Abstract

In this paper, a pulsed electrically pumped GaN-based vertical-cavity surface-emitting laser (VCSEL) with one dielectric distributed Bragg reflector and one n-GaN monolithic high-index contrast grating (MHCG) mirror was demonstrated at room temperature. The reflectance of the n-GaN MHCG and cavity mode behaviors of the VCSEL with MHCG for varying n-GaN thickness, MHCG pattern diameter, and current aperture size were numerically investigated. Measured characteristics of the fabricated device showed that the lasing action started at an injection current of 10.2 mA, corresponding to a current density of about 15.1kA/cm2. Above threshold, the measured slope efficiency was 6.2×103W/A, and the output power was 0.13 mW at 30 mA. Moreover, the measured lasing peak occurring at 403.4 nm and the longitudinal mode spacing of 5.6 nm were in good agreement with simulations. The incorporation of an n-GaN MHCG mirror not only greatly simplified the fabrication but also substantially improved the lasing characteristics in comparison to the previous work applying TiO2 HCG mirrors.

© 2021 Chinese Laser Press

1. INTRODUCTION

Vertical-cavity surface-emitting lasers (VCSELs) have been developed for over forty years and have attracted considerable attention due to many advantageous features, such as the light beam emitting from the top surface, circular and low-divergence beam, low threshold operation, compact size, and high output power brought by array of lasers. To date, VCSELs are considered as established light sources to be widely used in numerous applications, e.g., laser printing [1], laser display [2], optical communication [3,4], optical clock [5], gas sensor [6,7], three-dimensional (3D) sensing, and light detection and ranging (LiDAR) application [810], which operate in red to mid-infrared (MIR) wavelength bands. To have even shorter-wavelength devices, GaN-based VCSELs have quickly evolved in recent years [1114]. Especially distributed Bragg reflectors (DBRs) for nitride-based VCSELs have been considered the most critical component to ensure proper laser operation. Different types of DBRs have been demonstrated, including epitaxial DBRs [15,16], dielectric DBRs [17,18], air-gap DBRs [19,20], and nanoporous DBRs [21,22]. We recently demonstrated a free-standing TiO2 high-index contrast grating (HCG) with high reflectivity of up to 95% and wide bandwidth of 25 nm in the visible light spectrum [23]. Furthermore, an optically pumped GaN microcavity and an electrically pumped GaN-based VCSEL with specific TiO2 HCGs for emitting the transverse magnetic (TM) and transverse electric (TE) polarized light have been realized successfully [24,25]. The feature of polarization control becomes one of the advantages of VCSELs with HCGs. However, there are some technical issues for creating a highly reflective TiO2 HCG mirror deposited on the GaN layer. TiO2 layers deposited by spin coating [26], sputtering [27,28], or ultrasonic spray pyrolysis [29] suffer from thickness uncertainty/surface roughness, over-etching, and a nonnegligible extinction coefficient (103to102 for a wavelength of 400nm [2729]) in the blue-ultraviolet wavelength regime. Even when the TiO2 film was prepared by atomic layer deposition (ALD), resulting in a much-reduced extinction coefficient of 6.5×104, the corresponding absorption coefficient was still over 200cm1 for a wavelength of 400 nm [30,31]. Referring to the development of mid-infrared VCSELs with integrally formed suspended HCG mirrors [32,33] and near-infrared VCSELs with GaAs-based monolithic HCG (MHCG) [34,35], GaN MHCG mirrors should be able to integrate with GaN-based VCSELs because the free-carrier absorption coefficient of n-GaN is only in the magnitude of 10cm1 [36].

As a result, we proposed and designed GaN-based VCSELs with GaN MHCG mirrors directly constructed by electron-beam lithography and dry etching. It was found that previous works about InP-based mid-infrared VCSELs with HCG mirrors only showed the reflection spectra of the HCG structure [37,38]. For GaAs-based VCSELs, several simulation works about GaAs HCG mirrors have been published [32,39,40], and the numerical and experimental results have elucidated the impact of HCG parameters on resonant wavelength and threshold current of VCSELs with air-suspended HCGs [41]. As for the vertical microcavities directly integrated with an MHCG and a DBR and/or sandwiched by two MHCGs, the impact of MHCG parameters on the quality factor and resonant wavelength has been studied [42]. However, a more comprehensive study on influences of geometric parameters such as duty cycle, height of the MHCG, cavity thickness, and aperture size on the cavity resonance and threshold material gain of GaN-based VCSELs has not yet been clearly disclosed.

In this paper, we will simulate the reflectance spectra of an HCG mirror made by n-doped GaN (n-GaN) for varying HCG geometric parameters including period, duty cycle, and height, and we further investigate the effects of HCG parameters and n-GaN thickness on cavity mode behaviors for a periodic unit cell of VCSELs combining an MHCG through the two-dimensional (2D) finite element method (FEM). Subsequently a 2D cross-sectional VCSEL structure with a finite number of MHCG will be built to investigate the effects of aperture size and MHCG pattern size on the lasing mode properties. Finally, the fabrication and measurement of the first ever reported current-injected GaN-based VCSELs integrated with MHCG mirrors will be demonstrated and analyzed.

2. OPTICAL SIMULATION

In the following optical simulations, we used the finite element frequency domain technique by using COMSOL Multiphysics. The schematic of a 3D rectangular HCG structure placed on the n-GaN layer in shown in Fig. 1(a). The grating’s period, width, and height are labelled as Λ, w and h respectively. The period Λ of 375 nm was chosen to yield a peak reflectivity from the HCG at a wavelength of 403 nm to match the photoluminescence (PL) peak from the InGaN quantum wells. The cyan arrows indicate the electric-field directions of TE- and TM-polarized light. Moreover, the color distribution indicates the electric field intensity under the TE-polarized light excited at the bottom face of the n-GaN layer. The white arrowheads illustrate the electrical energy flowing back to the n-GaN layer for favorable design of highly reflective grating.

 figure: Fig. 1.

Fig. 1. (a) Schematic drawing of HCG placed on the n-GaN. The bottom layer is n-GaN, and a plane wave is incident from the bottom. HCGs are made directly on the n-GaN. Top is the air. Fw- and Fh-dependent TE reflectance maps of HCG made by (b) TiO2 and (c) n-GaN for the grating period of 375 nm and incident wavelength of 403 nm. (d) TE reflectance map of n-GaN HCG as functions of wavelength and Fw. The grating period is 375 nm, and grating height is 100 nm. (e) TE reflectance map of n-GaN HCG as functions of wavelength and Fh. The grating period is 375 nm, and Fw is 36%. (f) TE reflectance map of n-GaN HCG as functions of period and Fw. The wavelength is set as 403 nm, and grating height is 100 nm. Contours express the calculated TM reflectances.

Download Full Size | PPT Slide | PDF

Figures 1(b) and 1(c) are the TE reflectance maps (TM reflectance contours) of HCG mirrors made by TiO2 and n-GaN, respectively, for a period Λ of 375 nm and an incident wavelength at 403 nm. Here, two normalized geometry parameters are defined as Fw=w/Λ and Fh=h/Λ. For comparison of two kinds of HCGs made by the ALD-deposited TiO2 layer and as-grown n-GaN, the refractive indices of TiO2 and n-GaN at a wavelength of 403 nm used in the simulations are 2.671 [31] and 2.531 [25], respectively. The magenta zones inscribed in Figs. 1(b) and 1(c) signify the evaluated TE-polarized reflectance greater than 0.995. These two reflectance maps are very similar; however, the larger magenta zone of the HCG mirror made by n-GaN implies that the fabrication window of HCG can be larger with parameters (Fw, Fh) = (30%–42%, 25.5%–28.5%). The TE reflectance spectra of the n-GaN MHCG mirror for parameters (Fw, Fh) versus wavelength are shown in Figs. 1(d) and 1(e). Clearly, the simulated results denote that the central wavelength of TE-polarized reflectance is very close to 403 nm. It can be found that the calculated reflectance is strongly dependent on the Fh but weakly dependent on the Fw. The period- and duty-cycle-dependent reflectance map of n-GaN MHCG is also shown in Fig. 1(f). In order to obtain a high reflectivity above 99.5%, a period within 375±10nm and a duty cycle of 36±6 are required. It is worth noting that the effect of the HCG’s sidewall angle on the reflectivity was also investigated [see Figs. 5(a) and 5(b) in Appendix A for the effect of sidewall angle on the reflectivity]. In the case of Fw=35%, the highest reflectivity has no significant drop for the trapezoid-shaped HCGs with 15° of tilted angle.

Then, a periodic unit cell model was considered to calculate the cavity mode characteristics of a GaN-based VCSEL structure with 10 pairs of InGaN/GaN multiple quantum wells (MQWs). The simple sketch of a periodic VCSEL unit cell is shown in the inset of Fig. 6(a) (Appendix B), and the detailed VCSEL layer structure is shown in Fig. 3(a). The material gain spectrum was described by a Gaussian function with a maximum at 403 nm and a standard deviation of 10 nm. The absorption coefficients of the p-doped electron blocking layer (p-EBL), p-doped GaN (p-GaN), and indium-tin-oxide (ITO) layer were assumed to be 50, 100, and 2000cm1, respectively. In our calculation, the bottom dielectric DBR was considered as a lossless medium. The calculations of cavity mode wavelength and threshold gain were performed by 2D FEM eigenvalue analysis. We used the stationary iterative method and tuned the peak of the material gain spectrum to solve the eigenmode problem for searching a minimum threshold gain when the modal loss is compensated for by the material gain. The effect of cavity thickness and Fano resonance has been detailed in Appendix B. Figures 2(a) and 2(b) summarize the calculated threshold gain mapping of a VCSEL unit cell with an MHCG mirror and a TiO2 HCG mirror for varying HCG parameters (Fw and Fh). Characterized threshold gains are compartmentalized by using different color blocks, and white contours indicate associated cavity mode wavelengths. Evidently, there is an ellipse-like zone having a relatively lower threshold gain of 2000cm1 illustrated by a green dashed contour that falls within the range of Fw=30%38% and Fh=25.5%27.5%. The minimum threshold gains of a VCSEL unit cell with two kinds of HCGs without considering the light scattering loss that results from the light leaking out of the cavity are 1968.5cm1 at (Fw=33% and Fh=26.5%) and 2167.6cm1 at (Fw=34.6% and Fh=23.4%). From Fig. 2(b), we can see that the threshold gains for the case of TiO2 HCG are higher than those of VCSELs with GaN MHCGs, and the low-threshold gain area is smaller. In addition, the impact of sidewall angle on the threshold gain has also elaborated. The minimum threshold will be increased by 1.14% and 2.02% for sidewall angles of 10° and 15°, respectively. Moreover, the suitable HCG parameters for a low-threshold VCSEL laser will shift to a slightly smaller Fw and Fh as compared with aforementioned result (see Fig. 8 in Appendix C for the effect of sidewall angle on the threshold).

 figure: Fig. 2.

