2021).
[Crossref]

Z. Zhuang, D. Iida, and K. Ohkawa, “Investigation of InGaN-based red/green micro-light-emitting diodes,” Opt. Lett. 46, 1912–1915 (2021).
[Crossref]

Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116, 173501 (2020).
[Crossref]

S. Okamoto, N. Saito, K. Ito, B. Ma, K. Morita, D. Iida, K. Ohkawa, and Y. Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers,” Appl. Phys. Lett. 116, 142107 (2020).
[Crossref]

D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress,” Appl. Phys. Lett. 116, 162101 (2020).
[Crossref]

Z. Zhuang, D. Iida, P. Kirilenko, M. Velazquez-Rizo, and K. Ohkawa, “Optimal ITO transparent conductive layers for InGaN-based amber/red light-emitting diodes,” Opt. Express 28, 12311–12321 (2020).
[Crossref]

D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, and K. Ohkawa, “Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers,” J. Cryst. Growth 448, 105–108 (2016).
[Crossref]

D. Iida, K. Niwa, S. Kamiyama, and K. Ohkawa, “Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure,” Appl. Phys. Express 9, 111003 (2016).
[Crossref]

T. Sugiyama, D. Iida, T. Yasuda, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Extremely low-resistivity and high-carrier-concentration Si-doped Al0.05Ga0.95N,” Appl. Phys. Express 6, 121002 (2013).
[Crossref]

Ishitani, Y.

S. Okamoto, N. Saito, K. Ito, B. Ma, K. Morita, D. Iida, K. Ohkawa, and Y. Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers,” Appl. Phys. Lett. 116, 142107 (2020).
[Crossref]

Ito, K.

S. Okamoto, N. Saito, K. Ito, B. Ma, K. Morita, D. Iida, K. Ohkawa, and Y. Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers,” Appl. Phys. Lett. 116, 142107 (2020).
[Crossref]

Iwaya, M.

T. Sugiyama, D. Iida, T. Yasuda, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Extremely low-resistivity and high-carrier-concentration Si-doped Al0.05Ga0.95N,” Appl. Phys. Express 6, 121002 (2013).
[Crossref]

Jeong, H.-H.

Johar, M. A.

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

Jun, S.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Kamiyama, S.

D. Iida, K. Niwa, S. Kamiyama, and K. Ohkawa, “Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure,” Appl. Phys. Express 9, 111003 (2016).
[Crossref]

D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, and K. Ohkawa, “Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers,” J. Cryst. Growth 448, 105–108 (2016).
[Crossref]

T. Sugiyama, D. Iida, T. Yasuda, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Extremely low-resistivity and high-carrier-concentration Si-doped Al0.05Ga0.95N,” Appl. Phys. Express 6, 121002 (2013).
[Crossref]

Kang, C.-M.

Kang, J. H.

J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
[Crossref]

Kang, J.-H.

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

Karpov, S. Y.

S. S. Konoplev, K. A. Bulashevich, and S. Y. Karpov, “From large-size to micro-LEDs: scaling trends revealed by modeling,” Phys. Status Solidi A 215, 1700508 (2018).
[Crossref]

Kawakami, Y.

T. Ozaki, M. Funato, and Y. Kawakami, “Red-emitting InxGa1-xN/lnyGa1-yN quantum wells grown on lattice-matched InyGa1-yN/ScAlMgO4(0001) templates,” Appl. Phys. Express 12, 011007 (2019).
[Crossref]

Kearns, J. A.

M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Opt. Express 28, 5787–5793 (2020).
[Crossref]

M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019).
[Crossref]

Keller, S.

S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020).
[Crossref]

Kim, C.

Kim, C. H.

J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
[Crossref]

Kim, D.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Kim, J.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Opt. Express 28, 5787–5793 (2020).
[Crossref]

Kim, J. K.

D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012).
[Crossref]

Kim, M.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Kim, M.-H.

D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012).
[Crossref]

Kim, N.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Kim, S.

