Abstract

Sensitive X-ray detection is needed in diverse areas motivated by a common desire to reduce radiation dose. Cold cathode X-ray detectors operating with a photoelectron multiplication mechanism called electron bombardment induced photoconductivity (EBIPC) have emerged as promising candidates for low-dose X-ray detection. Herein, the cold cathode detectors formed by ZnO nanowire field emitters and β-Ga2O3 photoconductor targets were proposed for sensitive direct-conversion X-ray detection. The charge carrier transport mechanism of EBIPC effect in X-ray detectors was investigated to achieve a high internal gain (2.9×102) and high detection sensitivity (3.0×103μCGyair1cm2) for a 6 keV X-ray at the electric field of 22.5Vμm1. Furthermore, the proposed X-ray detectors showed the features of fast response time (40 ms), long-term stability (0.6% for 1 h), and low detection limit (0.28mGyairs1), suggesting that the direct-conversion cold cathode X-ray detectors are ideal candidates for low-energy X-ray detecting and imaging applications.

© 2021 Chinese Laser Press

1. INTRODUCTION

X-ray has the ability to interact with electrons in the atoms to ionize targeted materials and shows a good dose-dependent feature [1,2]. Therefore, X-ray detection is of great significance for medical imaging, security screening, industrial nondestructive inspection, scientific research, etc. [35]. To meet these applications, high detection sensitivity is crucial for achieving high-contrast images and reducing radiation-related health risks [6,7].

Typically, two different methods are adopted for X-ray detection. The dominant indirect-conversion X-ray detectors use phosphors or scintillators to transform an X-ray into visible light so the spatial resolution and conversion efficiency are limited [8,9]. In contrast, the direct-conversion X-ray detectors use a semiconductor layer to convert an X-ray directly into electric signals and show the advantages of high spatial resolution, fast response time, and wide linear dynamic range [10,11]. However, the commercial a-Se photoconductor used in direct-conversion X-ray detectors has the drawback of low X-ray absorption coefficient for general radiology applications, resulting in a limited sensitivity of 22.5μCGyair1cm2 for 20–60 keV X-ray [4,5,11]. In addition, the HgI2 photoconductors are widely applied in X-ray detection owing to the heavy atoms, low electron-hole pair (EHP) production energy (5 eV), and high charge carrier mobility lifetime (μτ) product value (105 to 103cm2V1); further, the detectors exhibit a high sensitivity of 2.2×103μCGyair1cm2 for 26–72 keV X-ray [12,13]. However, the poor device compatibility and thermal stability of HgI2 photoconductors must be addressed before their practical application [14]. Recently, perovskite photoconductors prepared by solution process were introduced and exhibited a high X-ray absorption coefficient that enabled the low-dose X-ray detection [5,15]. The sensitivity of 1.1×104μCGyair1cm2 (100 keV X-ray) at 0.24Vμm1 and the response time of 10ms were reported in polycrystalline CH3NH3PbI3-based X-ray detectors consisting of 1428×1428pixels with a pixel pitch of 70 μm [5]. However, the ion migration and long-term operation stability problems of perovskite X-ray detectors still limit detector performance [16].

In addition, the X-ray detection sensitivity can be tremendously improved using the photoelectron multiplication mechanism. There are three main photoelectron multiplication mechanisms for realizing highly sensitive X-ray detection: photoemission and secondary emission in vacuum photomultiplier tubes (PMTs) [17], avalanche multiplication mechanism in avalanche photodiodes (APDs) and pixelated silicon photomultipliers (SiPMs) [18,19], and photoconductive gain in X-ray detectors with electronic injection at high electric field [20]. However, commercial PMTs have a bulky size and high cost; the APDs and SiPMs have drawbacks of temperature-dependent gain and low X-ray absorption coefficient due to material limitation; the X-ray detectors with photoconductor gain suffer from the issue of a current runaway effect that occurs at a high electric field so the gain is limited. Therefore, it is challenging to develop a flat-panel X-ray detector with simple preparation method, high-stability, high X-ray absorption coefficient, and high internal gain.

In order to develop a flat-panel X-ray detector for highly sensitive and low-dose X-ray detection, vacuum cold cathode flat-panel X-ray detectors have been fabricated successfully in recent years and achieve high internal gain [21,22]. The detectors consist of a-Se high-gain avalanche rushing photoconductors (HARPs) for photoelectric conversion and Spindt-type field emission arrays (FEAs) for signal readout [21]. Those vacuum X-ray detectors achieved a pixel number of 640×480, a spatial resolution of 20 μm, and an avalanche multiplication factor of 200 [22]. However, the realized X-ray sensitivity and effective device area were limited due to material limitation of HARPs and complicated fabrication method of Spindt-type FEAs, making those X-ray detectors far from actual applications. Recently, the vacuum cold cathode flat-panel X-ray detectors consisting of ZnS photoconductor and ZnO nanowire (NW) field emitters with a photoelectron multiplication mechanism called electron-bombardment-induced photoconductivity (EBIPC) were proposed to achieve large-area (4.8cm×8cm) and high-gain (104) indirect-conversion X-ray detection [23,24]. Nevertheless, the direct-conversion vacuum cold cathode X-ray detectors operating with an EBIPC mechanism have not been realized, and the corresponding charge transport mechanism requires further investigation.

Here, the direct-conversion vacuum cold cathode X-ray detectors consisting of ZnO NW field emitters and β-Ga2O3 photoconductor targets were proposed to realize sensitive and low-dose X-ray detection. The ZnO NW field emitters show advantages of simple preparation method, good controllability, large area, and excellent field emission performance [25]. The β-Ga2O3 photoconductors have a wide bandgap of 4.9eV, a breakdown voltage of 8MVcm1, a relatively high density (6.44gcm3), and a high absorption coefficient (17.2mm1 for 20 keV X-ray) for low-energy X-ray [26]. Those metrics meet the requirement of vacuum cold cathode X-ray detectors with a low dark current and an effective EBIPC effect for achieving high internal gain. In addition, the charge carrier transport mechanism of EBIPC effect in X-ray detectors was investigated to achieve sensitive X-ray detection and low detection limit. These results demonstrate that the direct-conversion vacuum cold cathode X-ray detectors with an EBIPC mechanism can potentially be applied in various X-ray detecting applications.

2. RESULTS AND DISCUSSION

Conventional direct-conversion X-ray detectors with thin film transistor (TFT) readout are illustrated in Fig. 1(a) [4]. The EHPs are generated in a photoconductor through the absorption of X-ray photons. Nowadays, a-Se photoconductors used in commercial X-ray detectors have drawbacks of low X-ray absorption efficiency and charge collection efficiency. The developing X-ray detectors based on CdTe [27], PbO [28], HgI2 [12], and perovskite [1] photoconductors have high X-ray absorption coefficient and low EHP production energy to generate adequate EHPs, resulting in a significant improvement of X-ray detection sensitivity. Nevertheless, the reported X-ray detectors lacked sufficient internal gain to overcome the recombination or trapping of EHPs. The architectures of 3D photosensitive TFT based X-ray detectors were proposed to achieve high internal gain of 104; however, those devices raised fabrication complexity and cost [29].

 figure: Fig. 1.

Fig. 1. Comparison of conceptual design of X-ray detectors and corresponding X-ray response mechanism. (a) Conventional X-ray detectors with TFT readout. (b) Proposed X-ray detectors with vacuum FEA readout.

Download Full Size | PPT Slide | PDF

The proposed device structure formed by gated FEAs and photoconductor target for achieving low dose X-ray imaging is illustrated in Fig. 1(b). These vacuum cold cathode X-ray detectors with high-resolution imaging (20 μm) and high-radiation tolerance (1MGyairγ-ray) have been demonstrated [30]. In addition, the EHPs in photoconductor can be modulated by both incident photons and accelerated electron emission from a cold cathode, leading to high internal gain. Owing to such high gain effect, the ability of vacuum cold cathode photodetectors to detect ultraweak visible light (100nWcm2) has been well demonstrated [23]. Therefore, the direct-conversion X-ray detection with high gain can be expected by using vacuum cold cathode detectors. The corresponding X-ray response process of designed X-ray detectors can be divided into four steps: (1) EHPs are generated by incident X-ray photons in the photoconductor layer; (2) the generated EHPs drift across the photoconductor under the electric field; (3) the conductivity of the photoconductor is decreased and causes the electron emission of a cold cathode; (4) the photoconductor is bombarded by the field emission electrons of a cold cathode, and abundant EHPs are generated by the EBIPC effect. The EBIPC effect and field emission of a cold cathode form a positive feedback process until reaching a balance when the voltage dropped in the photoconductor increases at high current. Through this high gain mechanism, internal signal amplification and a highly sensitive X-ray detection can be realized in vacuum cold cathode X-ray detectors. More importantly, the vacuum gap in the proposed X-ray detector can realize a low dark current at high electric field, enabling a low-dose X-ray detection.

Our device adopts a vacuum photodiode formed by a Ga2O3 photoconductor and ZnO NW field emitters to realize the direct-conversion X-ray detection with an EBIPC mechanism, as illustrated in Fig. 2(a). Figure 2(b) shows an actual photograph of the X-ray detector. The generation rate of EHPs inside the Ga2O3 photoconductor caused by the EBIPC effect strongly depends on the electron beam accelerated voltage and accelerated current emission from the ZnO NWs. Therefore, the photoelectron multiplication factor can be tuned in an X-ray detector using cold cathodes made in forms of addressable FEAs [25].

 figure: Fig. 2.

Fig. 2. Implementation and characterizations of the X-ray detectors. (a) Schematic layout of the vacuum cold cathode X-ray detector. (b) Actual picture of the fabricated X-ray detector. (c) Arrays of patterned ZnO NWs (top image) and cross-sectional view of ZnO NWs (bottom image). (d) Field emission J-E curve of the ZnO NWs with inset showing the corresponding F-N curve. (e) Typical XRD pattern of β-Ga2O3 bulk photoconductor. (f) Total mass attenuation of X-rays in β-Ga2O3 bulk photoconductor showing the contribution from Compton scattering, photoelectric effect, and pair production and that of a-Se and CsPbBr3 photoconductors.

Download Full Size | PPT Slide | PDF

In addition, the charge collection efficiency of the X-ray detector is related to the field emission characteristics of ZnO NWs and the performance metrics of Ga2O3 photoconductors. The top image of Fig. 2(c) shows the actual arrays of ZnO NWs grown on an indium tin oxide (ITO)-coated glass substrate; the bottom image of Fig. 2(c) shows the cross-sectional view of ZnO NWs. The ZnO NWs grown directly on the substrate had a distribution density of 5×108cm2, a height of 3–4 μm, and a tip diameter of 20nm. The grown ZnO NWs are reported to have a uniform morphology and are easy to be integrated in gated FEAs, which is beneficial for X-ray imaging applications [25]. Figure 2(d) shows the field emission current density-electric field (J-E) characteristics of ZnO NWs. The grown ZnO NWs with a turn-on field (which corresponds to a current density of 10μAcm2) of 4.4Vμm1 showed excellent field emission characteristics compared with previously reported ZnO NWs [31]. The Fowler–Nordheim (F-N) plot [shown in the inset of Fig. 2(d)] was approximately a straight line, indicating that the field emission of ZnO NWs followed the classic vacuum electron tunneling mechanism [32].

In order to obtain the crystallinity of Ga2O3 photoconductors, the typical X-ray diffraction (XRD) pattern was measured [Fig. 2(e)]. The peaks fitted well with the monoclinic Ga2O3 Joint Committee on Power Diffraction Standards (JCPDS) card No. 43-1012 with the lattice constants of a=12.23, b=3.04, and c=5.8. The peaks located at 18.1°, 37.7°, and 58.5° correspond to the (-201), (311), and (-603) planes. The corresponding full width at half maximum of the XRD peaks of current Ga2O3 was 576 arcsec, which was nearly the same as that of reported Ga2O3 crystal (540 arcsec) prepared by metal–organic chemical vapor deposition method [33]. The XRD results demonstrate the high crystal quality of the Ga2O3 photoconductor, which is beneficial for realizing low dark current, fast response time, and high charge collection efficiency. Figure 2(f) shows the X-ray mass attenuation coefficients of different photoconductors [obtained from the National Institute of Standards and Technology (NIST) database] [34]. On the one hand, the photoelectric effect dominates the total mass attenuation coefficient of the Ga2O3 photoconductor throughout the low-energy X-ray range; on the other hand, the total mass attenuation coefficient of the Ga2O3 photoconductor is close to that of a-Se and CsPbBr3 photoconductors throughout the low-energy X-ray range (<50keV). Those metrics demonstrate that the Ga2O3 photoconductor is an ideal material for low-energy X-ray detection.

In addition to exploring the charge transport mechanism of the detector to achieve maximum X-ray detection sensitivity, the dark current and photocurrent were measured at low and high electric fields [Figs. 3(a) and 3(b)]. The nonzero dark current and photocurrent at zero electric field shown in Fig. 3(a) might be caused by the trapped electron in the Ga2O3 crystal due to the electron bombardment. The negatively charged Ga2O3 crystal would release electrons forming a reversed leakage current when we repetitively measured the device. The current-electric field (I-E) characteristics of X-ray detector shown in Fig. 3(b) exhibited three processes: (1) the device current increased gradually until reaching saturation at 1.5Vμm1; (2) the device current increased slightly at the electric field between 1.5 and 4Vμm1; (3) the device current increased dramatically after 4Vμm1. In process (3), the device current (I) can be described using the F-N theory [32]:

I=AV2Eφt2(y)exp(BEφ32Vv(y)),
where A and B are constants, V is the equivalent voltage in the tip of ZnO NWs, Eϕ is the work function of ZnO NWs, and t(y) and v(y) are the Nordheim elliptic functions. Figure 3(c) shows the F-N plots of dark current and photocurrent in process (3), suggesting that the device current followed the classic electron tunneling mechanism first and then exhibited a saturation feature due to the increasing voltage drop in Ga2O3 photoconductor induced by the high current [23].
 figure: Fig. 3.