Fig. 2. (a) HCG parameter-dependent threshold gains of a periodic VCSEL unit cell with n-GaN MHCG and a 3155 nm thick n-GaN layer. Green and white contours indicate the threshold gain and cavity wavelength. (b) HCG parameter-dependent threshold gains of a periodic VCSEL unit cell with TiO2 HCG and a 3155 nm thick n-GaN layer. Green and white contours indicate the threshold gain and cavity wavelength. (c) Calculated threshold gains of a 2D cross-sectional VCSEL with a finite period of HCG for varying aperture and HCG pattern sizes. The top horizontal axis variable represents the width of the HCG pattern that is 0 to 16 μm larger than the 9 μm aperture. Half-symmetric mode profiles of VCSEL integrated with (d) 9 μm width, (e) 13 μm width, (f) 17 μm width, and (g) 21 μm width HCG patterns. The aperture size is fixed at 9 μm. The vertical white line and sky-blue line indicate the boundaries of aperture and HCG pattern.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3.

Fig. 3. (a) 3D schematic of GaN-based VCSEL directly integrated with an n-GaN HCG mirror. (b) TEM image of an n-GaN HCG. (c) OM image of a current-injected VCSEL. (d) TEM image of a GaN-based VCSEL integrated with a monolithic n-GaN HCG mirror.

Download Full Size | PPT Slide | PDF

To account for the light scattering effect on the threshold gain from the SiO2 aperture size and HCG pattern diameter, a 2D cross-sectional VCSEL structure combining a GaN MHCG mirror with Fw=33%, Fh=26.5%, a period of 375 nm, and a 3155 nm thick n-GaN was simulated, and the results are shown in Fig. 2(c). Here, MQWs located outside the aperture have the absorption coefficient of 5400cm1 [43]. The blue symbols show the calculated threshold gain when the HCG pattern diameter is the same as that of the aperture. By contrast, the red symbols represent the threshold gain as a function of the HCG pattern size that is larger than the aperture size for a fixed aperture diameter of 9 μm. The top horizontal axis variable means the diameter of the HCG pattern is 0 to 16 μm larger than that of the aperture. As a consequence, the lateral scattering loss induced by the higher-order diffractions and the metal absorption loss induced by the SiO2 aperture and discontinuous interfaces of the underlying DBRs play critical roles in the modal loss. It is noticed that MHCG induces undesirable first-order diffraction, and the SiO2 aperture also induces some diffractions. Due to the fact that standing resonant light has nonzero lateral wave vector components that are not totally reflected by DBR, part of the diffracted light is absorbed by metal below the DBR, and the remaining part reflected by DBR laterally leaks out of the cavity, which can be nicely seen in Figs. 2(d)–2(g). As a result, the calculated threshold gain is increased by at least a factor of 2 from that of Fig. 2(a) when considering the light diffraction.

The modal loss can be divided into vertical mirror loss, vertical scattering loss (light leaks from flat n-GaN), horizontal scattering loss (light will be absorbed by lossy media), and metal absorption loss. Typically, the vertical mirror loss is inversely proportional to the aperture size. However, the lateral diffractive scattering field is guided by DBR/metal (Au) and air due to the total internal reflection effect, and the propagation paths of lateral diffractive scattering fields will be modulated by the aperture size for a fixed mesa. So the behavior of horizontal scattering loss will be an oscillating decreasing phenomenon as the aperture size increases (see Fig. 9 in Appendix D for the oscillating phenomenon). Therefore, the combined effect causes an inflection point in the blue fitting curve as plotted in Fig. 2(c), which results in a local minimum threshold gain when aperture size is within the range of 8 to 9 μm.

On the other hand, when the HCG pattern diameter is larger than that of the aperture, the threshold gain will slightly increase. This is due to the fact that the laterally extended HCG would excite more diffractive scattering losses. Correspondingly, the normalized half-symmetric mode intensities of a VCSEL with a 9 μm aperture for four different HCG pattern sizes are shown in Figs. 2(d)–2(g). The color range of the cavity modes is highlighted to perceive lateral diffractive waves. Then, in the case of an aperture diameter of 9 μm, the size difference between HCG and aperture is preferred in a range of 11 to 12 μm. Since the accurate alignment between the HCG pattern and aperture is rather difficult, an aperture diameter of 9 μm and a 20 μm wide HCG pattern are chosen as a candidate for the GaN-based VCSEL with a monolithic HCG mirror.

3. DEVICE FABRICATION

Figure 3(a) illustrates a 3D schematic drawing of the fabricated current-injected VCSEL with a bottom dielectric DBR and a top HCG mirror. The VCSEL was grown on a sapphire substrate and consisted of a 2 μm thick undoped bulk GaN, a 5 μm thick n-GaN, 10 pairs of InGaN/GaN MQWs, an 8.8 nm thick p-electron blocking layer, and a 140 nm thick p-GaN. The wafer is actually the same as what we made for VCSELs with a TiO2 HCG mirror [25]. After that, a 30 nm thick SiO2 current aperture with a diameter of 9 μm was deposited on the p-GaN by ALD. Subsequently, a 30 nm ITO layer and a 12-pair Ta2O5/SiO2 DBR were deposited by sputtering and electron beam evaporation, respectively. After the wafer was upside-down bonded to another Si substrate by gold-gold thermos-compression bonding, the sapphire substrate was removed by laser liftoff, and the undoped GaN and n-GaN were polished to a final thickness of roughly 3.2±0.05μm.

Finally, the HCG mirror was directly fabricated in the top of the n-GaN layer through electron beam lithography to define the 60 nm thick hydrogen silsesquioxane (HSQ) dry etch mask, and Cl2/Ar reactive ion etching to transfer the pattern into the n-GaN, followed by HSQ mask removal by a buffered oxide etch. It is noted that the grating height and thickness of the n-GaN are crucially important parameters for VCSELs with MHCG mirrors. The high-resolution transmission electron microscopy (TEM) images of the MHCG and VCSEL structure are shown in Figs. 3(b) and 3(d).

Slightly trapezoid-like n-GaN gratings were observed and had a measured top (bottom) grating bar width of 127.1 (169.4) nm, height of 98.8 nm, and period of 375.6 nm (optimal HCG parameters for a low-threshold VCSEL are a grating bar width of 125nm, a height of 100nm, and a period of 375nm according to simulations). The top and bottom widths of the grating correspond to duty cycles of 33.8% and 45.1%. The average duty cycle is still less than 40%, which is located in the high-reflectivity zone according to the simulations. Moreover, the sidewall angle of HCG was estimated at around 12°, and the simulation forecasted reflection of HCG with trapezoid shape can still be higher than 0.995 [see Fig. 5(c) in Appendix A]. The thickness measured from the ITO layer to the top of the HCG is near 3.58 μm. Furthermore, the optical microscope (OM) image of a VCSEL with an n-GaN HCG mirror is shown in Fig. 3(c). The estimated diameters of current aperture and HCG pattern are approximately 9.3 μm and 20 μm.

4. OPTOELECTRONIC CHARACTERISTICS

The light output power-current-voltage (L-I-V) curves and emission spectra measured at room temperature for the VCSEL with a monolithic HCG mirror under pulsed condition are shown in Fig. 4. The lasing was observed above a current of 10.2 mA, corresponding to a threshold current density of about 15.1kA/cm2. The lasing threshold was reduced significantly compared to 31.8kA/cm2 for the VCSEL with a TiO2 HCG mirror [25]. Since we used the same epitaxial wafer to make these two kinds of VCSELs, the benefits of the GaN VCSEL with MHCG are obvious. The measured slope efficiency was about 6.2×103W/A, and the output power at 30 mA was 0.13 mW.

 figure: Fig. 4.

Fig. 4. Measured (a) L-I-V curves and (b) electroluminescence spectra of a current-injected GaN-based VCSEL integrated with a monolithic n-GaN HCG mirror. The top inset shows the measured polarization curve and SEM image of the HCG pattern. The bottom inset shows the near-field emission pattern above the threshold. The dashed line indicates the current aperture, and the scale bar is 2 μm.

Download Full Size | PPT Slide | PDF

The current-dependent electroluminescence spectra show that a lasing peak occurs at 403.4 nm, and two longitudinal modes below the threshold condition are observed with a mode spacing of near 5.6 nm. There is a small difference in the lasing wavelength and mode spacing between experiment and simulation, which could be due to a small uncertainty in the refractive index and thickness of n-GaN. A theoretical paper gave a comparison of the energy-momentum dispersions for vertical microcavities with double DBRs and HCG-DBR configurations [44]. The dispersion of a microcavity with HCG-DBR is steeper than that of double DBRs, which means that if the lateral component of the wave vector exists in the mode, such mode suffers stronger light leakage. We supposed that our VCSEL with MHCG facilitates single-mode operation due to this special cavity dispersion. The near field above the threshold in the inset of Fig. 4(b) shows a strong single lobe at the center of the current aperture.

Moreover, the inset plotted in Fig. 4(b) is the measured polarization curve of the emission beam overlaid on the top-view SEM image of the HCG. It demonstrates that the laser has its electric-field polarized parallel to the n-GaN grating bars, i.e., TE polarized, with a degree of polarization of about 90%.

5. CONCLUSION

In conclusion, we have calculated the reflectance of HCG mirrors made by n-GaN and further investigated the threshold gain of a VCSEL with an n-GaN MHCG by FEM. Meanwhile, a 2D cross-sectional VCSEL with a finite extension of the MHCG was constructed to analyze the light scattering effect on threshold gains of VCSELs. The simulations revealed that the scattering loss accounted for a large part of modal loss. We then fabricated current injected VCSELs with a dielectric DBR on one side and an n-GaN MHCG mirror on the other. The threshold current of these devices was greatly reduced compared to our previous HCG VCSELs with an HCG in TiO2, which is believed to be due to the significantly lower absorption coefficient and better material quality of MHCG. The lasing wavelength and mode spacing satisfactorily match those predicted by the numerical calculations.