Kirilenko, P.

D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress,” Appl. Phys. Lett. 116, 162101 (2020).
[Crossref]

Z. Zhuang, D. Iida, P. Kirilenko, M. Velazquez-Rizo, and K. Ohkawa, “Optimal ITO transparent conductive layers for InGaN-based amber/red light-emitting diodes,” Opt. Express 28, 12311–12321 (2020).
[Crossref]

Kong, D.-J.

Kong, K.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Konoplev, S. S.

S. S. Konoplev, K. A. Bulashevich, and S. Y. Karpov, “From large-size to micro-LEDs: scaling trends revealed by modeling,” Phys. Status Solidi A 215, 1700508 (2018).
[Crossref]

Kou, J.

Kuo, H.-C.

Kuo, W.-H.

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

Lan, Y.-F.

Ledoux, O.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

Lee, C.

M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Opt. Express 28, 5787–5793 (2020).
[Crossref]

M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019).
[Crossref]

Lee, D.-S.

Lee, E.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Lee, J.-Y.

Lee, P.-T.

Lee, S.-Y.

Ley, R.

S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020).
[Crossref]

J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
[Crossref]

Lheureux, G.

Li, B.

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

Li, T.

M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019).
[Crossref]

Li, Y.-L.

Liang, K.-L.

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

Liang, S.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

Lin, C.-C.

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

S.-W. H. Chen, Y.-M. Huang, K. J. Singh, Y.-C. Hsu, F.-J. Liou, J. Song, J. Choi, P.-T. Lee, C.-C. Lin, Z. Chen, J. Han, T. Wu, and H.-C. Kuo, “Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist,” Photon. Res. 8, 630–636 (2020).
[Crossref]

Liou, F.-J.

Liu, B.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

T. Zhi, T. Tao, B. Liu, Z. Xie, P. Chen, and R. Zhang, “Reverse leakage current characteristics of GaN/InGaN multiple quantum-wells blue and green light-emitting diodes,” IEEE Photon. J. 8, 1601606 (2016).
[Crossref]

Liu, H.

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

Long, S.

Lu, S.

D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, and K. Ohkawa, “Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers,” J. Cryst. Growth 448, 105–108 (2016).
[Crossref]

Luo, B.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN,” J. Appl. Phys. 94, 3960–3965 (2003).
[Crossref]

Lynsky, C.

Ma, B.

S. Okamoto, N. Saito, K. Ito, B. Ma, K. Morita, D. Iida, K. Ohkawa, and Y. Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers,” Appl. Phys. Lett. 116, 142107 (2020).
[Crossref]

McKendry, J. J. D.

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012).
[Crossref]

Memon, M. H.

Meyaard, D. S.

D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012).
[Crossref]

Min, J.-H.

Mishra, U. K.

S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020).
[Crossref]

Montes, J.

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

Moon, J. H.

Moon, Y.-T.

Morita, K.

S. Okamoto, N. Saito, K. Ito, B. Ma, K. Morita, D. Iida, K. Ohkawa, and Y. Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers,” Appl. Phys. Lett. 116, 142107 (2020).
[Crossref]

Myers, D. J.

M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019).
[Crossref]

Najmi, M. A.

D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress,” Appl. Phys. Lett. 116, 162101 (2020).
[Crossref]

Nakamura, S.

J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
[Crossref]

S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020).
[Crossref]

M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Opt. Express 28, 5787–5793 (2020).
[Crossref]

M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019).
[Crossref]

Niwa, K.

D. Iida, K. Niwa, S. Kamiyama, and K. Ohkawa, “Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure,” Appl. Phys. Express 9, 111003 (2016).
[Crossref]

D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, and K. Ohkawa, “Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers,” J. Cryst. Growth 448, 105–108 (2016).
[Crossref]

Nunoue, S.

J. I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7, 071003 (2014).
[Crossref]

Oh, C.

Oh, J.-T.

Oh, S. J.