Fig. 3. Detection performance and operation principle of the proposed X-ray detector. (a), (b) Dark current and photocurrent of the X-ray detector at low and high electric fields. (c) F-N curves of the dark current and photocurrent. (d)–(f) Schematic of the operation principle of X-ray detector at different applied electric fields. (g) The detection sensitivity versus applied electric field curves of the X-ray detector. (h) Internal gain versus electric field curve of the detector under X-ray illumination with the X-ray tube voltage of 6 kV and the X-ray tube current of 0.6 mA. (i) The detection sensitivity versus X-ray tube voltage curves of the X-ray detector with inset showing the theoretical determination of detector sensitivity as a function of X-ray energy. (The experimental value was measured using a DC X-ray tube without beam filters.)

Download Full Size | PPT Slide | PDF

The operation principle of the X-ray detector is illustrated to further demonstrate the I-E characteristics and X-ray response process at different electric fields. As shown in Figs. 3(d)–3(f), the charge transport mechanism of the X-ray detector can be divided into three regions. In Region I, the internal photoelectric effect of X-ray photons in the Ga2O3 photoconductor dominates at the small electric field. The collected charge increases before reaching saturation at the saturated electric field (Esat), owing to the limited photogenerated carriers in the Ga2O3 photoconductor and high vacuum barrier of the ZnO NWs. In Region II, the charges are injected from the electrodes when the charge recombination lifetime is larger than the charge transit time at a higher electric field, which triggers a photoconductive gain [20]. The device current increases slightly in this region, but the total collected charge is still limited by the large vacuum barrier of ZnO NWs. In Region III, the EBIPC effect occurs when the Ga2O3 photoconductor is bombarded by the high-energy accelerated electrons emission from ZnO NWs at a high electric field (Eb). Under the EBIPC effect, the conductivity of a Ga2O3 photoconductor becomes smaller, and the vacuum barrier of ZnO NWs becomes lower and narrower, making the photocurrent increase dramatically; further, the collected photogenerated charge is amplified eventually.

Under the EBIPC mechanism, the X-ray detector achieved high detection sensitivity. Calculated from the X-ray responsive J-E curves of the metal-semiconductor-metal-structured Ga2O3 X-ray detector, the resistivity of the Ga2O3 photoconductor decreased from 8.6×1011Ωcm to 3.4×1011Ωcm after the illumination of 50 keV X-ray. According to the field emission J-E curve of the ZnO NWs [Fig. 2(d)] and X-ray responsive J-E curve of the proposed vacuum cold cathode X-ray detector, the bias variation of ZnO NWs was 0.08Vμm1 after the illumination of 50 keV X-ray, making resistivity of the Ga2O3 photoconductor become 6.2×1010Ωcm, owing to the bombardment of accelerated electrons with higher energy. Figure 3(g) shows the X-ray detection sensitivities as a function of an applied electric field under different X-ray tube voltages. The sensitivity increased quickly with the increasing applied electric field of the detector owing to the high generation rates of EHPs in Ga2O3 photoconductor at high electric field, and then the sensitivity saturated at a higher applied electric field due to a balance between the accelerated voltage of field emission and bias voltage of the Ga2O3 photoconductor. The maximum sensitivity of the X-ray detector was 3.0×103μCGyair1cm2 (the applied electric field was 22.5Vμm1) under the X-ray tube voltage of 6 kV. The realized X-ray detection sensitivity was much higher than that of the metal-semiconductor-metal-structured Ga2O3 X-ray detector with the maximum sensitivity of 63μCGyair1cm2 (6 keV X-ray), exhibiting the high internal gain of vacuum cold cathode X-ray detectors with EBIPC mechanism. The internal gain (G) of the X-ray detector can be described as [10]

G=IRIP=IRφβe,
where IR and IP=φβe stand for the experimental current and theoretical photogenerated current of detector under X-ray illumination, in which φ=εDmsEph is the photon absorption rate and β=EphW± is the number of carriers excited by an X-ray photon. Notably, e is an electronic charge, ε is the fraction of absorbed photons [this value is nearly 100% in 0.68 mm Ga2O3 photoconductor for low-energy (1–20 keV) X-ray calculated from the NIST database] [34], D is the X-ray dose rate, ms is the mass of Ga2O3 photoconductor, Eph is the X-ray energy, and W±=2.7Eg+Ephonon is the EHP production energy [11], where Eg=4.9eV is the bandgap of the Ga2O3 photoconductor and Ephonon=29meV is the phonon energy of Ga2O3 photoconductor [35]. The calculated internal gain of an X-ray detector up to 2.9×102 at 22.5Vμm1 electric field is achieved [Fig. 3(h)], demonstrating that the EBIPC mechanism is promising for use in sensitive X-ray detectors with high internal gain.

Figure 3(i) shows the X-ray detection sensitivity under different X-ray tube voltages measured by a DC X-ray tube without beam filters. The sensitivity decreased quickly from 1.2×103 to 0.3μCGyair1cm2 when the X-ray tube voltage increased from 6 to 50 kV at 10Vμm1, indicating that the Ga2O3-based vacuum cold cathode X-ray detectors are suitable for low-energy X-ray detection owing to the high absorption efficiency of the Ga2O3 photoconductor for low-energy X-ray. The detection sensitivity (S) can be theoretically described as [36,37]

S=GCeΨαen(1exp(αT))W±,
where C is the charge collection efficiency, Ψ is the incident radiant energy flux density, αen is the energy absorption coefficient of Ga2O3, α is the linear attenuation coefficient of Ga2O3, and T is the thickness of Ga2O3. According to Eq. (3), the sensitivity is mainly dominated by the energy absorption coefficient and linear attenuation coefficient of the Ga2O3 photoconductor under different X-ray energies. The simulated detection sensitivity as a function of X-ray energy using Eq. (3) is shown in the inset of Fig. 3(i), showing good agreement with the experimental results.

Typical temporal responses of the X-ray detectors at the electric field of 5Vμm1 were tested with X-ray square-waves (the dose rate is 17.9mGyairs1), as displayed in Figs. 4(a)–4(c). The fluctuation (F) of the photocurrent is calculated using F=(I2I1)/I1, where I1 is the average photocurrent of the first pulse and I2 is the average photocurrent of the last pulse. The fluctuations in the photocurrent were 0.4% over 170 s [Fig. 4(a)] and 0.6% over a 1 h period [Fig. 4(c)], indicating that the proposed X-ray detectors have an excellent stability owing to the high crystal quality of the Ga2O3 photoconductor and current limitation of the vacuum gap. The rise and fall times (the time for the transit between 10% and 90% of the photocurrent) were calculated to be 140 and 40 ms, respectively. The response time of proposed X-ray detectors is much faster than that of the previously reported Ga2O3-based X-ray detector (1.8 s) [38], which is mainly caused by the fast charge transport speed in the high-crystallinity Ga2O3 photoconductor and vacuum gap. The realized response speed is fully adequate for radiography applications requiring a readout time of less than 5 s [1]. In addition, Fig. 4(d) shows the signal-to-noise ratios (SNRs) [39] under different X-ray dose rates at the electric field of 5Vμm1; the inset of Fig. 4(d) shows the corresponding temporal responses under different X-ray dose rates. The SNR of X-ray detector increased from 0.9 to 64.8 when the radiation dose rate increased from 1.2×103 to 38.1mGyairs1. The SNR showed a saturation feature under the illumination of a low-dose X-ray (<0.1mGyairs1) due to the measured current noise [as shown in the inset of Fig. 4(d)], which could be increased by adopting more sophisticated electrostatic shielding and cable. The corresponding detection limit (according to the IUPAC standard of SNR of 3) [39] was as low as 0.28mGyairs1, exhibiting a large improvement compared with that of the reported Ga2O3 based X-ray detector (140mGyairs1) [38].

 figure: Fig. 4.

Fig. 4. Temporal response of the X-ray detector. (a)–(c) Time-dependent photocurrent of the X-ray detector with pulsed X-ray source on and off at 5Vμm-1 electric field. (d) The SNRs under different X-ray dose rates with inset showing the temporal responses under different X-ray dose rates.

Download Full Size | PPT Slide | PDF

The performance metrics of the proposed X-ray detector and literature-reported direct-conversion X-ray detectors using different photoconductors and photoelectron multiplication mechanisms are compared in Table 1. The proposed X-ray detectors formed by photoconductor targets and cold cathode field emitters can achieve high internal gain using the EBIPC mechanism. The Ga2O3 photoconductor is an ideal material for a vacuum cold cathode X-ray detector owing to its high absorption efficiency for a low-energy X-ray and high breakdown electric field to operate at a high electric field. Under the EBIPC mechanism, the proposed X-ray detector realized a high internal gain of 2.9×102, a high X-ray detection sensitivity of 3.0×103μCGyair1cm2 for 650keV X-ray, and a low detection limit of 0.28mGyairs1. Furthermore, the detector achieved a fast response time of 40 ms owing to the high crystal quality of the Ga2O3 photoconductor and fast charge transport speed in the vacuum gap. The performance metrics of the proposed X-ray detectors are much better than those of the literature-reported Ga2O3-based X-ray detectors without a photoelectron multiplication mechanism [40]. In contrast, the vacuum cold cathode X-ray detectors formed by HARPs and Spindt-type FEAs had a high internal gain (2.0×102) and were expected to realize low-dose X-ray imaging using the avalanche effect [41,42]. However, those detectors have limited X-ray detection sensitivity due to the material limitation of HARPs and are not eligible for large area applications due to the complicated fabrication method of Spindt-type FEAs. Furthermore, the a-Se-based X-ray detectors without photoelectron multiplication mechanism had the drawback of low X-ray absorption coefficient for general radiology applications, resulting in a limited sensitivity of 22.5μCGyair1cm2 for 20–60 keV X-ray [11,43,44]. In addition, the perovskite photoconductors had high X-ray absorption coefficient and high charge collection efficiency, benefiting to realize high X-ray detection sensitivity (4.1×103μCGyair1cm2 for 20–60 keV X-ray) and low detection limit (0.22μGyairs1) [45]. Furthermore, the perovskite based X-ray detectors could realize a higher detection sensitivity (5.6×104μCGyair1cm2 for 30–50 keV X-ray) using the photoconductive gain effect and a fast response time (<0.3ms) by applying a photoconductor with high crystal quality [6,45]. Nevertheless, the issues of ion migration and long-term operation stability make the perovskite-based X-ray detectors far from practical applications [16].

Tables Icon

Table 1. Comparison of Performance Metrics of Direct-Conversion X-ray Detectors Based on Different Photoconductors and Photoelectron Multiplication Mechanisms

3. CONCLUSIONS

In summary, a direct-conversion vacuum cold cathode X-ray detector based on ZnO NW field emitters and β-Ga2O3 photoconductor targets was proposed to realize sensitive and low-dose X-ray detection. The charge carrier transport mechanism of the X-ray detectors was investigated, finding that the X-ray response process could be divided into internal photoelectric effect, photoconductive gain effect, and EBIPC effect when the applied electric field increased accordingly. The proposed X-ray detectors operating with an EBIPC mechanism achieved a high internal gain of 2.9×102 and high detection sensitivity up to 3.0×103μCGyair1cm2 for 6 keV X-ray at the 22.5Vμm1 electric field. Moreover, the direct-conversion vacuum cold cathode X-ray detector also had the advantages of fast response time, long-term stability, and low detection limit owing to the high crystal quality of the Ga2O3 photoconductor and current limitation effect of the vacuum gap. The proposed direct-conversion vacuum cold cathode X-ray detectors demonstrate huge potential for use in actual X-ray detection applications.

APPENDIX A: METHODS

1. Fabrication of a Vacuum Cold Cathode X-ray Detector

A vacuum diode-type cold cathode X-ray detector was fabricated with the ZnO NW field emitters as the cathode and the β-Ga2O3 photoconductor as the anode target. The arrays of patterned ZnO NWs were directly grown on an ITO-coated glass substrate using a thermal oxidation method [25]. First, a 500 nm thick ITO electrode was deposited on glass substrate by magnetron sputtering. Second, the patterned Zn film with the thickness of 1.2 μm was prepared by ultraviolet lithography and electron beam evaporation. Last, the ZnO NWs were grown by oxidating the patterned Zn film with air in a horizontal quartz tube furnace. The oxidation temperature was 500°C; the oxidation time was 3 h. The single dot matrix size of ZnO NWs was 25μm×60μm, and the duty ratio of that was 10.2%. The (-201) Fe-doped β-Ga2O3 bulk photoconductor with 0.68 mm thickness was prepared using an edge-defined film-fed growth method (Novel Crystal Technology Inc., Japan) [46]. The ITO thin film with 200 nm thickness was deposited on the β-Ga2O3 surface to act as an anode electrode using a direct current magnetron sputtering method. The vacuum gap between the Ga2O3 crystal and the patterned ZnO NW cold cathode was maintained by the ceramic spacer; the number of adopted ceramic spacers depended on the area of the detector. The vacuum gap between the anode and cathode was 120 μm. The effective detection area of X-ray detector was 2cm×2cm.