APPENDIX A: REFLECTANCE FOR TRAPEZOIDAL n-GaN MHCG

The schematic of periodic trapezoidal n-GaN MHCG is shown in the inset of Fig. 5(c). The effect of sidewall angle (θ) on reflectance of trapezoidal MHCG has been investigated. Figures 5(a) and 5(b) are the simulated reflectance maps for Fh=26% and Fh=27%, respectively. The magenta zones depicted in Figs. 5(a) and 5(b) represent the evaluated TE-polarized reflectance greater than 0.995. As a consequence, if the duty cycle (Fw) and height (Fh) are located within the range of 30% to 40% and 26% to 27%, the highest reflectance of MHCG would be independent of the sidewall angle when the angle is less than 20°. Besides, we have also numerically estimated the reflectance of realistic MHCG parameters (Fw=33.8%, Fh=26.3%, and Λ=375.6nm) measured from TEM image as shown in Fig. 3(b). The angle-dependent reflectance spectra show the trapezoidal HCG can still be used as a high-reflectivity mirror.

 figure: Fig. 5.

Fig. 5. Calculated reflectance map of trapezoidal MHCG for (a) Fh=26%, (b) Fh=27% when the period is fixed at 375 nm. (c) TE-polarized reflectance of trapezoidal MHCG as a function of tile angle θ for Fw=33.8%, Fh=26.3%, and Λ=375.6nm.

Download Full Size | PPT Slide | PDF

APPENDIX B: THRESHOLD GAINS, OPTICAL CONFINEMENT, AND MODE PROFILE OF A GaN-BASED VCSEL UNIT CELL WITH A RECTANGULAR n-GaN MHCG

The simulated resonance wavelength and threshold material gain for different longitudinal cavity modes as a function of n-GaN thickness for a VCSEL with a bottom dielectric DBR and a top n-GaN MHCG mirror are displayed in Figs. 6(a) and 6(b). The n-GaN thickness does not include the height of the MHCG. The MHCG’s parameters were fixed at Fw=36%, Fh=26%, and Λ=375nm. The gray dotted line in Fig. 6(a) denotes the targeted PL peak wavelength of 403 nm. Three resonant cavity modes near 403 nm are labelled by #1, #2, and #3. These three modes belong to different longitudinal modes. The periodic n-GaN thickness is approximately 80 nm to meet the target wavelength for different longitudinal modes, and the calculated longitudinal mode spacings for a 3155 nm thick n-GaN were 6.18 nm and 5.71 nm between #1/#2 and #2/#3, respectively. The simulated cavity mode profiles with resonant wavelength of 403 nm for n-GaN layer thicknesses of 3075, 3155, and 3235 nm are shown in Figs. 6(c)–6(e). The calculated threshold gains were 2040.8, 2009.7, and 2429.6cm1. Typically, the mode with the lowest threshold gain will dominate the lasing process. Therefore, mode #2 shall be the lasing mode when the n-GaN thickness is around 3155 nm. Variation in the n-GaN thickness away from 3155 nm will further increase the threshold gain. On the other hand, it can be seen that the resonant mode profiles appear with imperfect planar wavefronts due to the diffraction effect. The calculated optical confinements of MQW and ITO layer for different n-GaN thicknesses were also evaluated and shown in Figs. 7(a) and 7(b). Furthermore, if the n-GaN thickness is not chosen appropriately, the cavity mode can suffer from a strong Fano resonance effect where the diffraction spikes [see Figs. 7(c), 7(d), and 7(e)] induced by the periodic grating would vigorously increase the threshold material gain, caused by an increased absorption loss inside the ITO layer [see Fig. 7(b)].

 figure: Fig. 6.

Fig. 6. (a) Wavelengths and (b) threshold gains of cavity modes for a VCSEL unit cell integrated with a bottom DBR and an n-GaN HCG mirror. Simulated cavity modes of a VCSEL unit cell with (c) 3075 nm thick, (d) 3155 nm thick, and (e) 3235 nm thick n-GaN layers.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7.

Fig. 7. Calculated thickness-dependent optical confinement factors (confinement factor of quantum well and confinement factor of ITO) inside the (a) MQW and (b) ITO layers. Calculated mode profiles of a VCSEL unit cell for (c) 3117 nm thick, (d) 3180 nm thick, and (e) 3238 nm thick n-GaN layers.

Download Full Size | PPT Slide | PDF

Figures 7(a) and 7(b) show the calculated optical confinement factors of a VCSEL unit cell with a rectangular MHCG for Fw=36% and Fh=26%. We can see that there is a significant decrease and increase in QW and ITO confinement factors at certain n-GaN thickness, which is due to the cavity mode switched by the Fano resonance. In addition, Figs. 7(c)–7(e) show the mode profiles (#2) of a VCSEL unit cell for three different thicknesses of n-GaN layers. Selected thicknesses are corresponding to the Fano resonant peaks appearing in Figs. 7(a) and 7(b). Obviously, the hot spots of these modes significantly alter the optical confinements.

APPENDIX C: THRESHOLD GAIN OF A GaN-BASED VCSEL UNIT CELL WITH A TRAPEZOIDAL n-GaN MHCG

Figure 8 shows the Fw- and Fh-dependent threshold gains of a periodic VCSEL unit cell with monolithic n-GaN MHCG and 3155 nm thick n-GaN layer. Green and white contours indicate the threshold gain and cavity wavelength. For comparison, we found that the minimum threshold gain for a trapezoidal MHCG will increase slightly with the increasing sidewall angle. For sidewall angles of 10° and 15°, there are 1.14% and 2.02% increase in minimum threshold gain compared with the result of Fig. 2(a). Moreover, the duty cycle Fw for minimum threshold gain would shift to a smaller one for a larger sidewall angle, and the height of MHCG Fh would also slightly dwindle.

 figure: Fig. 8.

Fig. 8. Calculated threshold gains of a periodic VCSEL unit cell with monolithic n-GaN MHCG and 3155 nm thick n-GaN layer for sidewall angles of (a) 10° and (b) 15°.

Download Full Size | PPT Slide | PDF

APPENDIX D: OPTICAL CHARACTERISTICS OF A 2D CROSS-SECTIONAL GaN-BASED VCSEL WITH A FINITE MHCG

Figure 9 shows the optical characteristics of a 2D cross-sectional VCSEL with a finite period of MHCG. The MQW confinement factor changes resonantly with increase in aperture size; however, there is a turning point when the aperture size is close to 12 μm. Meanwhile, the MQW absorption loss will slightly increase. In addition, the free-carrier absorption from GaN-based material seems to be independent of the aperture size, and the behaviors of absorption losses for ITO and metal look like an oscillation function with the average of the losses of approximately 4cm1 and 30cm1, respectively. Based on the relation between the optical threshold gain and modal loss, the threshold gain exhibits an oscillatory-decreasing feature with the increase of the aperture size if the vertical mirror and scattering losses are neglected.

 figure: Fig. 9.

Fig. 9. (a) Calculated optical confinement factor. Calculated absorption losses inside the (b) MQW, (c) GaN-based material, (d) ITO layer, (e) metal region, and (f) threshold gain without vertical loss.

Download Full Size | PPT Slide | PDF

Funding

European Research Council (865622); Swedish Research Council (2017-04440, 2018-00295); Ministry of Science and Technology, Taiwan (MOST 109-2627-M-008-001, MOST 110-2218-E-A49-012-MBK, MOST 110-2221-E-A49-058-MY3).

Acknowledgment

The authors thank Lextar Electronics Corp., in Taiwan, Nano Facility Center, Center for Nano Science and Technology in National Yang Ming Chiao Tung University for their technical support. The authors also thank Marcus Rommel at Chalmers University of Technology for input to the process development of the high-contrast gratings.

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. R. L. Thornton, “Vertical cavity lasers and their application to laser printing,” Proc. SPIE 3003, 112 (1997).

2. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, F79–F98 (2010). [CrossRef]  

3. A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2010). [CrossRef]  

4. R. Rodes, M. Müeller, B. Li, J. Estaran, J. B. Jensen, T. Gruendl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. J. Larsen, M.-C. Amann, and I. T. Monroy, “High-speed 1550 nm VCSEL data transmission link employing 25 GBd 4-PAM modulation and hard decision forward error correction,” J. Lightwave Technol. 31, 689–695 (2013). [CrossRef]  

5. R. Vicarini, J. Rutkowski, V. Maurice, E. Kroemer, S. Galliou, C. Gorecki, and R. Boudot, “Characterization of 894.6 nm VCSELs and application to a microcell-based atomic clock,” in International Frequency Control Symposium and European Frequency and Time Forum (2017), paper hal-02472689.

6. A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012). [CrossRef]  

7. L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019). [CrossRef]  

8. M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018). [CrossRef]  

9. P. Padmanabhan, C. Zhang, and E. Charbon, “Modeling and analysis of a direct time-of-flight sensor architecture for LiDAR applications,” Sensors 19, 5464 (2019). [CrossRef]  

10. Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems,” IEEE Signal Process. Mag. 37, 50–61 (2020). [CrossRef]  

11. T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018). [CrossRef]  

12. T. Hamaguchi, M. Tanaka, and H. Nakajima, “A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation,” Jpn. J. Appl. Phys. 58, SC0806 (2019). [CrossRef]  

13. S. G. Lee, C. A. Forman, J. Kearns, J. T. Leonard, D. A. Cohen, S. Nakamura, and S. P. DenBaars, “Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts,” Opt. Express 27, 31621–31628 (2017). [CrossRef]  

14. R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, and J. Han, “Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers,” ACS Photon. 8, 1041–1047 (2021). [CrossRef]  

15. T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008). [CrossRef]  

16. M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide,” Appl. Phys. Lett. 112, 111104 (2018). [CrossRef]  

17. C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014). [CrossRef]  

18. T. C. Chang, S. Y. Kuo, J. T. Lian, K. B. Hong, S. C. Wang, and T. C. Lu, “High-temperature operation of GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 10, 112011 (2017). [CrossRef]  

19. M. Bellanger, V. Bousquet, G. Christmann, J. Baumberg, and M. Kauer, “Highly reflective GaN-based air-gap distributed Bragg reflectors fabricated using AlInN wet etching,” Appl. Phys. Express 2, 121003 (2009). [CrossRef]  

20. R. Tao, M. Arita, S. Kako, and Y. Arakawa, “Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities,” Appl. Phys. Lett. 103, 201118 (2013). [CrossRef]  