D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012).
[Crossref]

Ohkawa, K.

Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “606-nm InGaN amber micro-light-emitting diodes with an on-wafer external quantum efficiency of 0.56%,” IEEE Electron Device Letters 42, 1029–1032 (2021).
[Crossref]

Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “630-nm red InGaN micro-light-emitting diodes (<20 μm × 20 μm) exceeding 1 mW/mm2 for full-color micro-displays,” Photon. Res. 9, 1796–1802 (2021).
[Crossref]

Z. Zhuang, D. Iida, and K. Ohkawa, “Investigation of InGaN-based red/green micro-light-emitting diodes,” Opt. Lett. 46, 1912–1915 (2021).
[Crossref]

Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116, 173501 (2020).
[Crossref]

S. Okamoto, N. Saito, K. Ito, B. Ma, K. Morita, D. Iida, K. Ohkawa, and Y. Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers,” Appl. Phys. Lett. 116, 142107 (2020).
[Crossref]

Z. Zhuang, D. Iida, P. Kirilenko, M. Velazquez-Rizo, and K. Ohkawa, “Optimal ITO transparent conductive layers for InGaN-based amber/red light-emitting diodes,” Opt. Express 28, 12311–12321 (2020).
[Crossref]

D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress,” Appl. Phys. Lett. 116, 162101 (2020).
[Crossref]

D. Iida, K. Niwa, S. Kamiyama, and K. Ohkawa, “Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure,” Appl. Phys. Express 9, 111003 (2016).
[Crossref]

D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, and K. Ohkawa, “Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers,” J. Cryst. Growth 448, 105–108 (2016).
[Crossref]

K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, “740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE,” J. Cryst. Growth 343, 13–16 (2012).
[Crossref]

Okamoto, S.

S. Okamoto, N. Saito, K. Ito, B. Ma, K. Morita, D. Iida, K. Ohkawa, and Y. Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers,” Appl. Phys. Lett. 116, 142107 (2020).
[Crossref]

Ozaki, T.

T. Ozaki, M. Funato, and Y. Kawakami, “Red-emitting InxGa1-xN/lnyGa1-yN quantum wells grown on lattice-matched InyGa1-yN/ScAlMgO4(0001) templates,” Appl. Phys. Express 12, 011007 (2019).
[Crossref]

Papon, A. M.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

Parbrook, P. J.

P. J. Parbrook, B. Corbett, J. Han, T.-Y. Seong, and H. Amano, “Micro-light emitting diode: from chips to applications,” Laser Photon. Rev. 15, 2000133 (2021).
[Crossref]

Park, J.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Park, J. H.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Park, S.

Pasayat, S. S.

S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020).
[Crossref]

Pearton, S. J.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN,” J. Appl. Phys. 94, 3960–3965 (2003).
[Crossref]

Pillet, J. C.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

Polyakov, A. Y.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN,” J. Appl. Phys. 94, 3960–3965 (2003).
[Crossref]

Ponce, F. A.

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

Prades, J. D.

H. S. Wasisto, J. D. Prades, J. Gülink, and A. Waag, “Beyond solid-state lighting: miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs,” Appl. Phys. Rev. 6, 041315 (2019).
[Crossref]

Ren, F.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN,” J. Appl. Phys. 94, 3960–3965 (2003).
[Crossref]

Ren, Z.

Rozhavskaya, M.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

Ryu, S.-W.

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

Saito, N.

S. Okamoto, N. Saito, K. Ito, B. Ma, K. Morita, D. Iida, K. Ohkawa, and Y. Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers,” Appl. Phys. Lett. 116, 142107 (2020).
[Crossref]

Saito, S.

J. I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7, 071003 (2014).
[Crossref]

Sakamoto, M.

K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, “740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE,” J. Cryst. Growth 343, 13–16 (2012).
[Crossref]

Samuel, B.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

Sang, Y.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

Schubert, E. F.

D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012).
[Crossref]

Seo, D.-J.