2. Characterization Methods

The morphologies of arrays of ZnO NWs were observed using a scanning electron microscope (SEM, SUPRA 60, Germany). Crystallinity of the β-Ga2O3 photoconductor was identified by the XRD (Empyrean, PANalytical B.V) measurement. The X-ray detector operates in a vacuum chamber with a pressure of 5×106Pa. The proposed flat panel X-ray detectors can be sealed using a glass frit with sintering process and pumped to high vacuum (<1×105Pa) before being sealed off [47,48]. A commercial X-ray tube with a tungsten target and 50 kV maximum accelerated voltage was used as the X-ray source (Vision Imaging Technology Limited). The radiation dose rates under different X-ray tube voltages were calibrated using a commercial dosimeter (MagicMax XM detector, IBA). The I-E and temporal characteristics of the X-ray detectors were measured using a Keithley 2657A source-meter unit with a maximum applied voltage of 3000 V.

Funding

National Natural Science Foundation of China (91833303, 62001527); National Key Research and Development Program of China (2016YFA0202000); Science and Technology Department of Guangdong Province (2020B0101020002); Fundamental Research Funds for the Central Universities, Sun Yat-sen University (2021qntd09).

Disclosures

The authors declare no conflicts of interest.

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

REFERENCES

1. Z. Z. Li, F. G. Zhou, H. H. Yao, Z. P. Ci, Z. Yang, and Z. W. Jin, “Halide perovskites for high-performance X-ray detector,” Mater. Today 48, 155–175 (2021).

2. G. Kakavelakis, M. Gedda, A. Panagiotopoulos, E. Kymakis, T. D. Anthopoulos, and K. Petridis, “Metal halide perovskites for high‐energy radiation detection,” Adv. Sci. 7, 2002098 (2020). [CrossRef]  

3. M. Yaffe and J. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1–39 (1997). [CrossRef]  

4. S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011). [CrossRef]  

5. Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017). [CrossRef]  

6. W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019). [CrossRef]  

7. B. Sinnott, E. Ron, and A. B. Schneider, “Exposing the thyroid to radiation: a review of its current extent, risks, and implications,” Endocr. Rev. 31, 756–773 (2010). [CrossRef]  

8. R. T. Williams, W. W. Wolszczak, X. Yan, and D. L. Carroll, “Perovskite quantum-dot-in-host for detection of ionizing radiation,” ACS Nano 14, 5161–5169 (2020). [CrossRef]  

9. X. Y. Liu, G. Pilania, A. A. Talapatra, C. R. Stanek, and B. P. Uberuaga, “Band-edge engineering to eliminate radiation-induced defect states in perovskite scintillators,” ACS Appl. Mater. Interfaces 12, 46296–46305 (2020). [CrossRef]  

10. Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020). [CrossRef]  

11. S. O. Kasap, “X-ray sensitivity of photoconductors: application to stabilized a-Se,” J. Phys. D 33, 2853–2865 (2000). [CrossRef]  

12. S. O. Kasap, M. Z. Kabir, and J. A. Rowlands, “Recent advances in X-ray photoconductors for direct conversion X-ray image detectors,” Curr. Appl. Phys. 6, 288–292 (2006). [CrossRef]  

13. Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005). [CrossRef]  

14. Z. P. Zhang, Z. J. Zhang, W. Zheng, K. Wang, H. J. Chen, S. Z. Deng, F. Huang, and J. Chen, “Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode,” Adv. Mater. Technol. 5, 1901108 (2020). [CrossRef]  

15. J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni, and J. Huang, “Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector array,” Nat. Photonics 14, 612–617 (2020). [CrossRef]  

16. B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019). [CrossRef]  

17. J. Xie, M. Chiu, E. May, Z. E. Meziani, S. Nelson, and R. Wagner, “MCP-PMT development at Argonne for particle identification,” J. Instrum. 15, C04038 (2020). [CrossRef]  

18. B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020). [CrossRef]  

19. F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020). [CrossRef]  

20. D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015). [CrossRef]  

21. Y. Honda, M. Nanba, K. Miyakawa, M. Kubota, M. Nagao, Y. Neo, H. Mimura, and N. Egami, “Double-gated, Spindt-type field emitter with improved electron beam extraction,” IEEE Trans. Electron Dev. 63, 2182–2189 (2016). [CrossRef]  

22. T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008). [CrossRef]  

23. Z. P. Zhang, K. Wang, K. S. Zheng, S. Z. Deng, N. S. Xu, and J. Chen, “Electron bombardment induced photoconductivity and high gain in a flat panel photodetector based on a ZnS photoconductor and ZnO nanowire field emitters,” ACS Photon. 5, 4147–4155 (2018). [CrossRef]  

24. X. P. Bai, Z. P. Zhang, M. N. Chen, K. Wang, J. C. She, S. Z. Deng, and J. Chen, “Theoretical analysis and verification of electron-bombardment-induced photoconductivity in vacuum flat-panel detector,” J. Lightwave Technol. 39, 2618–2624 (2021). [CrossRef]  

25. Y. F. Li, Z. P. Zhang, G. F. Zhang, L. Zhao, S. Z. Deng, N. S. Xu, and J. Chen, “Optimizing the field emission properties of ZnO nanowire arrays by precisely tuning the population density and application in large-area gated field emitter array,” ACS Appl. Mater. Interfaces 9, 3911–3921 (2017). [CrossRef]  

26. X. Chen, F. Ren, S. Gu, and J. Ye, “Review of gallium-oxide-based solar-blind ultraviolet photodetectors,” Photon. Res. 7, 381–415 (2019). [CrossRef]  

27. J. Tanguay and I. A. Cunningham, “Cascaded systems analysis of charge sharing in cadmium telluride photon‐counting X-ray detectors,” Med. Phys. 45, 1926–1941 (2018). [CrossRef]  

28. G. Benassi, N. Zambelli, M. Villani, D. Calestani, M. Pavesi, A. Zappettini, L. Zanotti, and C. Paorici, “Oriented orthorhombic lead oxide film grown by vapour phase deposition for X-ray detector applications,” Cryst. Res. Technol. 48, 245–250 (2013). [CrossRef]  

29. Y. B. Xu, Q. Zhou, J. Huang, W. W. Li, J. Chen, and K. Wang, “Highly-sensitive indirect-conversion X-ray detector with an embedded photodiode formed by a three-dimensional dual-gate thin-film transistor,” J. Lightwave Technol. 38, 3775–3780 (2020). [CrossRef]  

30. Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020). [CrossRef]  

31. S. J. Young and Y. L. Chu, “Characteristics of field emitters on the basis of Pd-adsorbed ZnO nanostructures by photochemical method,” ACS Appl. Nano Mater. 4, 2515–2521 (2021). [CrossRef]  

32. R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London A 119, 173–181 (1928). [CrossRef]  

33. Z. Chen, Z. Li, Y. Zhuo, W. Chen, X. Ma, Y. Pei, and G. Wang, “Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition,” Appl. Phys. Express 11, 101101 (2018). [CrossRef]  

34. M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM Phot. Cross Sect. Database (Version 1.5),” https://physics.nist.gov/xcom (2010).

35. K. A. Mengle and E. Kioupakis, “Vibrational and electron-phonon coupling properties of β-Ga2O3 from first-principles calculations: impact on the mobility and breakdown field,” AIP Adv. 9, 015313 (2019). [CrossRef]  

36. S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020). [CrossRef]  

37. Z. P. Zhang, Z. M. Chen, M. N. Chen, K. Wang, H. J. Chen, S. Z. Deng, G. Hang, and J. Chen, “ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications,” Adv. Mater. Technol. 6, 2001094 (2021). [CrossRef]  

38. H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019). [CrossRef]  

39. W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017). [CrossRef]  

40. X. Lu, L. D. Zhou, L. Chen, X. P. Ouyang, H. Tang, B. Liu, and J. Xu, “X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method,” ECS J. Solid State Sci. Technol. 8, Q3046–Q3049 (2019). [CrossRef]  

41. D. A. Scaduto, A. R. Lubinsky, J. A. Rowlands, H. Kenmotsu, N. Nishimoto, T. Nishino, K. Tanioka, and Z. Wei, “Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing,” Proc. SPIE 9033, 90333S (2014). [CrossRef]  

42. T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013). [CrossRef]  

43. S. Abbaszadeh, C. C. Scott, O. Bubon, A. Reznik, and K. S. Karim, “Enhanced detection efficiency of direct conversion X-ray detector using polyimide as hole-blocking layer,” Sci. Rep. 3, 3360 (2013). [CrossRef]  

44. B. Zhao and W. Zhao, “Temporal performance of amorphous selenium mammography detectors,” Med. Phys. 32, 128–136 (2005). [CrossRef]  

45. J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021). [CrossRef]  

46. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202A2 (2016). [CrossRef]  

47. X. Q. Cao, G. F. Zhang, Y. Y. Zhao, Y. Xu, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source,” Appl. Phys. Lett. 119, 053501 (2021). [CrossRef]  

48. D. K. Chen, Y. Xu, G. F. Zhang, Z. P. Zhang, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters,” Vacuum 144, 266–271 (2017). [CrossRef]  

References

  • View by:

  1. Z. Z. Li, F. G. Zhou, H. H. Yao, Z. P. Ci, Z. Yang, and Z. W. Jin, “Halide perovskites for high-performance X-ray detector,” Mater. Today 48, 155–175 (2021).
  2. G. Kakavelakis, M. Gedda, A. Panagiotopoulos, E. Kymakis, T. D. Anthopoulos, and K. Petridis, “Metal halide perovskites for high‐energy radiation detection,” Adv. Sci. 7, 2002098 (2020).
    [Crossref]
  3. M. Yaffe and J. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1–39 (1997).
    [Crossref]
  4. S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
    [Crossref]
  5. Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017).
    [Crossref]
  6. W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
    [Crossref]
  7. B. Sinnott, E. Ron, and A. B. Schneider, “Exposing the thyroid to radiation: a review of its current extent, risks, and implications,” Endocr. Rev. 31, 756–773 (2010).
    [Crossref]
  8. R. T. Williams, W. W. Wolszczak, X. Yan, and D. L. Carroll, “Perovskite quantum-dot-in-host for detection of ionizing radiation,” ACS Nano 14, 5161–5169 (2020).
    [Crossref]
  9. X. Y. Liu, G. Pilania, A. A. Talapatra, C. R. Stanek, and B. P. Uberuaga, “Band-edge engineering to eliminate radiation-induced defect states in perovskite scintillators,” ACS Appl. Mater. Interfaces 12, 46296–46305 (2020).
    [Crossref]
  10. Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
    [Crossref]
  11. S. O. Kasap, “X-ray sensitivity of photoconductors: application to stabilized a-Se,” J. Phys. D 33, 2853–2865 (2000).
    [Crossref]
  12. S. O. Kasap, M. Z. Kabir, and J. A. Rowlands, “Recent advances in X-ray photoconductors for direct conversion X-ray image detectors,” Curr. Appl. Phys. 6, 288–292 (2006).
    [Crossref]
  13. Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
    [Crossref]
  14. Z. P. Zhang, Z. J. Zhang, W. Zheng, K. Wang, H. J. Chen, S. Z. Deng, F. Huang, and J. Chen, “Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode,” Adv. Mater. Technol. 5, 1901108 (2020).
    [Crossref]
  15. J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni, and J. Huang, “Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector array,” Nat. Photonics 14, 612–617 (2020).
    [Crossref]
  16. B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
    [Crossref]
  17. J. Xie, M. Chiu, E. May, Z. E. Meziani, S. Nelson, and R. Wagner, “MCP-PMT development at Argonne for particle identification,” J. Instrum. 15, C04038 (2020).
    [Crossref]
  18. B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
    [Crossref]
  19. F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
    [Crossref]
  20. D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
    [Crossref]
  21. Y. Honda, M. Nanba, K. Miyakawa, M. Kubota, M. Nagao, Y. Neo, H. Mimura, and N. Egami, “Double-gated, Spindt-type field emitter with improved electron beam extraction,” IEEE Trans. Electron Dev. 63, 2182–2189 (2016).
    [Crossref]
  22. T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
    [Crossref]
  23. Z. P. Zhang, K. Wang, K. S. Zheng, S. Z. Deng, N. S. Xu, and J. Chen, “Electron bombardment induced photoconductivity and high gain in a flat panel photodetector based on a ZnS photoconductor and ZnO nanowire field emitters,” ACS Photon. 5, 4147–4155 (2018).
    [Crossref]
  24. X. P. Bai, Z. P. Zhang, M. N. Chen, K. Wang, J. C. She, S. Z. Deng, and J. Chen, “Theoretical analysis and verification of electron-bombardment-induced photoconductivity in vacuum flat-panel detector,” J. Lightwave Technol. 39, 2618–2624 (2021).
    [Crossref]
  25. Y. F. Li, Z. P. Zhang, G. F. Zhang, L. Zhao, S. Z. Deng, N. S. Xu, and J. Chen, “Optimizing the field emission properties of ZnO nanowire arrays by precisely tuning the population density and application in large-area gated field emitter array,” ACS Appl. Mater. Interfaces 9, 3911–3921 (2017).
    [Crossref]
  26. X. Chen, F. Ren, S. Gu, and J. Ye, “Review of gallium-oxide-based solar-blind ultraviolet photodetectors,” Photon. Res. 7, 381–415 (2019).
    [Crossref]
  27. J. Tanguay and I. A. Cunningham, “Cascaded systems analysis of charge sharing in cadmium telluride photon‐counting X-ray detectors,” Med. Phys. 45, 1926–1941 (2018).
    [Crossref]
  28. G. Benassi, N. Zambelli, M. Villani, D. Calestani, M. Pavesi, A. Zappettini, L. Zanotti, and C. Paorici, “Oriented orthorhombic lead oxide film grown by vapour phase deposition for X-ray detector applications,” Cryst. Res. Technol. 48, 245–250 (2013).
    [Crossref]
  29. Y. B. Xu, Q. Zhou, J. Huang, W. W. Li, J. Chen, and K. Wang, “Highly-sensitive indirect-conversion X-ray detector with an embedded photodiode formed by a three-dimensional dual-gate thin-film transistor,” J. Lightwave Technol. 38, 3775–3780 (2020).
    [Crossref]
  30. Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
    [Crossref]
  31. S. J. Young and Y. L. Chu, “Characteristics of field emitters on the basis of Pd-adsorbed ZnO nanostructures by photochemical method,” ACS Appl. Nano Mater. 4, 2515–2521 (2021).
    [Crossref]
  32. R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London A 119, 173–181 (1928).
    [Crossref]
  33. Z. Chen, Z. Li, Y. Zhuo, W. Chen, X. Ma, Y. Pei, and G. Wang, “Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition,” Appl. Phys. Express 11, 101101 (2018).
    [Crossref]
  34. M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM Phot. Cross Sect. Database (Version 1.5),” https://physics.nist.gov/xcom (2010).
  35. K. A. Mengle and E. Kioupakis, “Vibrational and electron-phonon coupling properties of β-Ga2O3 from first-principles calculations: impact on the mobility and breakdown field,” AIP Adv. 9, 015313 (2019).
    [Crossref]
  36. S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020).
    [Crossref]
  37. Z. P. Zhang, Z. M. Chen, M. N. Chen, K. Wang, H. J. Chen, S. Z. Deng, G. Hang, and J. Chen, “ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications,” Adv. Mater. Technol. 6, 2001094 (2021).
    [Crossref]
  38. H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
    [Crossref]
  39. W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
    [Crossref]
  40. X. Lu, L. D. Zhou, L. Chen, X. P. Ouyang, H. Tang, B. Liu, and J. Xu, “X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method,” ECS J. Solid State Sci. Technol. 8, Q3046–Q3049 (2019).
    [Crossref]
  41. D. A. Scaduto, A. R. Lubinsky, J. A. Rowlands, H. Kenmotsu, N. Nishimoto, T. Nishino, K. Tanioka, and Z. Wei, “Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing,” Proc. SPIE 9033, 90333S (2014).
    [Crossref]
  42. T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
    [Crossref]
  43. S. Abbaszadeh, C. C. Scott, O. Bubon, A. Reznik, and K. S. Karim, “Enhanced detection efficiency of direct conversion X-ray detector using polyimide as hole-blocking layer,” Sci. Rep. 3, 3360 (2013).
    [Crossref]
  44. B. Zhao and W. Zhao, “Temporal performance of amorphous selenium mammography detectors,” Med. Phys. 32, 128–136 (2005).
    [Crossref]
  45. J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021).
    [Crossref]
  46. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202A2 (2016).
    [Crossref]
  47. X. Q. Cao, G. F. Zhang, Y. Y. Zhao, Y. Xu, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source,” Appl. Phys. Lett. 119, 053501 (2021).
    [Crossref]
  48. D. K. Chen, Y. Xu, G. F. Zhang, Z. P. Zhang, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters,” Vacuum 144, 266–271 (2017).
    [Crossref]