21. S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12, 036504 (2019). [CrossRef]  

22. Y. Liu, X. Zhang, Y. Huang, J. Zhang, W. Hofmann, Y. Ning, and L. Wang, “Polarization stabilized VCSELs by displacement Talbot lithography-defined surface gratings,” Optik 183, 579–585 (2019). [CrossRef]  

23. E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol. B 33, 050603 (2015). [CrossRef]  

24. T. C. Chang, K. B. Hong, and T. C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9, 13055 (2019). [CrossRef]  

25. T. C. Chang, E. Hashemi, K. B. Hong, J. Bengtsson, J. Gustavsson, Å. Haglund, and T. C. Lu, “Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors,” ACS Photon. 7, 861–866 (2020). [CrossRef]  

26. N. Ozer, H. Demiryont, and J. H. Simmons, “Optical properties of sol-gel spin-coated TiO2 films and comparison of the properties with ion-beam-sputtered films,” Appl. Opt. 30, 3661–3666 (1991). [CrossRef]  

27. D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci.-Poland 33, 660–668 (2015). [CrossRef]  

28. Q. Hao, X. Fu, S. Song, D. Gibson, C. Li, H. O. Chu, and Y. Shi, “Investigation of TiO2 thin film deposited by microwave plasma assisted sputtering and its application in 3D glasses,” Coatings 8, 270 (2018). [CrossRef]  

29. H. Y. Liu, S. H. Hong, W. C. Sun, S. Y. Wei, and S. M. Yu, “TiO2-based metal–semiconductor–metal ultraviolet photodetectors deposited by ultrasonic spray pyrolysis technique,” IEEE Trans. Electron Devices 63, 79–85 (2015). [CrossRef]  

30. S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26, 024003 (2015). [CrossRef]  

31. T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016). [CrossRef]  

32. C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009). [CrossRef]  

33. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012). [CrossRef]  

34. S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2019). [CrossRef]  

35. M. Gębski, J. A. Lott, and T. Czyszanowski, “Electrically injected VCSEL with a composite DBR and MHCG reflector,” Opt. Express 27, 7139–7146 (2019). [CrossRef]  

36. H. Y. Ryu, K. S. Jeon, M. G. Kang, Y. Choi, and J. S. Lee, “Dependence of efficiencies in GaN-based vertical blue light-emitting diodes on the thickness and doping concentration of the n-GaN layer,” Opt. Express 21, A190–A200 (2013). [CrossRef]  

37. Y. Tsunemi, N. Yokota, S. Majima, K. Ikeda, T. Katayama, and H. Kawaguchi, “1.55-μm VCSEL with polarization-independent HCG mirror on SOI,” Opt. Express 21, 28685–28692 (2013). [CrossRef]  

38. Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013). [CrossRef]  

39. P. Qiu, W. Pang, P. Fu, M. Li, C. Sun, J. Zhao, Y. Xie, and Q. Kan, “Numerical investigation of vertical-cavity surface-emitting lasers incorporating a high-contrast grating using 3-D FDTD method,” Optik 218, 165125 (2020). [CrossRef]  

40. P. Das, S. V. Singh, and S. Tallur, “Design and analysis of electro-optic modulators based on high contrast gratings in AlGaN/GaN heterostructures,” Semicond. Sci. Technol. 35, 125022 (2020). [CrossRef]  

41. E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016). [CrossRef]  

42. T. Czyszanowski, M. Gębski, E. Pruszyńska-Karbownik, M. Wasiak, and J. A. Lott, “Monolithic high-contrast grating planar microcavities,” Nanophotonics 9, 913–925 (2020). [CrossRef]  

43. R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171115 (2011). [CrossRef]  

44. Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015). [CrossRef]  

References

  • View by:

  1. R. L. Thornton, “Vertical cavity lasers and their application to laser printing,” Proc. SPIE 3003, 112 (1997).
  2. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, F79–F98 (2010).
    [Crossref]
  3. A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2010).
    [Crossref]
  4. R. Rodes, M. Müeller, B. Li, J. Estaran, J. B. Jensen, T. Gruendl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. J. Larsen, M.-C. Amann, and I. T. Monroy, “High-speed 1550 nm VCSEL data transmission link employing 25 GBd 4-PAM modulation and hard decision forward error correction,” J. Lightwave Technol. 31, 689–695 (2013).
    [Crossref]
  5. R. Vicarini, J. Rutkowski, V. Maurice, E. Kroemer, S. Galliou, C. Gorecki, and R. Boudot, “Characterization of 894.6 nm VCSELs and application to a microcell-based atomic clock,” in International Frequency Control Symposium and European Frequency and Time Forum (2017), paper hal-02472689.
  6. A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012).
    [Crossref]
  7. L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
    [Crossref]
  8. M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
    [Crossref]
  9. P. Padmanabhan, C. Zhang, and E. Charbon, “Modeling and analysis of a direct time-of-flight sensor architecture for LiDAR applications,” Sensors 19, 5464 (2019).
    [Crossref]
  10. Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems,” IEEE Signal Process. Mag. 37, 50–61 (2020).
    [Crossref]
  11. T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
    [Crossref]
  12. T. Hamaguchi, M. Tanaka, and H. Nakajima, “A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation,” Jpn. J. Appl. Phys. 58, SC0806 (2019).
    [Crossref]
  13. S. G. Lee, C. A. Forman, J. Kearns, J. T. Leonard, D. A. Cohen, S. Nakamura, and S. P. DenBaars, “Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts,” Opt. Express 27, 31621–31628 (2017).
    [Crossref]
  14. R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, and J. Han, “Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers,” ACS Photon. 8, 1041–1047 (2021).
    [Crossref]
  15. T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
    [Crossref]
  16. M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide,” Appl. Phys. Lett. 112, 111104 (2018).
    [Crossref]
  17. C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014).
    [Crossref]
  18. T. C. Chang, S. Y. Kuo, J. T. Lian, K. B. Hong, S. C. Wang, and T. C. Lu, “High-temperature operation of GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 10, 112011 (2017).
    [Crossref]
  19. M. Bellanger, V. Bousquet, G. Christmann, J. Baumberg, and M. Kauer, “Highly reflective GaN-based air-gap distributed Bragg reflectors fabricated using AlInN wet etching,” Appl. Phys. Express 2, 121003 (2009).
    [Crossref]
  20. R. Tao, M. Arita, S. Kako, and Y. Arakawa, “Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities,” Appl. Phys. Lett. 103, 201118 (2013).
    [Crossref]
  21. S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12, 036504 (2019).
    [Crossref]
  22. Y. Liu, X. Zhang, Y. Huang, J. Zhang, W. Hofmann, Y. Ning, and L. Wang, “Polarization stabilized VCSELs by displacement Talbot lithography-defined surface gratings,” Optik 183, 579–585 (2019).
    [Crossref]
  23. E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol. B 33, 050603 (2015).
    [Crossref]
  24. T. C. Chang, K. B. Hong, and T. C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9, 13055 (2019).
    [Crossref]
  25. T. C. Chang, E. Hashemi, K. B. Hong, J. Bengtsson, J. Gustavsson, Å. Haglund, and T. C. Lu, “Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors,” ACS Photon. 7, 861–866 (2020).
    [Crossref]
  26. N. Ozer, H. Demiryont, and J. H. Simmons, “Optical properties of sol-gel spin-coated TiO2 films and comparison of the properties with ion-beam-sputtered films,” Appl. Opt. 30, 3661–3666 (1991).
    [Crossref]
  27. D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci.-Poland 33, 660–668 (2015).
    [Crossref]
  28. Q. Hao, X. Fu, S. Song, D. Gibson, C. Li, H. O. Chu, and Y. Shi, “Investigation of TiO2 thin film deposited by microwave plasma assisted sputtering and its application in 3D glasses,” Coatings 8, 270 (2018).
    [Crossref]
  29. H. Y. Liu, S. H. Hong, W. C. Sun, S. Y. Wei, and S. M. Yu, “TiO2-based metal–semiconductor–metal ultraviolet photodetectors deposited by ultrasonic spray pyrolysis technique,” IEEE Trans. Electron Devices 63, 79–85 (2015).
    [Crossref]
  30. S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26, 024003 (2015).
    [Crossref]
  31. T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
    [Crossref]
  32. C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
    [Crossref]
  33. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012).
    [Crossref]
  34. S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2019).
    [Crossref]
  35. M. Gębski, J. A. Lott, and T. Czyszanowski, “Electrically injected VCSEL with a composite DBR and MHCG reflector,” Opt. Express 27, 7139–7146 (2019).
    [Crossref]
  36. H. Y. Ryu, K. S. Jeon, M. G. Kang, Y. Choi, and J. S. Lee, “Dependence of efficiencies in GaN-based vertical blue light-emitting diodes on the thickness and doping concentration of the n-GaN layer,” Opt. Express 21, A190–A200 (2013).
    [Crossref]
  37. Y. Tsunemi, N. Yokota, S. Majima, K. Ikeda, T. Katayama, and H. Kawaguchi, “1.55-μm VCSEL with polarization-independent HCG mirror on SOI,” Opt. Express 21, 28685–28692 (2013).
    [Crossref]
  38. Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
    [Crossref]
  39. P. Qiu, W. Pang, P. Fu, M. Li, C. Sun, J. Zhao, Y. Xie, and Q. Kan, “Numerical investigation of vertical-cavity surface-emitting lasers incorporating a high-contrast grating using 3-D FDTD method,” Optik 218, 165125 (2020).
    [Crossref]
  40. P. Das, S. V. Singh, and S. Tallur, “Design and analysis of electro-optic modulators based on high contrast gratings in AlGaN/GaN heterostructures,” Semicond. Sci. Technol. 35, 125022 (2020).
    [Crossref]
  41. E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016).
    [Crossref]
  42. T. Czyszanowski, M. Gębski, E. Pruszyńska-Karbownik, M. Wasiak, and J. A. Lott, “Monolithic high-contrast grating planar microcavities,” Nanophotonics 9, 913–925 (2020).
    [Crossref]
  43. R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171115 (2011).
    [Crossref]
  44. Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015).
    [Crossref]

2021 (1)

R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, and J. Han, “Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers,” ACS Photon. 8, 1041–1047 (2021).
[Crossref]

2020 (5)

Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems,” IEEE Signal Process. Mag. 37, 50–61 (2020).
[Crossref]