Seong, T.-Y.

Shan, Q.

D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012).
[Crossref]

Shao, H.

Shen, C.-C.

Shim, J.-I.

Shim, J.-P.

Shin, J.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Singh, K. J.

Sinha, S.

S. Sinha, F. G. Tarntair, C. H. Ho, Y. R. Wu, and R. H. Horng, “Investigation of electrical and optical properties of AlGaInP red vertical micro-light-emitting diodes with Cu/Invar/Cu metal substrates,” IEEE Trans. Electron Devices 68, 2818–2822 (2021).
[Crossref]

Smirnov, N. B.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN,” J. Appl. Phys. 94, 3960–3965 (2003).
[Crossref]

Smith, J. M.

J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
[Crossref]

M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Opt. Express 28, 5787–5793 (2020).
[Crossref]

Sone, C.

D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012).
[Crossref]

Song, J.

Song, J.-O.

Song, K. Y.

Sotta, D.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

Speck, J. S.

M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Opt. Express 28, 5787–5793 (2020).
[Crossref]

J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
[Crossref]

M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019).
[Crossref]

Sugiyama, T.

T. Sugiyama, D. Iida, T. Yasuda, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Extremely low-resistivity and high-carrier-concentration Si-doped Al0.05Ga0.95N,” Appl. Phys. Express 6, 121002 (2013).
[Crossref]

Sun, H.

Takeuchi, T.

T. Sugiyama, D. Iida, T. Yasuda, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Extremely low-resistivity and high-carrier-concentration Si-doped Al0.05Ga0.95N,” Appl. Phys. Express 6, 121002 (2013).
[Crossref]

Tan, G.

Tao, T.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

T. Zhi, T. Tao, B. Liu, Z. Xie, P. Chen, and R. Zhang, “Reverse leakage current characteristics of GaN/InGaN multiple quantum-wells blue and green light-emitting diodes,” IEEE Photon. J. 8, 1601606 (2016).
[Crossref]

Tarntair, F. G.

S. Sinha, F. G. Tarntair, C. H. Ho, Y. R. Wu, and R. H. Horng, “Investigation of electrical and optical properties of AlGaInP red vertical micro-light-emitting diodes with Cu/Invar/Cu metal substrates,” IEEE Trans. Electron Devices 68, 2818–2822 (2021).
[Crossref]

Tian, K.

Tian, M.

Tian, P. F.

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012).
[Crossref]

Vaufrey, D.

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

Velazquez-Rizo, M.

Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “606-nm InGaN amber micro-light-emitting diodes with an on-wafer external quantum efficiency of 0.56%,” IEEE Electron Device Letters 42, 1029–1032 (2021).
[Crossref]

Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “630-nm red InGaN micro-light-emitting diodes (<20 μm × 20 μm) exceeding 1 mW/mm2 for full-color micro-displays,” Photon. Res. 9, 1796–1802 (2021).
[Crossref]

Z. Zhuang, D. Iida, P. Kirilenko, M. Velazquez-Rizo, and K. Ohkawa, “Optimal ITO transparent conductive layers for InGaN-based amber/red light-emitting diodes,” Opt. Express 28, 12311–12321 (2020).
[Crossref]

D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress,” Appl. Phys. Lett. 116, 162101 (2020).
[Crossref]

Waag, A.

H. S. Wasisto, J. D. Prades, J. Gülink, and A. Waag, “Beyond solid-state lighting: miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs,” Appl. Phys. Rev. 6, 041315 (2019).
[Crossref]

Wang, D.

Wang, X.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

Wasisto, H. S.

H. S. Wasisto, J. D. Prades, J. Gülink, and A. Waag, “Beyond solid-state lighting: miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs,” Appl. Phys. Rev. 6, 041315 (2019).
[Crossref]

Watanabe, T.

K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, “740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE,” J. Cryst. Growth 343, 13–16 (2012).
[Crossref]

Watson, I. M.