2021 (6)

Z. Z. Li, F. G. Zhou, H. H. Yao, Z. P. Ci, Z. Yang, and Z. W. Jin, “Halide perovskites for high-performance X-ray detector,” Mater. Today 48, 155–175 (2021).

X. P. Bai, Z. P. Zhang, M. N. Chen, K. Wang, J. C. She, S. Z. Deng, and J. Chen, “Theoretical analysis and verification of electron-bombardment-induced photoconductivity in vacuum flat-panel detector,” J. Lightwave Technol. 39, 2618–2624 (2021).
[Crossref]

S. J. Young and Y. L. Chu, “Characteristics of field emitters on the basis of Pd-adsorbed ZnO nanostructures by photochemical method,” ACS Appl. Nano Mater. 4, 2515–2521 (2021).
[Crossref]

Z. P. Zhang, Z. M. Chen, M. N. Chen, K. Wang, H. J. Chen, S. Z. Deng, G. Hang, and J. Chen, “ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications,” Adv. Mater. Technol. 6, 2001094 (2021).
[Crossref]

J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021).
[Crossref]

X. Q. Cao, G. F. Zhang, Y. Y. Zhao, Y. Xu, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source,” Appl. Phys. Lett. 119, 053501 (2021).
[Crossref]

2020 (12)

Y. B. Xu, Q. Zhou, J. Huang, W. W. Li, J. Chen, and K. Wang, “Highly-sensitive indirect-conversion X-ray detector with an embedded photodiode formed by a three-dimensional dual-gate thin-film transistor,” J. Lightwave Technol. 38, 3775–3780 (2020).
[Crossref]

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020).
[Crossref]

Z. P. Zhang, Z. J. Zhang, W. Zheng, K. Wang, H. J. Chen, S. Z. Deng, F. Huang, and J. Chen, “Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode,” Adv. Mater. Technol. 5, 1901108 (2020).
[Crossref]

J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni, and J. Huang, “Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector array,” Nat. Photonics 14, 612–617 (2020).
[Crossref]

G. Kakavelakis, M. Gedda, A. Panagiotopoulos, E. Kymakis, T. D. Anthopoulos, and K. Petridis, “Metal halide perovskites for high‐energy radiation detection,” Adv. Sci. 7, 2002098 (2020).
[Crossref]

R. T. Williams, W. W. Wolszczak, X. Yan, and D. L. Carroll, “Perovskite quantum-dot-in-host for detection of ionizing radiation,” ACS Nano 14, 5161–5169 (2020).
[Crossref]

X. Y. Liu, G. Pilania, A. A. Talapatra, C. R. Stanek, and B. P. Uberuaga, “Band-edge engineering to eliminate radiation-induced defect states in perovskite scintillators,” ACS Appl. Mater. Interfaces 12, 46296–46305 (2020).
[Crossref]

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
[Crossref]

J. Xie, M. Chiu, E. May, Z. E. Meziani, S. Nelson, and R. Wagner, “MCP-PMT development at Argonne for particle identification,” J. Instrum. 15, C04038 (2020).
[Crossref]

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

2019 (6)

W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
[Crossref]

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

X. Chen, F. Ren, S. Gu, and J. Ye, “Review of gallium-oxide-based solar-blind ultraviolet photodetectors,” Photon. Res. 7, 381–415 (2019).
[Crossref]

K. A. Mengle and E. Kioupakis, “Vibrational and electron-phonon coupling properties of β-Ga2O3 from first-principles calculations: impact on the mobility and breakdown field,” AIP Adv. 9, 015313 (2019).
[Crossref]

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
[Crossref]

X. Lu, L. D. Zhou, L. Chen, X. P. Ouyang, H. Tang, B. Liu, and J. Xu, “X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method,” ECS J. Solid State Sci. Technol. 8, Q3046–Q3049 (2019).
[Crossref]

2018 (3)

Z. P. Zhang, K. Wang, K. S. Zheng, S. Z. Deng, N. S. Xu, and J. Chen, “Electron bombardment induced photoconductivity and high gain in a flat panel photodetector based on a ZnS photoconductor and ZnO nanowire field emitters,” ACS Photon. 5, 4147–4155 (2018).
[Crossref]

Z. Chen, Z. Li, Y. Zhuo, W. Chen, X. Ma, Y. Pei, and G. Wang, “Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition,” Appl. Phys. Express 11, 101101 (2018).
[Crossref]

J. Tanguay and I. A. Cunningham, “Cascaded systems analysis of charge sharing in cadmium telluride photon‐counting X-ray detectors,” Med. Phys. 45, 1926–1941 (2018).
[Crossref]

2017 (4)

Y. F. Li, Z. P. Zhang, G. F. Zhang, L. Zhao, S. Z. Deng, N. S. Xu, and J. Chen, “Optimizing the field emission properties of ZnO nanowire arrays by precisely tuning the population density and application in large-area gated field emitter array,” ACS Appl. Mater. Interfaces 9, 3911–3921 (2017).
[Crossref]

Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017).
[Crossref]

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

D. K. Chen, Y. Xu, G. F. Zhang, Z. P. Zhang, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters,” Vacuum 144, 266–271 (2017).
[Crossref]

2016 (2)

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202A2 (2016).
[Crossref]

Y. Honda, M. Nanba, K. Miyakawa, M. Kubota, M. Nagao, Y. Neo, H. Mimura, and N. Egami, “Double-gated, Spindt-type field emitter with improved electron beam extraction,” IEEE Trans. Electron Dev. 63, 2182–2189 (2016).
[Crossref]

2015 (1)

D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

2014 (1)

D. A. Scaduto, A. R. Lubinsky, J. A. Rowlands, H. Kenmotsu, N. Nishimoto, T. Nishino, K. Tanioka, and Z. Wei, “Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing,” Proc. SPIE 9033, 90333S (2014).
[Crossref]

2013 (3)

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

S. Abbaszadeh, C. C. Scott, O. Bubon, A. Reznik, and K. S. Karim, “Enhanced detection efficiency of direct conversion X-ray detector using polyimide as hole-blocking layer,” Sci. Rep. 3, 3360 (2013).
[Crossref]

G. Benassi, N. Zambelli, M. Villani, D. Calestani, M. Pavesi, A. Zappettini, L. Zanotti, and C. Paorici, “Oriented orthorhombic lead oxide film grown by vapour phase deposition for X-ray detector applications,” Cryst. Res. Technol. 48, 245–250 (2013).
[Crossref]

2011 (1)

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

2010 (1)

B. Sinnott, E. Ron, and A. B. Schneider, “Exposing the thyroid to radiation: a review of its current extent, risks, and implications,” Endocr. Rev. 31, 756–773 (2010).
[Crossref]

2008 (1)

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

2006 (1)

S. O. Kasap, M. Z. Kabir, and J. A. Rowlands, “Recent advances in X-ray photoconductors for direct conversion X-ray image detectors,” Curr. Appl. Phys. 6, 288–292 (2006).
[Crossref]

2005 (2)

Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
[Crossref]

B. Zhao and W. Zhao, “Temporal performance of amorphous selenium mammography detectors,” Med. Phys. 32, 128–136 (2005).
[Crossref]

2000 (1)

S. O. Kasap, “X-ray sensitivity of photoconductors: application to stabilized a-Se,” J. Phys. D 33, 2853–2865 (2000).
[Crossref]

1997 (1)

M. Yaffe and J. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1–39 (1997).
[Crossref]

1928 (1)

R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London A 119, 173–181 (1928).
[Crossref]

Abbaszadeh, S.

S. Abbaszadeh, C. C. Scott, O. Bubon, A. Reznik, and K. S. Karim, “Enhanced detection efficiency of direct conversion X-ray detector using polyimide as hole-blocking layer,” Sci. Rep. 3, 3360 (2013).
[Crossref]

Akiyoshi, M.

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

Anthopoulos, T. D.

G. Kakavelakis, M. Gedda, A. Panagiotopoulos, E. Kymakis, T. D. Anthopoulos, and K. Petridis, “Metal halide perovskites for high‐energy radiation detection,” Adv. Sci. 7, 2002098 (2020).
[Crossref]

Antonuk, L. E.

Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
[Crossref]

Bai, X. P.

Belev, G.

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

Benassi, G.

G. Benassi, N. Zambelli, M. Villani, D. Calestani, M. Pavesi, A. Zappettini, L. Zanotti, and C. Paorici, “Oriented orthorhombic lead oxide film grown by vapour phase deposition for X-ray detector applications,” Cryst. Res. Technol. 48, 245–250 (2013).
[Crossref]

Bowers, J. E.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

Bubon, O.

S. Abbaszadeh, C. C. Scott, O. Bubon, A. Reznik, and K. S. Karim, “Enhanced detection efficiency of direct conversion X-ray detector using polyimide as hole-blocking layer,” Sci. Rep. 3, 3360 (2013).
[Crossref]

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

Caccia, M.

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

Calestani, D.

G. Benassi, N. Zambelli, M. Villani, D. Calestani, M. Pavesi, A. Zappettini, L. Zanotti, and C. Paorici, “Oriented orthorhombic lead oxide film grown by vapour phase deposition for X-ray detector applications,” Cryst. Res. Technol. 48, 245–250 (2013).
[Crossref]

Cao, X. Q.

X. Q. Cao, G. F. Zhang, Y. Y. Zhao, Y. Xu, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source,” Appl. Phys. Lett. 119, 053501 (2021).
[Crossref]

Carroll, D. L.

R. T. Williams, W. W. Wolszczak, X. Yan, and D. L. Carroll, “Perovskite quantum-dot-in-host for detection of ionizing radiation,” ACS Nano 14, 5161–5169 (2020).
[Crossref]

Centrone, A.

D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Chae, J.

D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Chen, B.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

Chen, C.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Chen, D. K.

D. K. Chen, Y. Xu, G. F. Zhang, Z. P. Zhang, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters,” Vacuum 144, 266–271 (2017).
[Crossref]

Chen, H. J.

Z. P. Zhang, Z. M. Chen, M. N. Chen, K. Wang, H. J. Chen, S. Z. Deng, G. Hang, and J. Chen, “ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications,” Adv. Mater. Technol. 6, 2001094 (2021).
[Crossref]

Z. P. Zhang, Z. J. Zhang, W. Zheng, K. Wang, H. J. Chen, S. Z. Deng, F. Huang, and J. Chen, “Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode,” Adv. Mater. Technol. 5, 1901108 (2020).
[Crossref]

Chen, J.