T. C. Chang, E. Hashemi, K. B. Hong, J. Bengtsson, J. Gustavsson, Å. Haglund, and T. C. Lu, “Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors,” ACS Photon. 7, 861–866 (2020).
[Crossref]

P. Qiu, W. Pang, P. Fu, M. Li, C. Sun, J. Zhao, Y. Xie, and Q. Kan, “Numerical investigation of vertical-cavity surface-emitting lasers incorporating a high-contrast grating using 3-D FDTD method,” Optik 218, 165125 (2020).
[Crossref]

P. Das, S. V. Singh, and S. Tallur, “Design and analysis of electro-optic modulators based on high contrast gratings in AlGaN/GaN heterostructures,” Semicond. Sci. Technol. 35, 125022 (2020).
[Crossref]

T. Czyszanowski, M. Gębski, E. Pruszyńska-Karbownik, M. Wasiak, and J. A. Lott, “Monolithic high-contrast grating planar microcavities,” Nanophotonics 9, 913–925 (2020).
[Crossref]

2019 (8)

T. C. Chang, K. B. Hong, and T. C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9, 13055 (2019).
[Crossref]

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12, 036504 (2019).
[Crossref]

Y. Liu, X. Zhang, Y. Huang, J. Zhang, W. Hofmann, Y. Ning, and L. Wang, “Polarization stabilized VCSELs by displacement Talbot lithography-defined surface gratings,” Optik 183, 579–585 (2019).
[Crossref]

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2019).
[Crossref]

M. Gębski, J. A. Lott, and T. Czyszanowski, “Electrically injected VCSEL with a composite DBR and MHCG reflector,” Opt. Express 27, 7139–7146 (2019).
[Crossref]

T. Hamaguchi, M. Tanaka, and H. Nakajima, “A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation,” Jpn. J. Appl. Phys. 58, SC0806 (2019).
[Crossref]

L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
[Crossref]

P. Padmanabhan, C. Zhang, and E. Charbon, “Modeling and analysis of a direct time-of-flight sensor architecture for LiDAR applications,” Sensors 19, 5464 (2019).
[Crossref]

2018 (4)

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide,” Appl. Phys. Lett. 112, 111104 (2018).
[Crossref]

Q. Hao, X. Fu, S. Song, D. Gibson, C. Li, H. O. Chu, and Y. Shi, “Investigation of TiO2 thin film deposited by microwave plasma assisted sputtering and its application in 3D glasses,” Coatings 8, 270 (2018).
[Crossref]

2017 (2)

T. C. Chang, S. Y. Kuo, J. T. Lian, K. B. Hong, S. C. Wang, and T. C. Lu, “High-temperature operation of GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 10, 112011 (2017).
[Crossref]

S. G. Lee, C. A. Forman, J. Kearns, J. T. Leonard, D. A. Cohen, S. Nakamura, and S. P. DenBaars, “Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts,” Opt. Express 27, 31621–31628 (2017).
[Crossref]

2016 (2)

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016).
[Crossref]

2015 (5)

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci.-Poland 33, 660–668 (2015).
[Crossref]

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015).
[Crossref]

H. Y. Liu, S. H. Hong, W. C. Sun, S. Y. Wei, and S. M. Yu, “TiO2-based metal–semiconductor–metal ultraviolet photodetectors deposited by ultrasonic spray pyrolysis technique,” IEEE Trans. Electron Devices 63, 79–85 (2015).
[Crossref]

S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26, 024003 (2015).
[Crossref]

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol. B 33, 050603 (2015).
[Crossref]

2014 (1)

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014).
[Crossref]

2013 (5)

2012 (2)

A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012).
[Crossref]

2011 (1)

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171115 (2011).
[Crossref]

2010 (2)

K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, F79–F98 (2010).
[Crossref]

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2010).
[Crossref]

2009 (2)

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[Crossref]

M. Bellanger, V. Bousquet, G. Christmann, J. Baumberg, and M. Kauer, “Highly reflective GaN-based air-gap distributed Bragg reflectors fabricated using AlInN wet etching,” Appl. Phys. Express 2, 121003 (2009).
[Crossref]

2008 (1)

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

1997 (1)

R. L. Thornton, “Vertical cavity lasers and their application to laser printing,” Proc. SPIE 3003, 112 (1997).

1991 (1)

Akagi, T.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide,” Appl. Phys. Lett. 112, 111104 (2018).
[Crossref]

Amann, M.-C.

Aragon, A. A.

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12, 036504 (2019).
[Crossref]

Arakawa, Y.

R. Tao, M. Arita, S. Kako, and Y. Arakawa, “Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities,” Appl. Phys. Lett. 103, 201118 (2013).
[Crossref]

Arita, M.

R. Tao, M. Arita, S. Kako, and Y. Arakawa, “Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities,” Appl. Phys. Lett. 103, 201118 (2013).
[Crossref]

Baumberg, J.

M. Bellanger, V. Bousquet, G. Christmann, J. Baumberg, and M. Kauer, “Highly reflective GaN-based air-gap distributed Bragg reflectors fabricated using AlInN wet etching,” Appl. Phys. Express 2, 121003 (2009).
[Crossref]

Bellanger, M.

M. Bellanger, V. Bousquet, G. Christmann, J. Baumberg, and M. Kauer, “Highly reflective GaN-based air-gap distributed Bragg reflectors fabricated using AlInN wet etching,” Appl. Phys. Express 2, 121003 (2009).
[Crossref]

Bengtsson, J.

T. C. Chang, E. Hashemi, K. B. Hong, J. Bengtsson, J. Gustavsson, Å. Haglund, and T. C. Lu, “Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors,” ACS Photon. 7, 861–866 (2020).
[Crossref]

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016).
[Crossref]

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol. B 33, 050603 (2015).
[Crossref]

Block, M. K.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Boudot, R.

R. Vicarini, J. Rutkowski, V. Maurice, E. Kroemer, S. Galliou, C. Gorecki, and R. Boudot, “Characterization of 894.6 nm VCSELs and application to a microcell-based atomic clock,” in International Frequency Control Symposium and European Frequency and Time Forum (2017), paper hal-02472689.

Bousquet, V.

M. Bellanger, V. Bousquet, G. Christmann, J. Baumberg, and M. Kauer, “Highly reflective GaN-based air-gap distributed Bragg reflectors fabricated using AlInN wet etching,” Appl. Phys. Express 2, 121003 (2009).
[Crossref]

Brodbeck, S.

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2019).
[Crossref]

Carlsson, S.

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol. B 33, 050603 (2015).
[Crossref]

Carson, R. F.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Chang, T. C.

T. C. Chang, E. Hashemi, K. B. Hong, J. Bengtsson, J. Gustavsson, Å. Haglund, and T. C. Lu, “Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors,” ACS Photon. 7, 861–866 (2020).
[Crossref]

T. C. Chang, K. B. Hong, and T. C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9, 13055 (2019).
[Crossref]

T. C. Chang, S. Y. Kuo, J. T. Lian, K. B. Hong, S. C. Wang, and T. C. Lu, “High-temperature operation of GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 10, 112011 (2017).
[Crossref]

Chang-Hasnain, C. J.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012).
[Crossref]

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[Crossref]

Charbon, E.

P. Padmanabhan, C. Zhang, and E. Charbon, “Modeling and analysis of a direct time-of-flight sensor architecture for LiDAR applications,” Sensors 19, 5464 (2019).
[Crossref]

Chase, C.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[Crossref]

Chellappan, K. V.

Chen, J.

L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
[Crossref]

Chitgarha, M. R.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Choi, Y.

Christmann, G.

M. Bellanger, V. Bousquet, G. Christmann, J. Baumberg, and M. Kauer, “Highly reflective GaN-based air-gap distributed Bragg reflectors fabricated using AlInN wet etching,” Appl. Phys. Express 2, 121003 (2009).
[Crossref]

Chu, H. O.

Q. Hao, X. Fu, S. Song, D. Gibson, C. Li, H. O. Chu, and Y. Shi, “Investigation of TiO2 thin film deposited by microwave plasma assisted sputtering and its application in 3D glasses,” Coatings 8, 270 (2018).
[Crossref]

Cohen, D. A.

S. G. Lee, C. A. Forman, J. Kearns, J. T. Leonard, D. A. Cohen, S. Nakamura, and S. P. DenBaars, “Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts,” Opt. Express 27, 31621–31628 (2017).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014).
[Crossref]

Czyszanowski, T.

T. Czyszanowski, M. Gębski, E. Pruszyńska-Karbownik, M. Wasiak, and J. A. Lott, “Monolithic high-contrast grating planar microcavities,” Nanophotonics 9, 913–925 (2020).
[Crossref]

M. Gębski, J. A. Lott, and T. Czyszanowski, “Electrically injected VCSEL with a composite DBR and MHCG reflector,” Opt. Express 27, 7139–7146 (2019).
[Crossref]

Dacha, P.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Das, P.

P. Das, S. V. Singh, and S. Tallur, “Design and analysis of electro-optic modulators based on high contrast gratings in AlGaN/GaN heterostructures,” Semicond. Sci. Technol. 35, 125022 (2020).
[Crossref]

Demiryont, H.

DenBaars, S. P.

S. G. Lee, C. A. Forman, J. Kearns, J. T. Leonard, D. A. Cohen, S. Nakamura, and S. P. DenBaars, “Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts,” Opt. Express 27, 31621–31628 (2017).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171115 (2011).
[Crossref]

Deng, H.

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2019).
[Crossref]

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015).
[Crossref]

Dietrich, K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Domanowski, P.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci.-Poland 33, 660–668 (2015).
[Crossref]

Domaradzki, J.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci.-Poland 33, 660–668 (2015).
[Crossref]

Elafandy, R. T.

R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, and J. Han, “Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers,” ACS Photon. 8, 1041–1047 (2021).
[Crossref]

Erden, E.

Estaran, J.

Farrell, R. M.

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171115 (2011).
[Crossref]

Fattal, D.

Feezell, D. F.

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12, 036504 (2019).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171115 (2011).
[Crossref]

Forman, C. A.

Franta, D.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Fu, P.

P. Qiu, W. Pang, P. Fu, M. Li, C. Sun, J. Zhao, Y. Xie, and Q. Kan, “Numerical investigation of vertical-cavity surface-emitting lasers incorporating a high-contrast grating using 3-D FDTD method,” Optik 218, 165125 (2020).
[Crossref]

Fu, X.