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012).
[Crossref]

Wong, M. S.

M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Opt. Express 28, 5787–5793 (2020).
[Crossref]

S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020).
[Crossref]

J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
[Crossref]

M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019).
[Crossref]

Wu, S.-T.

Wu, T.

Wu, Y. R.

S. Sinha, F. G. Tarntair, C. H. Ho, Y. R. Wu, and R. H. Horng, “Investigation of electrical and optical properties of AlGaInP red vertical micro-light-emitting diodes with Cu/Invar/Cu metal substrates,” IEEE Trans. Electron Devices 68, 2818–2822 (2021).
[Crossref]

Xie, Z.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

T. Zhi, T. Tao, B. Liu, Z. Xie, P. Chen, and R. Zhang, “Reverse leakage current characteristics of GaN/InGaN multiple quantum-wells blue and green light-emitting diodes,” IEEE Photon. J. 8, 1601606 (2016).
[Crossref]

Xiu, X.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

Xu, F.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

Yadavalli, K.

K. Yadavalli, C.-L. Chuang, and H. El-Ghoroury, “Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications,” Proc. SPIE 11310, 113100Z (2020).
[Crossref]

Yan, S.

Z. Chen, S. Yan, and C. Danesh, “MicroLED technologies and applications: characteristics, fabrication, progress, and challenges,” J. Phys. D 54, 123001 (2021).
[Crossref]

Yan, Y.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

Yang, C.

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

Yang, T.-H.

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

Yasuda, T.

T. Sugiyama, D. Iida, T. Yasuda, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Extremely low-resistivity and high-carrier-concentration Si-doped Al0.05Ga0.95N,” Appl. Phys. Express 6, 121002 (2013).
[Crossref]

Yoon, E.

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Yu, H.

Yu, J.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

Zavada, J. M.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN,” J. Appl. Phys. 94, 3960–3965 (2003).
[Crossref]

Zhang, G. Y.

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012).
[Crossref]

Zhang, H.

Zhang, R.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

T. Zhi, T. Tao, B. Liu, Z. Xie, P. Chen, and R. Zhang, “Reverse leakage current characteristics of GaN/InGaN multiple quantum-wells blue and green light-emitting diodes,” IEEE Photon. J. 8, 1601606 (2016).
[Crossref]

Zhang, Y.

Zhang, Z.-H.

Zhao, T.

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

Zhao, Y.

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

Zheng, Y.

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

Zhi, T.

T. Zhi, T. Tao, B. Liu, Z. Xie, P. Chen, and R. Zhang, “Reverse leakage current characteristics of GaN/InGaN multiple quantum-wells blue and green light-emitting diodes,” IEEE Photon. J. 8, 1601606 (2016).
[Crossref]

Zhou, J.

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

Zhuang, Z.

Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “606-nm InGaN amber micro-light-emitting diodes with an on-wafer external quantum efficiency of 0.56%,” IEEE Electron Device Letters 42, 1029–1032 (2021).
[Crossref]

Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “630-nm red InGaN micro-light-emitting diodes (<20 μm × 20 μm) exceeding 1 mW/mm2 for full-color micro-displays,” Photon. Res. 9, 1796–1802 (2021).
[Crossref]

Z. Zhuang, D. Iida, and K. Ohkawa, “Investigation of InGaN-based red/green micro-light-emitting diodes,” Opt. Lett. 46, 1912–1915 (2021).
[Crossref]

Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116, 173501 (2020).
[Crossref]

Z. Zhuang, D. Iida, P. Kirilenko, M. Velazquez-Rizo, and K. Ohkawa, “Optimal ITO transparent conductive layers for InGaN-based amber/red light-emitting diodes,” Opt. Express 28, 12311–12321 (2020).
[Crossref]

D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress,” Appl. Phys. Lett. 116, 162101 (2020).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J.-H. Kang, B. Li, T. Zhao, M. A. Johar, C.-C. Lin, Y.-H. Fang, W.-H. Kuo, K.-L. Liang, S. Hu, S.-W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890–30895 (2020).
[Crossref]