Z. P. Zhang, Z. M. Chen, M. N. Chen, K. Wang, H. J. Chen, S. Z. Deng, G. Hang, and J. Chen, “ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications,” Adv. Mater. Technol. 6, 2001094 (2021).
[Crossref]

X. P. Bai, Z. P. Zhang, M. N. Chen, K. Wang, J. C. She, S. Z. Deng, and J. Chen, “Theoretical analysis and verification of electron-bombardment-induced photoconductivity in vacuum flat-panel detector,” J. Lightwave Technol. 39, 2618–2624 (2021).
[Crossref]

X. Q. Cao, G. F. Zhang, Y. Y. Zhao, Y. Xu, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source,” Appl. Phys. Lett. 119, 053501 (2021).
[Crossref]

Y. B. Xu, Q. Zhou, J. Huang, W. W. Li, J. Chen, and K. Wang, “Highly-sensitive indirect-conversion X-ray detector with an embedded photodiode formed by a three-dimensional dual-gate thin-film transistor,” J. Lightwave Technol. 38, 3775–3780 (2020).
[Crossref]

Z. P. Zhang, Z. J. Zhang, W. Zheng, K. Wang, H. J. Chen, S. Z. Deng, F. Huang, and J. Chen, “Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode,” Adv. Mater. Technol. 5, 1901108 (2020).
[Crossref]

Z. P. Zhang, K. Wang, K. S. Zheng, S. Z. Deng, N. S. Xu, and J. Chen, “Electron bombardment induced photoconductivity and high gain in a flat panel photodetector based on a ZnS photoconductor and ZnO nanowire field emitters,” ACS Photon. 5, 4147–4155 (2018).
[Crossref]

Y. F. Li, Z. P. Zhang, G. F. Zhang, L. Zhao, S. Z. Deng, N. S. Xu, and J. Chen, “Optimizing the field emission properties of ZnO nanowire arrays by precisely tuning the population density and application in large-area gated field emitter array,” ACS Appl. Mater. Interfaces 9, 3911–3921 (2017).
[Crossref]

D. K. Chen, Y. Xu, G. F. Zhang, Z. P. Zhang, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters,” Vacuum 144, 266–271 (2017).
[Crossref]

Chen, L.

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
[Crossref]

X. Lu, L. D. Zhou, L. Chen, X. P. Ouyang, H. Tang, B. Liu, and J. Xu, “X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method,” ECS J. Solid State Sci. Technol. 8, Q3046–Q3049 (2019).
[Crossref]

Chen, M. N.

Z. P. Zhang, Z. M. Chen, M. N. Chen, K. Wang, H. J. Chen, S. Z. Deng, G. Hang, and J. Chen, “ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications,” Adv. Mater. Technol. 6, 2001094 (2021).
[Crossref]

X. P. Bai, Z. P. Zhang, M. N. Chen, K. Wang, J. C. She, S. Z. Deng, and J. Chen, “Theoretical analysis and verification of electron-bombardment-induced photoconductivity in vacuum flat-panel detector,” J. Lightwave Technol. 39, 2618–2624 (2021).
[Crossref]

Chen, Q.

S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020).
[Crossref]

Chen, W.

Z. Chen, Z. Li, Y. Zhuo, W. Chen, X. Ma, Y. Pei, and G. Wang, “Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition,” Appl. Phys. Express 11, 101101 (2018).
[Crossref]

Chen, X.

Chen, Z.

Z. Chen, Z. Li, Y. Zhuo, W. Chen, X. Ma, Y. Pei, and G. Wang, “Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition,” Appl. Phys. Express 11, 101101 (2018).
[Crossref]

Chen, Z. M.

Z. P. Zhang, Z. M. Chen, M. N. Chen, K. Wang, H. J. Chen, S. Z. Deng, G. Hang, and J. Chen, “ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications,” Adv. Mater. Technol. 6, 2001094 (2021).
[Crossref]

Chiu, M.

J. Xie, M. Chiu, E. May, Z. E. Meziani, S. Nelson, and R. Wagner, “MCP-PMT development at Argonne for particle identification,” J. Instrum. 15, C04038 (2020).
[Crossref]

Choi, Y. S.

Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017).
[Crossref]

Chu, Y. L.

S. J. Young and Y. L. Chu, “Characteristics of field emitters on the basis of Pd-adsorbed ZnO nanostructures by photochemical method,” ACS Appl. Nano Mater. 4, 2515–2521 (2021).
[Crossref]

Chua, D. H. C.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Ci, Z. P.

Z. Z. Li, F. G. Zhou, H. H. Yao, Z. P. Ci, Z. Yang, and Z. W. Jin, “Halide perovskites for high-performance X-ray detector,” Mater. Today 48, 155–175 (2021).

Clegg, J. K.

J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021).
[Crossref]

Cui, L. H.

J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021).
[Crossref]

Cui, S.

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
[Crossref]

Cunningham, I. A.

J. Tanguay and I. A. Cunningham, “Cascaded systems analysis of charge sharing in cadmium telluride photon‐counting X-ray detectors,” Med. Phys. 45, 1926–1941 (2018).
[Crossref]

Dai, J.

D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

DeCrescenzo, G.

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

Deng, S. Z.

X. P. Bai, Z. P. Zhang, M. N. Chen, K. Wang, J. C. She, S. Z. Deng, and J. Chen, “Theoretical analysis and verification of electron-bombardment-induced photoconductivity in vacuum flat-panel detector,” J. Lightwave Technol. 39, 2618–2624 (2021).
[Crossref]

Z. P. Zhang, Z. M. Chen, M. N. Chen, K. Wang, H. J. Chen, S. Z. Deng, G. Hang, and J. Chen, “ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications,” Adv. Mater. Technol. 6, 2001094 (2021).
[Crossref]

X. Q. Cao, G. F. Zhang, Y. Y. Zhao, Y. Xu, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source,” Appl. Phys. Lett. 119, 053501 (2021).
[Crossref]

Z. P. Zhang, Z. J. Zhang, W. Zheng, K. Wang, H. J. Chen, S. Z. Deng, F. Huang, and J. Chen, “Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode,” Adv. Mater. Technol. 5, 1901108 (2020).
[Crossref]

Z. P. Zhang, K. Wang, K. S. Zheng, S. Z. Deng, N. S. Xu, and J. Chen, “Electron bombardment induced photoconductivity and high gain in a flat panel photodetector based on a ZnS photoconductor and ZnO nanowire field emitters,” ACS Photon. 5, 4147–4155 (2018).
[Crossref]

Y. F. Li, Z. P. Zhang, G. F. Zhang, L. Zhao, S. Z. Deng, N. S. Xu, and J. Chen, “Optimizing the field emission properties of ZnO nanowire arrays by precisely tuning the population density and application in large-area gated field emitter array,” ACS Appl. Mater. Interfaces 9, 3911–3921 (2017).
[Crossref]

D. K. Chen, Y. Xu, G. F. Zhang, Z. P. Zhang, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters,” Vacuum 144, 266–271 (2017).
[Crossref]

Deng, Y.

J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni, and J. Huang, “Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector array,” Nat. Photonics 14, 612–617 (2020).
[Crossref]

Deng, Z.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Dionisi, M.

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

Distasi, C.

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

Dong, Q.

D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Du, H.

Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
[Crossref]

Du, X.

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
[Crossref]

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
[Crossref]

Egami, N.

Y. Honda, M. Nanba, K. Miyakawa, M. Kubota, M. Nagao, Y. Neo, H. Mimura, and N. Egami, “Double-gated, Spindt-type field emitter with improved electron beam extraction,” IEEE Trans. Electron Dev. 63, 2182–2189 (2016).
[Crossref]

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

El, M. Y.

Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
[Crossref]

Fang, Y.

D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Fowler, R. H.

R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London A 119, 173–181 (1928).
[Crossref]

Frey, J. B.

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

Ge, C.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Gedda, M.

G. Kakavelakis, M. Gedda, A. Panagiotopoulos, E. Kymakis, T. D. Anthopoulos, and K. Petridis, “Metal halide perovskites for high‐energy radiation detection,” Adv. Sci. 7, 2002098 (2020).
[Crossref]

Genazzani, A. A.

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

Gossard, A. C.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

Gotoh, Y.

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

Greenspan, J.

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

Gu, S.

Guan, P.

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
[Crossref]

Han, I. T.

Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017).
[Crossref]

Hang, G.

Z. P. Zhang, Z. M. Chen, M. N. Chen, K. Wang, H. J. Chen, S. Z. Deng, G. Hang, and J. Chen, “ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications,” Adv. Mater. Technol. 6, 2001094 (2021).
[Crossref]

He, Y.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
[Crossref]

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
[Crossref]

Herz, L. M.

J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021).
[Crossref]

Hirano, K.

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

Honda, Y.

Y. Honda, M. Nanba, K. Miyakawa, M. Kubota, M. Nagao, Y. Neo, H. Mimura, and N. Egami, “Double-gated, Spindt-type field emitter with improved electron beam extraction,” IEEE Trans. Electron Dev. 63, 2182–2189 (2016).
[Crossref]

Hu, L.

Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
[Crossref]

Huang, F.

Z. P. Zhang, Z. J. Zhang, W. Zheng, K. Wang, H. J. Chen, S. Z. Deng, F. Huang, and J. Chen, “Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode,” Adv. Mater. Technol. 5, 1901108 (2020).
[Crossref]

Huang, J.

J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni, and J. Huang, “Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector array,” Nat. Photonics 14, 612–617 (2020).
[Crossref]

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

Y. B. Xu, Q. Zhou, J. Huang, W. W. Li, J. Chen, and K. Wang, “Highly-sensitive indirect-conversion X-ray detector with an embedded photodiode formed by a three-dimensional dual-gate thin-film transistor,” J. Lightwave Technol. 38, 3775–3780 (2020).
[Crossref]

D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Hyodo, K.

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

Igarashi, N.

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

Igari, T.

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

Jeong, D.

Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017).
[Crossref]

Jiang, X.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Jin, Z. W.

Z. Z. Li, F. G. Zhou, H. H. Yao, Z. P. Ci, Z. Yang, and Z. W. Jin, “Halide perovskites for high-performance X-ray detector,” Mater. Today 48, 155–175 (2021).

Johnston, M. B.

J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021).
[Crossref]

Kabir, M. Z.

S. O. Kasap, M. Z. Kabir, and J. A. Rowlands, “Recent advances in X-ray photoconductors for direct conversion X-ray image detectors,” Curr. Appl. Phys. 6, 288–292 (2006).
[Crossref]

Kakavelakis, G.

G. Kakavelakis, M. Gedda, A. Panagiotopoulos, E. Kymakis, T. D. Anthopoulos, and K. Petridis, “Metal halide perovskites for high‐energy radiation detection,” Adv. Sci. 7, 2002098 (2020).
[Crossref]

Kanatzidis, M. G.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
[Crossref]

Karim, K. S.

S. Abbaszadeh, C. C. Scott, O. Bubon, A. Reznik, and K. S. Karim, “Enhanced detection efficiency of direct conversion X-ray detector using polyimide as hole-blocking layer,” Sci. Rep. 3, 3360 (2013).
[Crossref]

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

Kasap, S.

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

Kasap, S. O.

S. O. Kasap, M. Z. Kabir, and J. A. Rowlands, “Recent advances in X-ray photoconductors for direct conversion X-ray image detectors,” Curr. Appl. Phys. 6, 288–292 (2006).
[Crossref]

S. O. Kasap, “X-ray sensitivity of photoconductors: application to stabilized a-Se,” J. Phys. D 33, 2853–2865 (2000).
[Crossref]

Kato, N.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Kawai, T.

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

Ke, X.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Kenmotsu, H.

D. A. Scaduto, A. R. Lubinsky, J. A. Rowlands, H. Kenmotsu, N. Nishimoto, T. Nishino, K. Tanioka, and Z. Wei, “Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing,” Proc. SPIE 9033, 90333S (2014).
[Crossref]

Kim, K. H.

Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017).
[Crossref]

Kim, Y. C.

Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017).
[Crossref]

Kioupakis, E.

K. A. Mengle and E. Kioupakis, “Vibrational and electron-phonon coupling properties of β-Ga2O3 from first-principles calculations: impact on the mobility and breakdown field,” AIP Adv. 9, 015313 (2019).
[Crossref]

Koh, A. T. T.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Koshi, K.

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202A2 (2016).
[Crossref]

Kubota, M.

Y. Honda, M. Nanba, K. Miyakawa, M. Kubota, M. Nagao, Y. Neo, H. Mimura, and N. Egami, “Double-gated, Spindt-type field emitter with improved electron beam extraction,” IEEE Trans. Electron Dev. 63, 2182–2189 (2016).
[Crossref]

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

Kuramata, A.

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202A2 (2016).
[Crossref]

Kymakis, E.

G. Kakavelakis, M. Gedda, A. Panagiotopoulos, E. Kymakis, T. D. Anthopoulos, and K. Petridis, “Metal halide perovskites for high‐energy radiation detection,” Adv. Sci. 7, 2002098 (2020).
[Crossref]

Laperriere, L.

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

Lau, K. M.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

Lee, S. Y.

Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017).
[Crossref]

Li, Q.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

Li, R. M.

J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021).
[Crossref]

Li, W. W.

Li, Y.

Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
[Crossref]

Li, Y. F.