Q. Hao, X. Fu, S. Song, D. Gibson, C. Li, H. O. Chu, and Y. Shi, “Investigation of TiO2 thin film deposited by microwave plasma assisted sputtering and its application in 3D glasses,” Coatings 8, 270 (2018).
[Crossref]

Fujii, K.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

Fujito, K.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171115 (2011).
[Crossref]

Galliou, S.

R. Vicarini, J. Rutkowski, V. Maurice, E. Kroemer, S. Galliou, C. Gorecki, and R. Boudot, “Characterization of 894.6 nm VCSELs and application to a microcell-based atomic clock,” in International Frequency Control Symposium and European Frequency and Time Forum (2017), paper hal-02472689.

Gebski, M.

T. Czyszanowski, M. Gębski, E. Pruszyńska-Karbownik, M. Wasiak, and J. A. Lott, “Monolithic high-contrast grating planar microcavities,” Nanophotonics 9, 913–925 (2020).
[Crossref]

M. Gębski, J. A. Lott, and T. Czyszanowski, “Electrically injected VCSEL with a composite DBR and MHCG reflector,” Opt. Express 27, 7139–7146 (2019).
[Crossref]

Ghasemifard, H.

L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
[Crossref]

Gibson, D.

Q. Hao, X. Fu, S. Song, D. Gibson, C. Li, H. O. Chu, and Y. Shi, “Investigation of TiO2 thin film deposited by microwave plasma assisted sputtering and its application in 3D glasses,” Coatings 8, 270 (2018).
[Crossref]

Gorecki, C.

R. Vicarini, J. Rutkowski, V. Maurice, E. Kroemer, S. Galliou, C. Gorecki, and R. Boudot, “Characterization of 894.6 nm VCSELs and application to a microcell-based atomic clock,” in International Frequency Control Symposium and European Frequency and Time Forum (2017), paper hal-02472689.

Gruendl, T.

Gustavsson, J.

T. C. Chang, E. Hashemi, K. B. Hong, J. Bengtsson, J. Gustavsson, Å. Haglund, and T. C. Lu, “Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors,” ACS Photon. 7, 861–866 (2020).
[Crossref]

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2010).
[Crossref]

Gustavsson, J. S.

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016).
[Crossref]

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol. B 33, 050603 (2015).
[Crossref]

Haeger, D. A.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171115 (2011).
[Crossref]

Haglund, Å.

T. C. Chang, E. Hashemi, K. B. Hong, J. Bengtsson, J. Gustavsson, Å. Haglund, and T. C. Lu, “Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors,” ACS Photon. 7, 861–866 (2020).
[Crossref]

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016).
[Crossref]

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol. B 33, 050603 (2015).
[Crossref]

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2010).
[Crossref]

Haglund, E.

Hamaguchi, T.

T. Hamaguchi, M. Tanaka, and H. Nakajima, “A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation,” Jpn. J. Appl. Phys. 58, SC0806 (2019).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

Han, J.

R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, and J. Han, “Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers,” ACS Photon. 8, 1041–1047 (2021).
[Crossref]

Hao, Q.

Q. Hao, X. Fu, S. Song, D. Gibson, C. Li, H. O. Chu, and Y. Shi, “Investigation of TiO2 thin film deposited by microwave plasma assisted sputtering and its application in 3D glasses,” Coatings 8, 270 (2018).
[Crossref]

Harrison, W. A.

A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012).
[Crossref]

Hashemi, E.

T. C. Chang, E. Hashemi, K. B. Hong, J. Bengtsson, J. Gustavsson, Å. Haglund, and T. C. Lu, “Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors,” ACS Photon. 7, 861–866 (2020).
[Crossref]

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol. B 33, 050603 (2015).
[Crossref]

Helms, C. J.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Höfling, S.

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2019).
[Crossref]

Hofmann, W.

Y. Liu, X. Zhang, Y. Huang, J. Zhang, W. Hofmann, Y. Ning, and L. Wang, “Polarization stabilized VCSELs by displacement Talbot lithography-defined surface gratings,” Optik 183, 579–585 (2019).
[Crossref]

Holder, C. O.

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014).
[Crossref]

Hong, K. B.

T. C. Chang, E. Hashemi, K. B. Hong, J. Bengtsson, J. Gustavsson, Å. Haglund, and T. C. Lu, “Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors,” ACS Photon. 7, 861–866 (2020).
[Crossref]

T. C. Chang, K. B. Hong, and T. C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9, 13055 (2019).
[Crossref]

T. C. Chang, S. Y. Kuo, J. T. Lian, K. B. Hong, S. C. Wang, and T. C. Lu, “High-temperature operation of GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 10, 112011 (2017).
[Crossref]

Hong, S. H.

H. Y. Liu, S. H. Hong, W. C. Sun, S. Y. Wei, and S. M. Yu, “TiO2-based metal–semiconductor–metal ultraviolet photodetectors deposited by ultrasonic spray pyrolysis technique,” IEEE Trans. Electron Devices 63, 79–85 (2015).
[Crossref]

Hsu, P. S.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171115 (2011).
[Crossref]

Huang, G. S.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Huang, M. C. Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[Crossref]

Huang, Y.

Y. Liu, X. Zhang, Y. Huang, J. Zhang, W. Hofmann, Y. Ning, and L. Wang, “Polarization stabilized VCSELs by displacement Talbot lithography-defined surface gratings,” Optik 183, 579–585 (2019).
[Crossref]

Ibanez-Guzman, J.

Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems,” IEEE Signal Process. Mag. 37, 50–61 (2020).
[Crossref]

Ikeda, K.

Indyka, J.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci.-Poland 33, 660–668 (2015).
[Crossref]

Ito, M.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

Jensen, J. B.

Jeon, K. S.

Jurkowska, A.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci.-Poland 33, 660–668 (2015).
[Crossref]

Kaczmarek, D.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci.-Poland 33, 660–668 (2015).
[Crossref]

Kako, S.

R. Tao, M. Arita, S. Kako, and Y. Arakawa, “Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities,” Appl. Phys. Lett. 103, 201118 (2013).
[Crossref]

Kalisz, M.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci.-Poland 33, 660–668 (2015).
[Crossref]

Kan, Q.

P. Qiu, W. Pang, P. Fu, M. Li, C. Sun, J. Zhao, Y. Xie, and Q. Kan, “Numerical investigation of vertical-cavity surface-emitting lasers incorporating a high-contrast grating using 3-D FDTD method,” Optik 218, 165125 (2020).
[Crossref]

Kang, J. H.

R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, and J. Han, “Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers,” ACS Photon. 8, 1041–1047 (2021).
[Crossref]

Kang, M. G.

Kao, C. C.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Katayama, T.

Kauer, M.

M. Bellanger, V. Bousquet, G. Christmann, J. Baumberg, and M. Kauer, “Highly reflective GaN-based air-gap distributed Bragg reflectors fabricated using AlInN wet etching,” Appl. Phys. Express 2, 121003 (2009).
[Crossref]

Kawaguchi, H.

Kearns, J.

Khaleghi, S.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Khan, A.

A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012).
[Crossref]

Kim, S.

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2019).
[Crossref]

Kim, T. K.

R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, and J. Han, “Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers,” ACS Photon. 8, 1041–1047 (2021).
[Crossref]

Kley, E. B.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26, 024003 (2015).
[Crossref]

Kobayashi, N.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

Kobayashi, S.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide,” Appl. Phys. Lett. 112, 111104 (2018).
[Crossref]

Koda, R.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

Kögel, B.

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2010).
[Crossref]

Kroemer, E.

R. Vicarini, J. Rutkowski, V. Maurice, E. Kroemer, S. Galliou, C. Gorecki, and R. Boudot, “Characterization of 894.6 nm VCSELs and application to a microcell-based atomic clock,” in International Frequency Control Symposium and European Frequency and Time Forum (2017), paper hal-02472689.

Kroker, S.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Kuo, H. C.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Kuo, S. Y.

T. C. Chang, S. Y. Kuo, J. T. Lian, K. B. Hong, S. C. Wang, and T. C. Lu, “High-temperature operation of GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 10, 112011 (2017).
[Crossref]

Kuramoto, M.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide,” Appl. Phys. Lett. 112, 111104 (2018).
[Crossref]

Kwak, J. S.

R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, and J. Han, “Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers,” ACS Photon. 8, 1041–1047 (2021).
[Crossref]

Lan, L.

L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
[Crossref]

Larsen, K. J.

Larsson, A.

Lary, D. J.

A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012).
[Crossref]

Lee, J. S.

Lee, S. G.

Leonard, J. T.

S. G. Lee, C. A. Forman, J. Kearns, J. T. Leonard, D. A. Cohen, S. Nakamura, and S. P. DenBaars, “Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts,” Opt. Express 27, 31621–31628 (2017).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014).
[Crossref]

Li, B.

Li, C.

Q. Hao, X. Fu, S. Song, D. Gibson, C. Li, H. O. Chu, and Y. Shi, “Investigation of TiO2 thin film deposited by microwave plasma assisted sputtering and its application in 3D glasses,” Coatings 8, 270 (2018).
[Crossref]

Li, M.

P. Qiu, W. Pang, P. Fu, M. Li, C. Sun, J. Zhao, Y. Xie, and Q. Kan, “Numerical investigation of vertical-cavity surface-emitting lasers incorporating a high-contrast grating using 3-D FDTD method,” Optik 218, 165125 (2020).
[Crossref]

Li, Y.

Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems,” IEEE Signal Process. Mag. 37, 50–61 (2020).
[Crossref]

Lian, J. T.

T. C. Chang, S. Y. Kuo, J. T. Lian, K. B. Hong, S. C. Wang, and T. C. Lu, “High-temperature operation of GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 10, 112011 (2017).
[Crossref]

Liu, H. Y.

H. Y. Liu, S. H. Hong, W. C. Sun, S. Y. Wei, and S. M. Yu, “TiO2-based metal–semiconductor–metal ultraviolet photodetectors deposited by ultrasonic spray pyrolysis technique,” IEEE Trans. Electron Devices 63, 79–85 (2015).
[Crossref]

Liu, Y.

Y. Liu, X. Zhang, Y. Huang, J. Zhang, W. Hofmann, Y. Ning, and L. Wang, “Polarization stabilized VCSELs by displacement Talbot lithography-defined surface gratings,” Optik 183, 579–585 (2019).
[Crossref]

Lott, J. A.