Appl. Phys. Express (7)

H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Montes, T.-H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, “Implantation-and etching-free high voltage vertical GaN p–n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing,” Appl. Phys. Express 12, 051015 (2019).
[Crossref]

J. I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7, 071003 (2014).
[Crossref]

M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004 (2019).
[Crossref]

D. Iida, K. Niwa, S. Kamiyama, and K. Ohkawa, “Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure,” Appl. Phys. Express 9, 111003 (2016).
[Crossref]

T. Sugiyama, D. Iida, T. Yasuda, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Extremely low-resistivity and high-carrier-concentration Si-doped Al0.05Ga0.95N,” Appl. Phys. Express 6, 121002 (2013).
[Crossref]

T. Ozaki, M. Funato, and Y. Kawakami, “Red-emitting InxGa1-xN/lnyGa1-yN quantum wells grown on lattice-matched InyGa1-yN/ScAlMgO4(0001) templates,” Appl. Phys. Express 12, 011007 (2019).
[Crossref]

S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, and U. K. Mishra, “Demonstration of ultra-small <10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays,” Appl. Phys. Express 14, 011004 (2020).
[Crossref]

Appl. Phys. Lett. (6)

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. D. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101, 231110 (2012).
[Crossref]

D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress,” Appl. Phys. Lett. 116, 162101 (2020).
[Crossref]

J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter,” Appl. Phys. Lett. 116, 071102 (2020).
[Crossref]

S. Okamoto, N. Saito, K. Ito, B. Ma, K. Morita, D. Iida, K. Ohkawa, and Y. Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers,” Appl. Phys. Lett. 116, 142107 (2020).
[Crossref]

D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100, 081106 (2012).
[Crossref]

Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116, 173501 (2020).
[Crossref]

Appl. Phys. Rev. (1)

H. S. Wasisto, J. D. Prades, J. Gülink, and A. Waag, “Beyond solid-state lighting: miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs,” Appl. Phys. Rev. 6, 041315 (2019).
[Crossref]

Crystals (1)

J. Yu, T. Tao, B. Liu, F. Xu, Y. Zheng, X. Wang, Y. Sang, Y. Yan, Z. Xie, S. Liang, D. Chen, P. Chen, X. Xiu, Y. Zheng, and R. Zhang, “Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs,” Crystals 11, 403 (2021).
[Crossref]

IEEE Electron Device Letters (1)

Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “606-nm InGaN amber micro-light-emitting diodes with an on-wafer external quantum efficiency of 0.56%,” IEEE Electron Device Letters 42, 1029–1032 (2021).
[Crossref]

IEEE Photon. J. (1)

T. Zhi, T. Tao, B. Liu, Z. Xie, P. Chen, and R. Zhang, “Reverse leakage current characteristics of GaN/InGaN multiple quantum-wells blue and green light-emitting diodes,” IEEE Photon. J. 8, 1601606 (2016).
[Crossref]

IEEE Trans. Electron Devices (1)

S. Sinha, F. G. Tarntair, C. H. Ho, Y. R. Wu, and R. H. Horng, “Investigation of electrical and optical properties of AlGaInP red vertical micro-light-emitting diodes with Cu/Invar/Cu metal substrates,” IEEE Trans. Electron Devices 68, 2818–2822 (2021).
[Crossref]

J. Appl. Phys. (2)

A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. M. Papon, B. Samuel, B. B. Bakir, D. Vaufrey, J. C. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, and D. Sotta, “Full InGaN red light emitting diodes,” J. Appl. Phys. 128, 135704 (2020).
[Crossref]

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN,” J. Appl. Phys. 94, 3960–3965 (2003).
[Crossref]

J. Cryst. Growth (2)

D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, and K. Ohkawa, “Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers,” J. Cryst. Growth 448, 105–108 (2016).
[Crossref]