Y. F. Li, Z. P. Zhang, G. F. Zhang, L. Zhao, S. Z. Deng, N. S. Xu, and J. Chen, “Optimizing the field emission properties of ZnO nanowire arrays by precisely tuning the population density and application in large-area gated field emitter array,” ACS Appl. Mater. Interfaces 9, 3911–3921 (2017).
[Crossref]

Li, Z.

Z. Chen, Z. Li, Y. Zhuo, W. Chen, X. Ma, Y. Pei, and G. Wang, “Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition,” Appl. Phys. Express 11, 101101 (2018).
[Crossref]

Li, Z. Z.

Z. Z. Li, F. G. Zhou, H. H. Yao, Z. P. Ci, Z. Yang, and Z. W. Jin, “Halide perovskites for high-performance X-ray detector,” Mater. Today 48, 155–175 (2021).

Liang, H.

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
[Crossref]

Lim, D.

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

Lin, Q. Q.

J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021).
[Crossref]

Liu, B.

X. Lu, L. D. Zhou, L. Chen, X. P. Ouyang, H. Tang, B. Liu, and J. Xu, “X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method,” ECS J. Solid State Sci. Technol. 8, Q3046–Q3049 (2019).
[Crossref]

Liu, M.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
[Crossref]

Liu, S.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
[Crossref]

Liu, X. Y.

X. Y. Liu, G. Pilania, A. A. Talapatra, C. R. Stanek, and B. P. Uberuaga, “Band-edge engineering to eliminate radiation-induced defect states in perovskite scintillators,” ACS Appl. Mater. Interfaces 12, 46296–46305 (2020).
[Crossref]

Liu, Y.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
[Crossref]

Lomazzi, S.

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

Long, J. D.

S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020).
[Crossref]

Lu, X.

X. Lu, L. D. Zhou, L. Chen, X. P. Ouyang, H. Tang, B. Liu, and J. Xu, “X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method,” ECS J. Solid State Sci. Technol. 8, Q3046–Q3049 (2019).
[Crossref]

Lubinsky, A. R.

D. A. Scaduto, A. R. Lubinsky, J. A. Rowlands, H. Kenmotsu, N. Nishimoto, T. Nishino, K. Tanioka, and Z. Wei, “Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing,” Proc. SPIE 9033, 90333S (2014).
[Crossref]

Luo, J.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Ma, X.

Z. Chen, Z. Li, Y. Zhuo, W. Chen, X. Ma, Y. Pei, and G. Wang, “Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition,” Appl. Phys. Express 11, 101101 (2018).
[Crossref]

Mani, H.

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

Martemiyanov, A.

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

Masui, T.

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202A2 (2016).
[Crossref]

Masuzawa, T.

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Matsugaki, N.

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

May, E.

J. Xie, M. Chiu, E. May, Z. E. Meziani, S. Nelson, and R. Wagner, “MCP-PMT development at Argonne for particle identification,” J. Instrum. 15, C04038 (2020).
[Crossref]

Mei, Z.

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
[Crossref]

Mengle, K. A.

K. A. Mengle and E. Kioupakis, “Vibrational and electron-phonon coupling properties of β-Ga2O3 from first-principles calculations: impact on the mobility and breakdown field,” AIP Adv. 9, 015313 (2019).
[Crossref]

Meziani, Z. E.

J. Xie, M. Chiu, E. May, Z. E. Meziani, S. Nelson, and R. Wagner, “MCP-PMT development at Argonne for particle identification,” J. Instrum. 15, C04038 (2020).
[Crossref]

Miao, X.

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
[Crossref]

Mimura, H.

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

Y. Honda, M. Nanba, K. Miyakawa, M. Kubota, M. Nagao, Y. Neo, H. Mimura, and N. Egami, “Double-gated, Spindt-type field emitter with improved electron beam extraction,” IEEE Trans. Electron Dev. 63, 2182–2189 (2016).
[Crossref]

Miyakawa, K.

Y. Honda, M. Nanba, K. Miyakawa, M. Kubota, M. Nagao, Y. Neo, H. Mimura, and N. Egami, “Double-gated, Spindt-type field emitter with improved electron beam extraction,” IEEE Trans. Electron Dev. 63, 2182–2189 (2016).
[Crossref]

Miyoshi, T.

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

Mori, Y.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Nagao, M.

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

Y. Honda, M. Nanba, K. Miyakawa, M. Kubota, M. Nagao, Y. Neo, H. Mimura, and N. Egami, “Double-gated, Spindt-type field emitter with improved electron beam extraction,” IEEE Trans. Electron Dev. 63, 2182–2189 (2016).
[Crossref]

Namba, M.

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

Nanba, M.

Y. Honda, M. Nanba, K. Miyakawa, M. Kubota, M. Nagao, Y. Neo, H. Mimura, and N. Egami, “Double-gated, Spindt-type field emitter with improved electron beam extraction,” IEEE Trans. Electron Dev. 63, 2182–2189 (2016).
[Crossref]

Nardo, L.

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

Nelson, S.

J. Xie, M. Chiu, E. May, Z. E. Meziani, S. Nelson, and R. Wagner, “MCP-PMT development at Argonne for particle identification,” J. Instrum. 15, C04038 (2020).
[Crossref]

Neo, Y.

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

Y. Honda, M. Nanba, K. Miyakawa, M. Kubota, M. Nagao, Y. Neo, H. Mimura, and N. Egami, “Double-gated, Spindt-type field emitter with improved electron beam extraction,” IEEE Trans. Electron Dev. 63, 2182–2189 (2016).
[Crossref]

Ni, Z.

J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni, and J. Huang, “Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector array,” Nat. Photonics 14, 612–617 (2020).
[Crossref]

Nishimoto, N.

D. A. Scaduto, A. R. Lubinsky, J. A. Rowlands, H. Kenmotsu, N. Nishimoto, T. Nishino, K. Tanioka, and Z. Wei, “Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing,” Proc. SPIE 9033, 90333S (2014).
[Crossref]

Nishino, T.

D. A. Scaduto, A. R. Lubinsky, J. A. Rowlands, H. Kenmotsu, N. Nishimoto, T. Nishino, K. Tanioka, and Z. Wei, “Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing,” Proc. SPIE 9033, 90333S (2014).
[Crossref]

Niu, G.

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
[Crossref]

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Nordheim, L. W.

R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London A 119, 173–181 (1928).
[Crossref]

Norman, J.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

Ogawa, S.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Okamoto, T.

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

Okano, K.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Onishi, M.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Oonuki, K.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Ouyang, X. P.

X. Lu, L. D. Zhou, L. Chen, X. P. Ouyang, H. Tang, B. Liu, and J. Xu, “X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method,” ECS J. Solid State Sci. Technol. 8, Q3046–Q3049 (2019).
[Crossref]

Pan, W.

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
[Crossref]

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Panagiotopoulos, A.

G. Kakavelakis, M. Gedda, A. Panagiotopoulos, E. Kymakis, T. D. Anthopoulos, and K. Petridis, “Metal halide perovskites for high‐energy radiation detection,” Adv. Sci. 7, 2002098 (2020).
[Crossref]

Paorici, C.

G. Benassi, N. Zambelli, M. Villani, D. Calestani, M. Pavesi, A. Zappettini, L. Zanotti, and C. Paorici, “Oriented orthorhombic lead oxide film grown by vapour phase deposition for X-ray detector applications,” Cryst. Res. Technol. 48, 245–250 (2013).
[Crossref]

Park, N.

Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017).
[Crossref]

Pavesi, M.

G. Benassi, N. Zambelli, M. Villani, D. Calestani, M. Pavesi, A. Zappettini, L. Zanotti, and C. Paorici, “Oriented orthorhombic lead oxide film grown by vapour phase deposition for X-ray detector applications,” Cryst. Res. Technol. 48, 245–250 (2013).
[Crossref]

Pei, Y.

Z. Chen, Z. Li, Y. Zhuo, W. Chen, X. Ma, Y. Pei, and G. Wang, “Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition,” Appl. Phys. Express 11, 101101 (2018).
[Crossref]

Peng, J. L.

J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021).
[Crossref]

Petridis, K.

G. Kakavelakis, M. Gedda, A. Panagiotopoulos, E. Kymakis, T. D. Anthopoulos, and K. Petridis, “Metal halide perovskites for high‐energy radiation detection,” Adv. Sci. 7, 2002098 (2020).
[Crossref]

Pilania, G.

X. Y. Liu, G. Pilania, A. A. Talapatra, C. R. Stanek, and B. P. Uberuaga, “Band-edge engineering to eliminate radiation-induced defect states in perovskite scintillators,” ACS Appl. Mater. Interfaces 12, 46296–46305 (2020).
[Crossref]

Ren, F.

Reznik, A.

S. Abbaszadeh, C. C. Scott, O. Bubon, A. Reznik, and K. S. Karim, “Enhanced detection efficiency of direct conversion X-ray detector using polyimide as hole-blocking layer,” Sci. Rep. 3, 3360 (2013).
[Crossref]

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

Ron, E.

B. Sinnott, E. Ron, and A. B. Schneider, “Exposing the thyroid to radiation: a review of its current extent, risks, and implications,” Endocr. Rev. 31, 756–773 (2010).
[Crossref]

Rowlands, J.

M. Yaffe and J. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1–39 (1997).
[Crossref]

Rowlands, J. A.

D. A. Scaduto, A. R. Lubinsky, J. A. Rowlands, H. Kenmotsu, N. Nishimoto, T. Nishino, K. Tanioka, and Z. Wei, “Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing,” Proc. SPIE 9033, 90333S (2014).
[Crossref]

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

S. O. Kasap, M. Z. Kabir, and J. A. Rowlands, “Recent advances in X-ray photoconductors for direct conversion X-ray image detectors,” Curr. Appl. Phys. 6, 288–292 (2006).
[Crossref]

Ruffinatti, F. A.

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

Rui, D.

D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Saito, I.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Santoro, R.

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

Sato, N.

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

Sawant, A.

Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
[Crossref]

Scaduto, D. A.

D. A. Scaduto, A. R. Lubinsky, J. A. Rowlands, H. Kenmotsu, N. Nishimoto, T. Nishino, K. Tanioka, and Z. Wei, “Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing,” Proc. SPIE 9033, 90333S (2014).
[Crossref]

Schneider, A. B.

B. Sinnott, E. Ron, and A. B. Schneider, “Exposing the thyroid to radiation: a review of its current extent, risks, and implications,” Endocr. Rev. 31, 756–773 (2010).
[Crossref]

Scott, C. C.

S. Abbaszadeh, C. C. Scott, O. Bubon, A. Reznik, and K. S. Karim, “Enhanced detection efficiency of direct conversion X-ray detector using polyimide as hole-blocking layer,” Sci. Rep. 3, 3360 (2013).
[Crossref]

Seo, J.

Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017).
[Crossref]

Shang, C.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

She, J. C.

X. P. Bai, Z. P. Zhang, M. N. Chen, K. Wang, J. C. She, S. Z. Deng, and J. Chen, “Theoretical analysis and verification of electron-bombardment-induced photoconductivity in vacuum flat-panel detector,” J. Lightwave Technol. 39, 2618–2624 (2021).
[Crossref]

X. Q. Cao, G. F. Zhang, Y. Y. Zhao, Y. Xu, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source,” Appl. Phys. Lett. 119, 053501 (2021).
[Crossref]

D. K. Chen, Y. Xu, G. F. Zhang, Z. P. Zhang, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters,” Vacuum 144, 266–271 (2017).
[Crossref]

Shimosawa, T.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Sinnott, B.

B. Sinnott, E. Ron, and A. B. Schneider, “Exposing the thyroid to radiation: a review of its current extent, risks, and implications,” Endocr. Rev. 31, 756–773 (2010).
[Crossref]

Son, D.

Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017).
[Crossref]

Stanek, C. R.

X. Y. Liu, G. Pilania, A. A. Talapatra, C. R. Stanek, and B. P. Uberuaga, “Band-edge engineering to eliminate radiation-induced defect states in perovskite scintillators,” ACS Appl. Mater. Interfaces 12, 46296–46305 (2020).
[Crossref]

Su, R.

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
[Crossref]

Su, Z.

Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
[Crossref]

Sui, M.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Takagi, I.

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

Takakuwa, Y.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Talapatra, A. A.

X. Y. Liu, G. Pilania, A. A. Talapatra, C. R. Stanek, and B. P. Uberuaga, “Band-edge engineering to eliminate radiation-induced defect states in perovskite scintillators,” ACS Appl. Mater. Interfaces 12, 46296–46305 (2020).
[Crossref]

Tang, H.

X. Lu, L. D. Zhou, L. Chen, X. P. Ouyang, H. Tang, B. Liu, and J. Xu, “X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method,” ECS J. Solid State Sci. Technol. 8, Q3046–Q3049 (2019).
[Crossref]

Tang, J.

W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
[Crossref]

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Tanguay, J.

J. Tanguay and I. A. Cunningham, “Cascaded systems analysis of charge sharing in cadmium telluride photon‐counting X-ray detectors,” Med. Phys. 45, 1926–1941 (2018).
[Crossref]

Tanioka, K.

D. A. Scaduto, A. R. Lubinsky, J. A. Rowlands, H. Kenmotsu, N. Nishimoto, T. Nishino, K. Tanioka, and Z. Wei, “Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing,” Proc. SPIE 9033, 90333S (2014).
[Crossref]

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

Tapella, L.

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

Tie, S.

S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020).
[Crossref]

Tong, Y.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

Tousignant, O.

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

Tsuji, H.

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

Uberuaga, B. P.