T. Czyszanowski, M. Gębski, E. Pruszyńska-Karbownik, M. Wasiak, and J. A. Lott, “Monolithic high-contrast grating planar microcavities,” Nanophotonics 9, 913–925 (2020).
[Crossref]

M. Gębski, J. A. Lott, and T. Czyszanowski, “Electrically injected VCSEL with a composite DBR and MHCG reflector,” Opt. Express 27, 7139–7146 (2019).
[Crossref]

Lu, T. C.

T. C. Chang, E. Hashemi, K. B. Hong, J. Bengtsson, J. Gustavsson, Å. Haglund, and T. C. Lu, “Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors,” ACS Photon. 7, 861–866 (2020).
[Crossref]

T. C. Chang, K. B. Hong, and T. C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9, 13055 (2019).
[Crossref]

T. C. Chang, S. Y. Kuo, J. T. Lian, K. B. Hong, S. C. Wang, and T. C. Lu, “High-temperature operation of GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 10, 112011 (2017).
[Crossref]

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Luk, T. S.

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12, 036504 (2019).
[Crossref]

Majima, S.

Maurice, V.

R. Vicarini, J. Rutkowski, V. Maurice, E. Kroemer, S. Galliou, C. Gorecki, and R. Boudot, “Characterization of 894.6 nm VCSELs and application to a microcell-based atomic clock,” in International Frequency Control Symposium and European Frequency and Time Forum (2017), paper hal-02472689.

Maynard, J.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Mazur, M.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci.-Poland 33, 660–668 (2015).
[Crossref]

Mi, C.

R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, and J. Han, “Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers,” ACS Photon. 8, 1041–1047 (2021).
[Crossref]

Miller, D. J.

A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012).
[Crossref]

Mishkat-Ul-Masabih, S. M.

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12, 036504 (2019).
[Crossref]

Mitomo, J.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

Monavarian, M.

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12, 036504 (2019).
[Crossref]

Monroy, I. T.

Müeller, M.

Nakajima, H.

T. Hamaguchi, M. Tanaka, and H. Nakajima, “A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation,” Jpn. J. Appl. Phys. 58, SC0806 (2019).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

Nakamura, S.

S. G. Lee, C. A. Forman, J. Kearns, J. T. Leonard, D. A. Cohen, S. Nakamura, and S. P. DenBaars, “Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts,” Opt. Express 27, 31621–31628 (2017).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171115 (2011).
[Crossref]

Narui, H.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

Neumeyr, C.

Ning, Y.

Y. Liu, X. Zhang, Y. Huang, J. Zhang, W. Hofmann, Y. Ning, and L. Wang, “Polarization stabilized VCSELs by displacement Talbot lithography-defined surface gratings,” Optik 183, 579–585 (2019).
[Crossref]

Ohara, M.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

Ohlidal, I.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Ortsiefer, M.

Ozer, N.

Padmanabhan, P.

P. Padmanabhan, C. Zhang, and E. Charbon, “Modeling and analysis of a direct time-of-flight sensor architecture for LiDAR applications,” Sensors 19, 5464 (2019).
[Crossref]

Pang, W.

P. Qiu, W. Pang, P. Fu, M. Li, C. Sun, J. Zhao, Y. Xie, and Q. Kan, “Numerical investigation of vertical-cavity surface-emitting lasers incorporating a high-contrast grating using 3-D FDTD method,” Optik 218, 165125 (2020).
[Crossref]

Pfeiffer, K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Podva, D.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Pruszynska-Karbownik, E.

T. Czyszanowski, M. Gębski, E. Pruszyńska-Karbownik, M. Wasiak, and J. A. Lott, “Monolithic high-contrast grating planar microcavities,” Nanophotonics 9, 913–925 (2020).
[Crossref]

Puffky, O.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Qiu, P.

P. Qiu, W. Pang, P. Fu, M. Li, C. Sun, J. Zhao, Y. Xie, and Q. Kan, “Numerical investigation of vertical-cavity surface-emitting lasers incorporating a high-contrast grating using 3-D FDTD method,” Optik 218, 165125 (2020).
[Crossref]

Rao, Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Ratzsch, S.

S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26, 024003 (2015).
[Crossref]

Rodes, R.

Roscoe, B.

A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012).
[Crossref]

Rossbach, G.

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol. B 33, 050603 (2015).
[Crossref]

Rosskopf, J.

Rutkowski, J.

R. Vicarini, J. Rutkowski, V. Maurice, E. Kroemer, S. Galliou, C. Gorecki, and R. Boudot, “Characterization of 894.6 nm VCSELs and application to a microcell-based atomic clock,” in International Frequency Control Symposium and European Frequency and Time Forum (2017), paper hal-02472689.

Ryu, H. Y.

Saito, T.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide,” Appl. Phys. Lett. 112, 111104 (2018).
[Crossref]

Satou, S.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

Schaefer, D.

A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012).
[Crossref]

Schneider, C.

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2019).
[Crossref]

Shi, Y.

Q. Hao, X. Fu, S. Song, D. Gibson, C. Li, H. O. Chu, and Y. Shi, “Investigation of TiO2 thin film deposited by microwave plasma assisted sputtering and its application in 3D glasses,” Coatings 8, 270 (2018).
[Crossref]

Siefke, T.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Simmons, J. H.

Singh, S. V.

P. Das, S. V. Singh, and S. Tallur, “Design and analysis of electro-optic modulators based on high contrast gratings in AlGaN/GaN heterostructures,” Semicond. Sci. Technol. 35, 125022 (2020).
[Crossref]

Song, S.

Q. Hao, X. Fu, S. Song, D. Gibson, C. Li, H. O. Chu, and Y. Shi, “Investigation of TiO2 thin film deposited by microwave plasma assisted sputtering and its application in 3D glasses,” Coatings 8, 270 (2018).
[Crossref]

Sorin, W.

Speck, J. S.

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171115 (2011).
[Crossref]

Sun, C.

P. Qiu, W. Pang, P. Fu, M. Li, C. Sun, J. Zhao, Y. Xie, and Q. Kan, “Numerical investigation of vertical-cavity surface-emitting lasers incorporating a high-contrast grating using 3-D FDTD method,” Optik 218, 165125 (2020).
[Crossref]

Sun, K.

A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012).
[Crossref]

Sun, W. C.

H. Y. Liu, S. H. Hong, W. C. Sun, S. Y. Wei, and S. M. Yu, “TiO2-based metal–semiconductor–metal ultraviolet photodetectors deposited by ultrasonic spray pyrolysis technique,” IEEE Trans. Electron Devices 63, 79–85 (2015).
[Crossref]

Szeghalmi, A.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26, 024003 (2015).
[Crossref]

Takeuchi, T.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide,” Appl. Phys. Lett. 112, 111104 (2018).
[Crossref]

Tallur, S.

P. Das, S. V. Singh, and S. Tallur, “Design and analysis of electro-optic modulators based on high contrast gratings in AlGaN/GaN heterostructures,” Semicond. Sci. Technol. 35, 125022 (2020).
[Crossref]

Tan, M.

Tanaka, K.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide,” Appl. Phys. Lett. 112, 111104 (2018).
[Crossref]

Tanaka, M.

T. Hamaguchi, M. Tanaka, and H. Nakajima, “A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation,” Jpn. J. Appl. Phys. 58, SC0806 (2019).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

Tao, L.

A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012).
[Crossref]

Tao, R.

R. Tao, M. Arita, S. Kako, and Y. Arakawa, “Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities,” Appl. Phys. Lett. 103, 201118 (2013).
[Crossref]

Tazawa, K.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide,” Appl. Phys. Lett. 112, 111104 (2018).
[Crossref]

Thornton, R. L.

R. L. Thornton, “Vertical cavity lasers and their application to laser printing,” Proc. SPIE 3003, 112 (1997).

Tsunemi, Y.

Tunnermann, A.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Tünnermann, A.

S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26, 024003 (2015).
[Crossref]

Urey, H.

Vicarini, R.

R. Vicarini, J. Rutkowski, V. Maurice, E. Kroemer, S. Galliou, C. Gorecki, and R. Boudot, “Characterization of 894.6 nm VCSELs and application to a microcell-based atomic clock,” in International Frequency Control Symposium and European Frequency and Time Forum (2017), paper hal-02472689.

Wang, L.

Y. Liu, X. Zhang, Y. Huang, J. Zhang, W. Hofmann, Y. Ning, and L. Wang, “Polarization stabilized VCSELs by displacement Talbot lithography-defined surface gratings,” Optik 183, 579–585 (2019).
[Crossref]

Wang, S. C.

T. C. Chang, S. Y. Kuo, J. T. Lian, K. B. Hong, S. C. Wang, and T. C. Lu, “High-temperature operation of GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 10, 112011 (2017).
[Crossref]

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Wang, Z.

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2019).
[Crossref]

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015).
[Crossref]

Warren, M. E.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Wasiak, M.

T. Czyszanowski, M. Gębski, E. Pruszyńska-Karbownik, M. Wasiak, and J. A. Lott, “Monolithic high-contrast grating planar microcavities,” Nanophotonics 9, 913–925 (2020).
[Crossref]

Watanabe, H.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

Wei, S. Y.

H. Y. Liu, S. H. Hong, W. C. Sun, S. Y. Wei, and S. M. Yu, “TiO2-based metal–semiconductor–metal ultraviolet photodetectors deposited by ultrasonic spray pyrolysis technique,” IEEE Trans. Electron Devices 63, 79–85 (2015).
[Crossref]

Westbergh, P.

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2010).
[Crossref]

Willner, A. E.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Wojcieszak, D.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci.-Poland 33, 660–668 (2015).
[Crossref]

Worland, D. P.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Xie, Y.

P. Qiu, W. Pang, P. Fu, M. Li, C. Sun, J. Zhao, Y. Xie, and Q. Kan, “Numerical investigation of vertical-cavity surface-emitting lasers incorporating a high-contrast grating using 3-D FDTD method,” Optik 218, 165125 (2020).
[Crossref]

Yang, W.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012).
[Crossref]

Yokota, N.

Yonkee, B.

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014).
[Crossref]

Yu, S. M.

H. Y. Liu, S. H. Hong, W. C. Sun, S. Y. Wei, and S. M. Yu, “TiO2-based metal–semiconductor–metal ultraviolet photodetectors deposited by ultrasonic spray pyrolysis technique,” IEEE Trans. Electron Devices 63, 79–85 (2015).
[Crossref]

Zhang, B.