K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, “740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE,” J. Cryst. Growth 343, 13–16 (2012).
[Crossref]

J. Phys. D (2)

Z. Chen, S. Yan, and C. Danesh, “MicroLED technologies and applications: characteristics, fabrication, progress, and challenges,” J. Phys. D 54, 123001 (2021).
[Crossref]

B. Damilano and B. Gil, “Yellow-red emission from (Ga,In)N heterostructures,” J. Phys. D 48, 403001 (2015).
[Crossref]

Laser Photon. Rev. (1)

P. J. Parbrook, B. Corbett, J. Han, T.-Y. Seong, and H. Amano, “Micro-light emitting diode: from chips to applications,” Laser Photon. Rev. 15, 2000133 (2021).
[Crossref]

Nat. Photonics (1)

J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, and S. Hwang, “Electrically driven mid-submicrometre pixilation of InGaN micro-light-emitting diode displays for augmented-reality glasses,” Nat. Photonics 15, 449–455 (2021).
[Crossref]

Opt. Express (6)

Z. Zhuang, D. Iida, P. Kirilenko, M. Velazquez-Rizo, and K. Ohkawa, “Optimal ITO transparent conductive layers for InGaN-based amber/red light-emitting diodes,” Opt. Express 28, 12311–12321 (2020).
[Crossref]

F. Gou, E.-L. Hsiang, G. Tan, P.-T. Chou, Y.-L. Li, Y.-F. Lan, and S.-T. Wu, “Angular color shift of micro-LED displays,” Opt. Express 27, A746–A757 (2019).
[Crossref]

J.-T. Oh, S.-Y. Lee, Y.-T. Moon, J. H. Moon, S. Park, K. Y. Hong, K. Y. Song, C. Oh, J.-I. Shim, H.-H. Jeong, J.-O. Song, H. Amano, and T.-Y. Seong, “Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures,” Opt. Express 26, 11194–11200 (2018).
[Crossref]

M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Opt. Express 28, 5787–5793 (2020).
[Crossref]

J. Kou, C.-C. Shen, H. Shao, J. Che, X. Hou, C. Chu, K. Tian, Y. Zhang, Z.-H. Zhang, and H.-C. Kuo, “Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes,” Opt. Express 27, A643–A653 (2019).
[Crossref]

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

Opt. Lett. (2)

Photon. Res. (2)

Phys. Status Solidi A (1)

S. S. Konoplev, K. A. Bulashevich, and S. Y. Karpov, “From large-size to micro-LEDs: scaling trends revealed by modeling,” Phys. Status Solidi A 215, 1700508 (2018).
[Crossref]

Proc. SPIE (1)

K. Yadavalli, C.-L. Chuang, and H. El-Ghoroury, “Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications,” Proc. SPIE 11310, 113100Z (2020).
[Crossref]

Other (1)

Y. Chen, “Plessey achieves native red InGaN LEDs on silicon for full color micro LED displays,” https://www.ledinside.com/news/2019/12/plessey_ingan_red_led_microled (2019).

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematics of fabrication processes for InGaN-based RGB monochromatic μLEDs by pixilation of conductive p-GaN.
Fig. 2.
Fig. 2. |I|V curves of InGaN-based RGB μLEDs and the blue LED with passivated p-GaN.
Fig. 3.
Fig. 3. (a) EL spectra. (b) FWHM of RGB monochromatic μLEDs at 11.5 to 115A/cm2.
Fig. 4.
Fig. 4. On-wafer LOP density of RGB monochromatic μLEDs at different current densities.
Fig. 5.
Fig. 5. (a)−(c) EL emission images of RGB monochromatic μLED arrays at 115A/cm2. The scale bar in the inset is 50 μm. (d) CIE 1931 diagram of RGB monochromatic μLED arrays at 11.5 and 115A/cm2.

Tables (1)

Tables Icon

Table 1. Comparison of LOP Density for InGaN-Based Red μLEDs