X. Y. Liu, G. Pilania, A. A. Talapatra, C. R. Stanek, and B. P. Uberuaga, “Band-edge engineering to eliminate radiation-induced defect states in perovskite scintillators,” ACS Appl. Mater. Interfaces 12, 46296–46305 (2020).
[Crossref]

Villani, M.

G. Benassi, N. Zambelli, M. Villani, D. Calestani, M. Pavesi, A. Zappettini, L. Zanotti, and C. Paorici, “Oriented orthorhombic lead oxide film grown by vapour phase deposition for X-ray detector applications,” Cryst. Res. Technol. 48, 245–250 (2013).
[Crossref]

Wagner, R.

J. Xie, M. Chiu, E. May, Z. E. Meziani, S. Nelson, and R. Wagner, “MCP-PMT development at Argonne for particle identification,” J. Instrum. 15, C04038 (2020).
[Crossref]

Wakatsuki, S.

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

Wan, Y.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

Wang, G.

Z. Chen, Z. Li, Y. Zhuo, W. Chen, X. Ma, Y. Pei, and G. Wang, “Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition,” Appl. Phys. Express 11, 101101 (2018).
[Crossref]

Wang, K.

Z. P. Zhang, Z. M. Chen, M. N. Chen, K. Wang, H. J. Chen, S. Z. Deng, G. Hang, and J. Chen, “ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications,” Adv. Mater. Technol. 6, 2001094 (2021).
[Crossref]

X. P. Bai, Z. P. Zhang, M. N. Chen, K. Wang, J. C. She, S. Z. Deng, and J. Chen, “Theoretical analysis and verification of electron-bombardment-induced photoconductivity in vacuum flat-panel detector,” J. Lightwave Technol. 39, 2618–2624 (2021).
[Crossref]

Y. B. Xu, Q. Zhou, J. Huang, W. W. Li, J. Chen, and K. Wang, “Highly-sensitive indirect-conversion X-ray detector with an embedded photodiode formed by a three-dimensional dual-gate thin-film transistor,” J. Lightwave Technol. 38, 3775–3780 (2020).
[Crossref]

Z. P. Zhang, Z. J. Zhang, W. Zheng, K. Wang, H. J. Chen, S. Z. Deng, F. Huang, and J. Chen, “Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode,” Adv. Mater. Technol. 5, 1901108 (2020).
[Crossref]

Z. P. Zhang, K. Wang, K. S. Zheng, S. Z. Deng, N. S. Xu, and J. Chen, “Electron bombardment induced photoconductivity and high gain in a flat panel photodetector based on a ZnS photoconductor and ZnO nanowire field emitters,” ACS Photon. 5, 4147–4155 (2018).
[Crossref]

Wang, Y.

Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
[Crossref]

Watanabe, S.

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202A2 (2016).
[Crossref]

Wei, Z.

D. A. Scaduto, A. R. Lubinsky, J. A. Rowlands, H. Kenmotsu, N. Nishimoto, T. Nishino, K. Tanioka, and Z. Wei, “Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing,” Proc. SPIE 9033, 90333S (2014).
[Crossref]

Williams, R. T.

R. T. Williams, W. W. Wolszczak, X. Yan, and D. L. Carroll, “Perovskite quantum-dot-in-host for detection of ionizing radiation,” ACS Nano 14, 5161–5169 (2020).
[Crossref]

Wolszczak, W. W.

R. T. Williams, W. W. Wolszczak, X. Yan, and D. L. Carroll, “Perovskite quantum-dot-in-host for detection of ionizing radiation,” ACS Nano 14, 5161–5169 (2020).
[Crossref]

Wu, H.

W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
[Crossref]

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Xia, C. Q.

J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021).
[Crossref]

Xiao, C. Z.

D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Xiao, X.

J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni, and J. Huang, “Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector array,” Nat. Photonics 14, 612–617 (2020).
[Crossref]

Xiao, Z.

D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Xie, J.

J. Xie, M. Chiu, E. May, Z. E. Meziani, S. Nelson, and R. Wagner, “MCP-PMT development at Argonne for particle identification,” J. Instrum. 15, C04038 (2020).
[Crossref]

Xie, Q.

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Xie, Z.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

Xin, D.

S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020).
[Crossref]

Xu, J.

X. Lu, L. D. Zhou, L. Chen, X. P. Ouyang, H. Tang, B. Liu, and J. Xu, “X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method,” ECS J. Solid State Sci. Technol. 8, Q3046–Q3049 (2019).
[Crossref]

Xu, N. S.

X. Q. Cao, G. F. Zhang, Y. Y. Zhao, Y. Xu, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source,” Appl. Phys. Lett. 119, 053501 (2021).
[Crossref]

Z. P. Zhang, K. Wang, K. S. Zheng, S. Z. Deng, N. S. Xu, and J. Chen, “Electron bombardment induced photoconductivity and high gain in a flat panel photodetector based on a ZnS photoconductor and ZnO nanowire field emitters,” ACS Photon. 5, 4147–4155 (2018).
[Crossref]

Y. F. Li, Z. P. Zhang, G. F. Zhang, L. Zhao, S. Z. Deng, N. S. Xu, and J. Chen, “Optimizing the field emission properties of ZnO nanowire arrays by precisely tuning the population density and application in large-area gated field emitter array,” ACS Appl. Mater. Interfaces 9, 3911–3921 (2017).
[Crossref]

D. K. Chen, Y. Xu, G. F. Zhang, Z. P. Zhang, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters,” Vacuum 144, 266–271 (2017).
[Crossref]

Xu, Y.

X. Q. Cao, G. F. Zhang, Y. Y. Zhao, Y. Xu, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source,” Appl. Phys. Lett. 119, 053501 (2021).
[Crossref]

D. K. Chen, Y. Xu, G. F. Zhang, Z. P. Zhang, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters,” Vacuum 144, 266–271 (2017).
[Crossref]

Xu, Y. B.

Xu, Y. L.

J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021).
[Crossref]

Xu, Z.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
[Crossref]

Xue, K.

W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
[Crossref]

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

Yaffe, M.

M. Yaffe and J. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1–39 (1997).
[Crossref]

Yamada, T.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Yamada, Y.

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

Yamaguchi, H. Y.

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

Yamakoshi, S.

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202A2 (2016).
[Crossref]

Yamamoto, J.

Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
[Crossref]

Yamaoka, Y.

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202A2 (2016).
[Crossref]

Yan, X.

R. T. Williams, W. W. Wolszczak, X. Yan, and D. L. Carroll, “Perovskite quantum-dot-in-host for detection of ionizing radiation,” ACS Nano 14, 5161–5169 (2020).
[Crossref]

Yang, B.

W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
[Crossref]

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

Yang, L.

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
[Crossref]

Yang, X.

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

Yang, Z.

Z. Z. Li, F. G. Zhou, H. H. Yao, Z. P. Ci, Z. Yang, and Z. W. Jin, “Halide perovskites for high-performance X-ray detector,” Mater. Today 48, 155–175 (2021).

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
[Crossref]

Yao, H. H.

Z. Z. Li, F. G. Zhou, H. H. Yao, Z. P. Ci, Z. Yang, and Z. W. Jin, “Halide perovskites for high-performance X-ray detector,” Mater. Today 48, 155–175 (2021).

Ye, H.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
[Crossref]

Ye, J.

Yin, L.

W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
[Crossref]

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Yin, W. J.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

You, J.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
[Crossref]

Young, S. J.

S. J. Young and Y. L. Chu, “Characteristics of field emitters on the basis of Pd-adsorbed ZnO nanostructures by photochemical method,” ACS Appl. Nano Mater. 4, 2515–2521 (2021).
[Crossref]

Yuan, J.

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

Yuan, Y.

D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

Zambelli, N.

G. Benassi, N. Zambelli, M. Villani, D. Calestani, M. Pavesi, A. Zappettini, L. Zanotti, and C. Paorici, “Oriented orthorhombic lead oxide film grown by vapour phase deposition for X-ray detector applications,” Cryst. Res. Technol. 48, 245–250 (2013).
[Crossref]

Zanotti, L.

G. Benassi, N. Zambelli, M. Villani, D. Calestani, M. Pavesi, A. Zappettini, L. Zanotti, and C. Paorici, “Oriented orthorhombic lead oxide film grown by vapour phase deposition for X-ray detector applications,” Cryst. Res. Technol. 48, 245–250 (2013).
[Crossref]

Zappettini, A.

G. Benassi, N. Zambelli, M. Villani, D. Calestani, M. Pavesi, A. Zappettini, L. Zanotti, and C. Paorici, “Oriented orthorhombic lead oxide film grown by vapour phase deposition for X-ray detector applications,” Cryst. Res. Technol. 48, 245–250 (2013).
[Crossref]

Zhang, G. F.

X. Q. Cao, G. F. Zhang, Y. Y. Zhao, Y. Xu, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source,” Appl. Phys. Lett. 119, 053501 (2021).
[Crossref]

D. K. Chen, Y. Xu, G. F. Zhang, Z. P. Zhang, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters,” Vacuum 144, 266–271 (2017).
[Crossref]

Y. F. Li, Z. P. Zhang, G. F. Zhang, L. Zhao, S. Z. Deng, N. S. Xu, and J. Chen, “Optimizing the field emission properties of ZnO nanowire arrays by precisely tuning the population density and application in large-area gated field emitter array,” ACS Appl. Mater. Interfaces 9, 3911–3921 (2017).
[Crossref]

Zhang, M.

S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020).
[Crossref]

W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
[Crossref]

Zhang, N.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

Zhang, W. H.

S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
[Crossref]

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
[Crossref]

Zhang, Z. J.

Z. P. Zhang, Z. J. Zhang, W. Zheng, K. Wang, H. J. Chen, S. Z. Deng, F. Huang, and J. Chen, “Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode,” Adv. Mater. Technol. 5, 1901108 (2020).
[Crossref]

Zhang, Z. P.

Z. P. Zhang, Z. M. Chen, M. N. Chen, K. Wang, H. J. Chen, S. Z. Deng, G. Hang, and J. Chen, “ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications,” Adv. Mater. Technol. 6, 2001094 (2021).
[Crossref]

X. P. Bai, Z. P. Zhang, M. N. Chen, K. Wang, J. C. She, S. Z. Deng, and J. Chen, “Theoretical analysis and verification of electron-bombardment-induced photoconductivity in vacuum flat-panel detector,” J. Lightwave Technol. 39, 2618–2624 (2021).
[Crossref]

Z. P. Zhang, Z. J. Zhang, W. Zheng, K. Wang, H. J. Chen, S. Z. Deng, F. Huang, and J. Chen, “Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode,” Adv. Mater. Technol. 5, 1901108 (2020).
[Crossref]

Z. P. Zhang, K. Wang, K. S. Zheng, S. Z. Deng, N. S. Xu, and J. Chen, “Electron bombardment induced photoconductivity and high gain in a flat panel photodetector based on a ZnS photoconductor and ZnO nanowire field emitters,” ACS Photon. 5, 4147–4155 (2018).
[Crossref]

Y. F. Li, Z. P. Zhang, G. F. Zhang, L. Zhao, S. Z. Deng, N. S. Xu, and J. Chen, “Optimizing the field emission properties of ZnO nanowire arrays by precisely tuning the population density and application in large-area gated field emitter array,” ACS Appl. Mater. Interfaces 9, 3911–3921 (2017).
[Crossref]

D. K. Chen, Y. Xu, G. F. Zhang, Z. P. Zhang, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters,” Vacuum 144, 266–271 (2017).
[Crossref]

Zhao, B.

B. Zhao and W. Zhao, “Temporal performance of amorphous selenium mammography detectors,” Med. Phys. 32, 128–136 (2005).
[Crossref]

Zhao, J.

J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni, and J. Huang, “Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector array,” Nat. Photonics 14, 612–617 (2020).
[Crossref]

Zhao, L.

J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni, and J. Huang, “Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector array,” Nat. Photonics 14, 612–617 (2020).
[Crossref]

Y. F. Li, Z. P. Zhang, G. F. Zhang, L. Zhao, S. Z. Deng, N. S. Xu, and J. Chen, “Optimizing the field emission properties of ZnO nanowire arrays by precisely tuning the population density and application in large-area gated field emitter array,” ACS Appl. Mater. Interfaces 9, 3911–3921 (2017).
[Crossref]

Zhao, Q.

Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
[Crossref]

Zhao, W.

S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020).
[Crossref]

B. Zhao and W. Zhao, “Temporal performance of amorphous selenium mammography detectors,” Med. Phys. 32, 128–136 (2005).
[Crossref]

Zhao, Y. Y.

X. Q. Cao, G. F. Zhang, Y. Y. Zhao, Y. Xu, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source,” Appl. Phys. Lett. 119, 053501 (2021).
[Crossref]

Zheng, K. S.

Z. P. Zhang, K. Wang, K. S. Zheng, S. Z. Deng, N. S. Xu, and J. Chen, “Electron bombardment induced photoconductivity and high gain in a flat panel photodetector based on a ZnS photoconductor and ZnO nanowire field emitters,” ACS Photon. 5, 4147–4155 (2018).
[Crossref]

Zheng, W.

Z. P. Zhang, Z. J. Zhang, W. Zheng, K. Wang, H. J. Chen, S. Z. Deng, F. Huang, and J. Chen, “Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode,” Adv. Mater. Technol. 5, 1901108 (2020).
[Crossref]

Zheng, X. J.

S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020).
[Crossref]

Zhou, F. G.

Z. Z. Li, F. G. Zhou, H. H. Yao, Z. P. Ci, Z. Yang, and Z. W. Jin, “Halide perovskites for high-performance X-ray detector,” Mater. Today 48, 155–175 (2021).