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015).
[Crossref]

Zhang, C.

P. Padmanabhan, C. Zhang, and E. Charbon, “Modeling and analysis of a direct time-of-flight sensor architecture for LiDAR applications,” Sensors 19, 5464 (2019).
[Crossref]

Zhang, J.

Y. Liu, X. Zhang, Y. Huang, J. Zhang, W. Hofmann, Y. Ning, and L. Wang, “Polarization stabilized VCSELs by displacement Talbot lithography-defined surface gratings,” Optik 183, 579–585 (2019).
[Crossref]

Zhang, X.

Y. Liu, X. Zhang, Y. Huang, J. Zhang, W. Hofmann, Y. Ning, and L. Wang, “Polarization stabilized VCSELs by displacement Talbot lithography-defined surface gratings,” Optik 183, 579–585 (2019).
[Crossref]

Zhao, J.

P. Qiu, W. Pang, P. Fu, M. Li, C. Sun, J. Zhao, Y. Xie, and Q. Kan, “Numerical investigation of vertical-cavity surface-emitting lasers incorporating a high-contrast grating using 3-D FDTD method,” Optik 218, 165125 (2020).
[Crossref]

Zhao, X.

L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
[Crossref]

Zhou, Y.

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[Crossref]

Ziyadi, M.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Zondlo, M. A.

A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012).
[Crossref]

ACS Photon. (3)

R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, and J. Han, “Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers,” ACS Photon. 8, 1041–1047 (2021).
[Crossref]

T. C. Chang, E. Hashemi, K. B. Hong, J. Bengtsson, J. Gustavsson, Å. Haglund, and T. C. Lu, “Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors,” ACS Photon. 7, 861–866 (2020).
[Crossref]

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2019).
[Crossref]

Adv. Opt. Mater. (1)

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlidal, A. Szeghalmi, E. B. Kley, and A. Tunnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4, 1780–1786 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Express (3)

T. C. Chang, S. Y. Kuo, J. T. Lian, K. B. Hong, S. C. Wang, and T. C. Lu, “High-temperature operation of GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 10, 112011 (2017).
[Crossref]

M. Bellanger, V. Bousquet, G. Christmann, J. Baumberg, and M. Kauer, “Highly reflective GaN-based air-gap distributed Bragg reflectors fabricated using AlInN wet etching,” Appl. Phys. Express 2, 121003 (2009).
[Crossref]

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12, 036504 (2019).
[Crossref]

Appl. Phys. Lett. (5)

R. Tao, M. Arita, S. Kako, and Y. Arakawa, “Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities,” Appl. Phys. Lett. 103, 201118 (2013).
[Crossref]

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide,” Appl. Phys. Lett. 112, 111104 (2018).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105, 031111 (2014).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171115 (2011).
[Crossref]

Coatings (1)

Q. Hao, X. Fu, S. Song, D. Gibson, C. Li, H. O. Chu, and Y. Shi, “Investigation of TiO2 thin film deposited by microwave plasma assisted sputtering and its application in 3D glasses,” Coatings 8, 270 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

IEEE Sens. J. (1)

L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
[Crossref]

IEEE Signal Process. Mag. (1)

Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems,” IEEE Signal Process. Mag. 37, 50–61 (2020).
[Crossref]

IEEE Trans. Electron Devices (1)

H. Y. Liu, S. H. Hong, W. C. Sun, S. Y. Wei, and S. M. Yu, “TiO2-based metal–semiconductor–metal ultraviolet photodetectors deposited by ultrasonic spray pyrolysis technique,” IEEE Trans. Electron Devices 63, 79–85 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (1)

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol. B 33, 050603 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Hamaguchi, M. Tanaka, and H. Nakajima, “A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation,” Jpn. J. Appl. Phys. 58, SC0806 (2019).
[Crossref]

Mater. Sci.-Poland (1)

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci.-Poland 33, 660–668 (2015).
[Crossref]

Nanophotonics (1)

T. Czyszanowski, M. Gębski, E. Pruszyńska-Karbownik, M. Wasiak, and J. A. Lott, “Monolithic high-contrast grating planar microcavities,” Nanophotonics 9, 913–925 (2020).
[Crossref]

Nanotechnology (1)

S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26, 024003 (2015).
[Crossref]

Opt. Express (5)

Optik (2)

P. Qiu, W. Pang, P. Fu, M. Li, C. Sun, J. Zhao, Y. Xie, and Q. Kan, “Numerical investigation of vertical-cavity surface-emitting lasers incorporating a high-contrast grating using 3-D FDTD method,” Optik 218, 165125 (2020).
[Crossref]

Y. Liu, X. Zhang, Y. Huang, J. Zhang, W. Hofmann, Y. Ning, and L. Wang, “Polarization stabilized VCSELs by displacement Talbot lithography-defined surface gratings,” Optik 183, 579–585 (2019).
[Crossref]

Phys. Rev. Lett. (1)

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015).
[Crossref]

Proc. SPIE (2)

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

R. L. Thornton, “Vertical cavity lasers and their application to laser printing,” Proc. SPIE 3003, 112 (1997).

Remote Sens. (1)

A. Khan, D. Schaefer, L. Tao, D. J. Miller, K. Sun, M. A. Zondlo, W. A. Harrison, B. Roscoe, and D. J. Lary, “Power greenhouse gas sensors for unmanned aerial vehicles,” Remote Sens. 4, 1355–1368 (2012).
[Crossref]

Sci. Rep. (2)

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8, 10350 (2018).
[Crossref]

T. C. Chang, K. B. Hong, and T. C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9, 13055 (2019).
[Crossref]

Semicond. Sci. Technol. (2)

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2010).
[Crossref]

P. Das, S. V. Singh, and S. Tallur, “Design and analysis of electro-optic modulators based on high contrast gratings in AlGaN/GaN heterostructures,” Semicond. Sci. Technol. 35, 125022 (2020).
[Crossref]

Sensors (1)

P. Padmanabhan, C. Zhang, and E. Charbon, “Modeling and analysis of a direct time-of-flight sensor architecture for LiDAR applications,” Sensors 19, 5464 (2019).
[Crossref]

Other (1)

R. Vicarini, J. Rutkowski, V. Maurice, E. Kroemer, S. Galliou, C. Gorecki, and R. Boudot, “Characterization of 894.6 nm VCSELs and application to a microcell-based atomic clock,” in International Frequency Control Symposium and European Frequency and Time Forum (2017), paper hal-02472689.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Schematic drawing of HCG placed on the n-GaN. The bottom layer is n-GaN, and a plane wave is incident from the bottom. HCGs are made directly on the n-GaN. Top is the air. Fw- and Fh-dependent TE reflectance maps of HCG made by (b) TiO2 and (c) n-GaN for the grating period of 375 nm and incident wavelength of 403 nm. (d) TE reflectance map of n-GaN HCG as functions of wavelength and Fw. The grating period is 375 nm, and grating height is 100 nm. (e) TE reflectance map of n-GaN HCG as functions of wavelength and Fh. The grating period is 375 nm, and Fw is 36%. (f) TE reflectance map of n-GaN HCG as functions of period and Fw. The wavelength is set as 403 nm, and grating height is 100 nm. Contours express the calculated TM reflectances.
Fig. 2.
Fig. 2. (a) HCG parameter-dependent threshold gains of a periodic VCSEL unit cell with n-GaN MHCG and a 3155 nm thick n-GaN layer. Green and white contours indicate the threshold gain and cavity wavelength. (b) HCG parameter-dependent threshold gains of a periodic VCSEL unit cell with TiO2 HCG and a 3155 nm thick n-GaN layer. Green and white contours indicate the threshold gain and cavity wavelength. (c) Calculated threshold gains of a 2D cross-sectional VCSEL with a finite period of HCG for varying aperture and HCG pattern sizes. The top horizontal axis variable represents the width of the HCG pattern that is 0 to 16 μm larger than the 9 μm aperture. Half-symmetric mode profiles of VCSEL integrated with (d) 9 μm width, (e) 13 μm width, (f) 17 μm width, and (g) 21 μm width HCG patterns. The aperture size is fixed at 9 μm. The vertical white line and sky-blue line indicate the boundaries of aperture and HCG pattern.
Fig. 3.
Fig. 3. (a) 3D schematic of GaN-based VCSEL directly integrated with an n-GaN HCG mirror. (b) TEM image of an n-GaN HCG. (c) OM image of a current-injected VCSEL. (d) TEM image of a GaN-based VCSEL integrated with a monolithic n-GaN HCG mirror.
Fig. 4.
Fig. 4. Measured (a) L-I-V curves and (b) electroluminescence spectra of a current-injected GaN-based VCSEL integrated with a monolithic n-GaN HCG mirror. The top inset shows the measured polarization curve and SEM image of the HCG pattern. The bottom inset shows the near-field emission pattern above the threshold. The dashed line indicates the current aperture, and the scale bar is 2 μm.
Fig. 5.
Fig. 5. Calculated reflectance map of trapezoidal MHCG for (a) Fh=26%, (b) Fh=27% when the period is fixed at 375 nm. (c) TE-polarized reflectance of trapezoidal MHCG as a function of tile angle θ for Fw=33.8%, Fh=26.3%, and Λ=375.6nm.
Fig. 6.
Fig. 6. (a) Wavelengths and (b) threshold gains of cavity modes for a VCSEL unit cell integrated with a bottom DBR and an n-GaN HCG mirror. Simulated cavity modes of a VCSEL unit cell with (c) 3075 nm thick, (d) 3155 nm thick, and (e) 3235 nm thick n-GaN layers.
Fig. 7.
Fig. 7. Calculated thickness-dependent optical confinement factors (confinement factor of quantum well and confinement factor of ITO) inside the (a) MQW and (b) ITO layers. Calculated mode profiles of a VCSEL unit cell for (c) 3117 nm thick, (d) 3180 nm thick, and (e) 3238 nm thick n-GaN layers.
Fig. 8.
Fig. 8. Calculated threshold gains of a periodic VCSEL unit cell with monolithic n-GaN MHCG and 3155 nm thick n-GaN layer for sidewall angles of (a) 10° and (b) 15°.
Fig. 9.
Fig. 9. (a) Calculated optical confinement factor. Calculated absorption losses inside the (b) MQW, (c) GaN-based material, (d) ITO layer, (e) metal region, and (f) threshold gain without vertical loss.

Metrics