Zhou, L. D.

X. Lu, L. D. Zhou, L. Chen, X. P. Ouyang, H. Tang, B. Liu, and J. Xu, “X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method,” ECS J. Solid State Sci. Technol. 8, Q3046–Q3049 (2019).
[Crossref]

Zhou, Q.

Zhou, Y.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Zhu, J.

S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020).
[Crossref]

Zhu, L.

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Zhuo, Y.

Z. Chen, Z. Li, Y. Zhuo, W. Chen, X. Ma, Y. Pei, and G. Wang, “Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition,” Appl. Phys. Express 11, 101101 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (2)

X. Y. Liu, G. Pilania, A. A. Talapatra, C. R. Stanek, and B. P. Uberuaga, “Band-edge engineering to eliminate radiation-induced defect states in perovskite scintillators,” ACS Appl. Mater. Interfaces 12, 46296–46305 (2020).
[Crossref]

Y. F. Li, Z. P. Zhang, G. F. Zhang, L. Zhao, S. Z. Deng, N. S. Xu, and J. Chen, “Optimizing the field emission properties of ZnO nanowire arrays by precisely tuning the population density and application in large-area gated field emitter array,” ACS Appl. Mater. Interfaces 9, 3911–3921 (2017).
[Crossref]

ACS Appl. Nano Mater. (1)

S. J. Young and Y. L. Chu, “Characteristics of field emitters on the basis of Pd-adsorbed ZnO nanostructures by photochemical method,” ACS Appl. Nano Mater. 4, 2515–2521 (2021).
[Crossref]

ACS Nano (1)

R. T. Williams, W. W. Wolszczak, X. Yan, and D. L. Carroll, “Perovskite quantum-dot-in-host for detection of ionizing radiation,” ACS Nano 14, 5161–5169 (2020).
[Crossref]

ACS Photon. (3)

Z. P. Zhang, K. Wang, K. S. Zheng, S. Z. Deng, N. S. Xu, and J. Chen, “Electron bombardment induced photoconductivity and high gain in a flat panel photodetector based on a ZnS photoconductor and ZnO nanowire field emitters,” ACS Photon. 5, 4147–4155 (2018).
[Crossref]

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photon. 7, 528–533 (2020).
[Crossref]

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, and X. Du, “Flexible X-ray detectors based on amorphous Ga2O3 thin films,” ACS Photon. 6, 351–359 (2019).
[Crossref]

ACS Sens. (1)

F. A. Ruffinatti, S. Lomazzi, L. Nardo, R. Santoro, A. Martemiyanov, M. Dionisi, L. Tapella, A. A. Genazzani, D. Lim, C. Distasi, and M. Caccia, “Assessment of a silicon-photomultiplier-based platform for the measurement of intracellular calcium dynamics with targeted aequori,” ACS Sens. 5, 2388–2397 (2020).
[Crossref]

Adv. Mater. (3)

D. Rui, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, C. Z. Xiao, and J. Huang, “High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites,” Adv. Mater. 27, 1912–1918 (2015).
[Crossref]

W. Pan, B. Yang, G. Niu, K. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. Miao, and J. Tang, “Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection,” Adv. Mater. 31, 1904405 (2019).
[Crossref]

S. Tie, W. Zhao, D. Xin, M. Zhang, J. D. Long, Q. Chen, X. J. Zheng, J. Zhu, and W. H. Zhang, “Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit,” Adv. Mater. 32, 2001981 (2020).
[Crossref]

Adv. Mater. Technol. (2)

Z. P. Zhang, Z. M. Chen, M. N. Chen, K. Wang, H. J. Chen, S. Z. Deng, G. Hang, and J. Chen, “ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications,” Adv. Mater. Technol. 6, 2001094 (2021).
[Crossref]

Z. P. Zhang, Z. J. Zhang, W. Zheng, K. Wang, H. J. Chen, S. Z. Deng, F. Huang, and J. Chen, “Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode,” Adv. Mater. Technol. 5, 1901108 (2020).
[Crossref]

Adv. Sci. (1)

G. Kakavelakis, M. Gedda, A. Panagiotopoulos, E. Kymakis, T. D. Anthopoulos, and K. Petridis, “Metal halide perovskites for high‐energy radiation detection,” Adv. Sci. 7, 2002098 (2020).
[Crossref]

AIP Adv. (1)

K. A. Mengle and E. Kioupakis, “Vibrational and electron-phonon coupling properties of β-Ga2O3 from first-principles calculations: impact on the mobility and breakdown field,” AIP Adv. 9, 015313 (2019).
[Crossref]

Appl. Phys. Express (1)

Z. Chen, Z. Li, Y. Zhuo, W. Chen, X. Ma, Y. Pei, and G. Wang, “Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition,” Appl. Phys. Express 11, 101101 (2018).
[Crossref]

Appl. Phys. Lett. (1)

X. Q. Cao, G. F. Zhang, Y. Y. Zhao, Y. Xu, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source,” Appl. Phys. Lett. 119, 053501 (2021).
[Crossref]

Cryst. Res. Technol. (1)

G. Benassi, N. Zambelli, M. Villani, D. Calestani, M. Pavesi, A. Zappettini, L. Zanotti, and C. Paorici, “Oriented orthorhombic lead oxide film grown by vapour phase deposition for X-ray detector applications,” Cryst. Res. Technol. 48, 245–250 (2013).
[Crossref]

Curr. Appl. Phys. (1)

S. O. Kasap, M. Z. Kabir, and J. A. Rowlands, “Recent advances in X-ray photoconductors for direct conversion X-ray image detectors,” Curr. Appl. Phys. 6, 288–292 (2006).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

X. Lu, L. D. Zhou, L. Chen, X. P. Ouyang, H. Tang, B. Liu, and J. Xu, “X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method,” ECS J. Solid State Sci. Technol. 8, Q3046–Q3049 (2019).
[Crossref]

Endocr. Rev. (1)

B. Sinnott, E. Ron, and A. B. Schneider, “Exposing the thyroid to radiation: a review of its current extent, risks, and implications,” Endocr. Rev. 31, 756–773 (2010).
[Crossref]

IEEE Trans. Electron Dev. (2)

Y. Gotoh, H. Tsuji, M. Nagao, T. Masuzawa, Y. Neo, H. Mimura, T. Okamoto, T. Igari, M. Akiyoshi, N. Sato, and I. Takagi, “Development of a field emission image sensor tolerant to gamma-ray irradiation,” IEEE Trans. Electron Dev. 67, 1660–1665 (2020).
[Crossref]

Y. Honda, M. Nanba, K. Miyakawa, M. Kubota, M. Nagao, Y. Neo, H. Mimura, and N. Egami, “Double-gated, Spindt-type field emitter with improved electron beam extraction,” IEEE Trans. Electron Dev. 63, 2182–2189 (2016).
[Crossref]

J. Instrum. (1)

J. Xie, M. Chiu, E. May, Z. E. Meziani, S. Nelson, and R. Wagner, “MCP-PMT development at Argonne for particle identification,” J. Instrum. 15, C04038 (2020).
[Crossref]

J. Lightwave Technol. (2)

J. Phys. D (1)

S. O. Kasap, “X-ray sensitivity of photoconductors: application to stabilized a-Se,” J. Phys. D 33, 2853–2865 (2000).
[Crossref]

J. Synchrotron Radiat. (1)

T. Miyoshi, N. Igarashi, N. Matsugaki, Y. Yamada, K. Hirano, K. Hyodo, K. Tanioka, N. Egami, M. Namba, M. Kubota, T. Kawai, and S. Wakatsuki, “Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography,” J. Synchrotron Radiat. 15, 281–284 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202A2 (2016).
[Crossref]

Mater. Today (1)

Z. Z. Li, F. G. Zhou, H. H. Yao, Z. P. Ci, Z. Yang, and Z. W. Jin, “Halide perovskites for high-performance X-ray detector,” Mater. Today 48, 155–175 (2021).

Med. Phys. (2)

J. Tanguay and I. A. Cunningham, “Cascaded systems analysis of charge sharing in cadmium telluride photon‐counting X-ray detectors,” Med. Phys. 45, 1926–1941 (2018).
[Crossref]

B. Zhao and W. Zhao, “Temporal performance of amorphous selenium mammography detectors,” Med. Phys. 32, 128–136 (2005).
[Crossref]

Nat. Commun. (3)

J. L. Peng, C. Q. Xia, Y. L. Xu, R. M. Li, L. H. Cui, J. K. Clegg, L. M. Herz, M. B. Johnston, and Q. Q. Lin, “Crystallization of CsPbBr3 single crystals in water for X-ray detection,” Nat. Commun. 12, 1531 (2021).
[Crossref]

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzidis, and S. Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection,” Nat. Commun. 11, 2304 (2020).
[Crossref]

B. Yang, W. Pan, H. Wu, G. Niu, J. Yuan, K. Xue, L. Yin, X. Du, X. Miao, X. Yang, Q. Xie, and J. Tang, “Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging,” Nat. Commun. 10, 1989 (2019).
[Crossref]

Nat. Photonics (2)

J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni, and J. Huang, “Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector array,” Nat. Photonics 14, 612–617 (2020).
[Crossref]

W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Nature (1)

Y. C. Kim, K. H. Kim, D. Son, D. Jeong, J. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, and N. Park, “Printable organometallic perovskite enables large-area, low-dose X-ray imaging,” Nature 550, 87–91 (2017).
[Crossref]

Photon. Res. (1)

Phys. Med. Biol. (2)

M. Yaffe and J. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1–39 (1997).
[Crossref]

Z. Su, L. E. Antonuk, M. Y. El, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50, 2907–2928 (2005).
[Crossref]

Proc. R. Soc. London A (1)

R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London A 119, 173–181 (1928).
[Crossref]

Proc. SPIE (1)

D. A. Scaduto, A. R. Lubinsky, J. A. Rowlands, H. Kenmotsu, N. Nishimoto, T. Nishino, K. Tanioka, and Z. Wei, “Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing,” Proc. SPIE 9033, 90333S (2014).
[Crossref]

Sci. Rep. (1)

S. Abbaszadeh, C. C. Scott, O. Bubon, A. Reznik, and K. S. Karim, “Enhanced detection efficiency of direct conversion X-ray detector using polyimide as hole-blocking layer,” Sci. Rep. 3, 3360 (2013).
[Crossref]

Sensors (2)

T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Y. Yamaguchi, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. T. T. Koh, D. H. C. Chua, Y. Mori, T. Shimosawa, and K. Okano, “Development of an amorphous selenium-based photodetector driven by a diamond cold cathode,” Sensors 13, 13744–13778 (2013).
[Crossref]

S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, and J. A. Rowlands, “Amorphous and polycrystalline photoconductors for direct conversion fat panel X-ray image sensors,” Sensors 11, 5112–5157 (2011).
[Crossref]

Vacuum (1)

D. K. Chen, Y. Xu, G. F. Zhang, Z. P. Zhang, J. C. She, S. Z. Deng, N. S. Xu, and J. Chen, “A double-sided radiating flat-panel X-ray source using ZnO nanowire field emitters,” Vacuum 144, 266–271 (2017).
[Crossref]

Other (1)

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM Phot. Cross Sect. Database (Version 1.5),” https://physics.nist.gov/xcom (2010).

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Comparison of conceptual design of X-ray detectors and corresponding X-ray response mechanism. (a) Conventional X-ray detectors with TFT readout. (b) Proposed X-ray detectors with vacuum FEA readout.
Fig. 2.
Fig. 2. Implementation and characterizations of the X-ray detectors. (a) Schematic layout of the vacuum cold cathode X-ray detector. (b) Actual picture of the fabricated X-ray detector. (c) Arrays of patterned ZnO NWs (top image) and cross-sectional view of ZnO NWs (bottom image). (d) Field emission J-E curve of the ZnO NWs with inset showing the corresponding F-N curve. (e) Typical XRD pattern of β-Ga2O3 bulk photoconductor. (f) Total mass attenuation of X-rays in β-Ga2O3 bulk photoconductor showing the contribution from Compton scattering, photoelectric effect, and pair production and that of a-Se and CsPbBr3 photoconductors.
Fig. 3.
Fig. 3. Detection performance and operation principle of the proposed X-ray detector. (a), (b) Dark current and photocurrent of the X-ray detector at low and high electric fields. (c) F-N curves of the dark current and photocurrent. (d)–(f) Schematic of the operation principle of X-ray detector at different applied electric fields. (g) The detection sensitivity versus applied electric field curves of the X-ray detector. (h) Internal gain versus electric field curve of the detector under X-ray illumination with the X-ray tube voltage of 6 kV and the X-ray tube current of 0.6 mA. (i) The detection sensitivity versus X-ray tube voltage curves of the X-ray detector with inset showing the theoretical determination of detector sensitivity as a function of X-ray energy. (The experimental value was measured using a DC X-ray tube without beam filters.)
Fig. 4.
Fig. 4. Temporal response of the X-ray detector. (a)–(c) Time-dependent photocurrent of the X-ray detector with pulsed X-ray source on and off at 5Vμm-1 electric field. (d) The SNRs under different X-ray dose rates with inset showing the temporal responses under different X-ray dose rates.

Tables (1)

Tables Icon

Table 1. Comparison of Performance Metrics of Direct-Conversion X-ray Detectors Based on Different Photoconductors and Photoelectron Multiplication Mechanisms

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I=AV2Eφt2(y)exp(BEφ32Vv(y)),
G=IRIP=IRφβe,
S=GCeΨαen(1exp(αT))W±,