Abstract

All-inorganic perovskite micro/nanolasers are emerging as a class of miniaturized coherent photonic sources for many potential applications, such as optical communication, computing, and imaging, owing to their ultracompact sizes, highly localized coherent output, and broadband wavelength tunability. However, to achieve single-mode laser emission in the microscale perovskite cavity is still challenging. Herein, we report unprecedented single-mode laser operations at room temperature in self-assembly CsPbX3 microcavities over an ultrawide pumping wavelength range of 400–2300 nm, covering one- to five-photon absorption processes. The superior frequency down- and upconversion single-mode lasing manifests high multiphoton absorption efficiency and excellent optical gain from the electron–hole plasma state in the perovskite microcavities. Through direct compositional modulation, the wavelength of a single-mode CsPbX3 microlaser can be continuously tuned from blue-violet to green (427–543 nm). The laser emission remains stable and robust after long-term high-intensity excitation for over 12 h (up to 4.3×107 excitation cycles) in the ambient atmosphere. Moreover, the pump-wavelength dependence of the threshold, as well as the detailed lasing dynamics such as the gain-switching and electron–hole plasma mechanisms, are systematically investigated to shed insight into the more fundamental issues of the lasing processes in CsPbX3 perovskite microcavities.

© 2020 Chinese Laser Press

1. INTRODUCTION

Miniaturization and integration of photonic components hold great promise for advancing the field of optoelectronics [13]. There has been a long-standing and continuous pursuit of highly stable, wavelength-tunable semiconductor lasers on the micro/nanoscale due to the rapid progress of optical integrated systems. In particular, semiconductor lasers oscillating at a single frequency, such as single-mode lasers, have attracted great interest due to their potential for commercial applications in on-chip optical interconnects [4], quantum information processing [5,6], sensing [7,8], super-resolution imaging [9,10], and ultradense data storage [11]. Over the past decades, a wide range of micro/nanowire lasers has been reported, consisting of a multitude of compositions including various II-VI and III-V compound semiconductors [12]. Unfortunately, synthesis of these nanowires commonly requires expensive high-temperature or low-pressure conditions. Moreover, although most of these materials are stable in ambient atmosphere, only a few of them have demonstrated broad wavelength tunability, and the so-called “green gap” problem has not been solved in these material systems. Recently, studies on miniaturized lasers from perovskite semiconductors have experienced explosive growth and have led to great advances in lasing performance due to their high optical gain and tunable luminescence over the whole visible wavelength range [1331]. From a historical perspective, Xing et al. reported low-threshold room-temperature (RT) amplified spontaneous emission in perovskite films in 2014 [32]. At almost the same time, lasing from perovskite-based vertical cavity surface emitting architecture was observed by Deschler et al. [16]. Shortly afterwards, Zhang et al. achieved near-infrared whispering-gallery-mode (WGM) nanolasers based on perovskite nanoplates [13], while Zhu et al. observed high-quality-factor Fabry–Perot (FP) lasing in perovskite nanowires with ultralow threshold of 220  nJ/cm2 [14]. By conformally coating perovskite film on a silica microsphere, Sutherland and co-workers also demonstrated WGM lasers [15]. Besides, amplified spontaneous emission and lasing from colloidal nanocrystals of cesium lead halide perovskites were realized during nearly the same period by Yakunin et al. [33]. Since then, the lead halide perovskite micro/nanostructures served as gain materials with tunable lasing wavelengths that have been dramatically developed. Very recently, Qin et al. reported the first stable quasi-2D perovskite lasers under continuous-wave optical pumping in air at RT [34], which is expected to pave the way to the realization of future current-injection perovskite lasers. Huang et al. demonstrated the ultrafast control of perovskite-based vortex microlasers with ultralow energy consumption and simultaneously ultrahigh speed [35], providing a route to develop high-speed classical and quantum communication systems. Compared to organic and organic–inorganic perovskite components, all-inorganic cesium lead halide perovskites (CsPbX3, X=Cl, Br, I, or their mixture) present better physical and chemical stability with respect to temperature, moisture, and light exposure, representing promising prospects of CsPbX3 perovskites for the development of stable and high-performance devices [36,37]. Indeed, perovskite lasers have been achieved in many micro/nanostructures with different geometries, such as micro/nanowires [14,1720,24,38,39], nanoplatelets [13,21,22,40], microspheres [15,23], microcubes [25,41,42], and hemispheres [27], for both single- and multiphoton excitations. However, most of these microcavity lasers are subject to random fluctuations and instabilities, showing typical multimode lasing. In principle, multiple modes in a resonant cavity are competitive with each other, and the one with the highest gain will dominate, but inhomogeneous gain saturation caused by spatial hole burning or crystal/cavity inhomogeneity can sustain multiple lasing modes [14,43]. Despite the extensive efforts that have been devoted to this enterprise, the realization of single-mode lasing in a CsPbX3 microcavity with narrow spectral linewidth and broadband tunability remains a substantial challenge.

To date, the most developed preparation approaches for CsPbX3-based micro/nanostructures can be divided into two strategies: one is the liquid-phase method [14,1820,38], and the other is the chemical vapor deposition (CVD) method [17,2127,42]. Generally, the CVD route requires high temperature and an inert atmosphere, which need high energy consumption, a long preparation period, and effective waste management, and thus inevitably increase the cost and could limit the output in mass production. Recently, on the basis of the supersaturated recrystallization mechanism, Zheng et al. reported a low-temperature liquid-phase synthesis method to synthesize inner-defect-free inorganic perovskite CsPbBr3 micro/nanoflake single crystals [44]. The very thin supersaturated solution layer serves to promote heterogeneous nucleation of the material on the substrate due to the lower activation energy for nucleation induced by the production of ordered adlayers of anions on the surface [45]. Recrystallization takes place upon liquid transfer, and the CsPbX3 nanocrystals grow rapidly due to the presence of the highly supersaturated state of the ions. Accordingly, the facile and high-compatibility liquid-phase self-assembly growth method based on the supersaturated recrystallization mechanism is very promising in achieving low-cost and environment-friendly CsPbX3 micro/nanostructures [19,44].

In this work, we report unprecedented single-mode lasing with broad wavelength tunability in self-assembly CsPbX3 microcavities, including microplates, microrods, and microcubes, over an ultrawide pumping wavelength range of 400–2300 nm at RT by using a modified low-temperature liquid-phase growth method. The as-grown microcrystals are single crystalline with well-formed facets and act as high-quality laser cavities. The superior frequency down- and upconversion single-mode lasing via one- to a giant five-photon absorption process demonstrates high multiphoton absorption (MPA) efficiency and excellent optical gain from the electron–hole plasma (EHP) state in the perovskite microcavities. By simple compositional modulation, high-quality single-mode lasing can be extended from blue-violet to green (427–543 nm) with low threshold and high stability. Additionally, the pump-wavelength-dependent lasing thresholds and the time-resolved kinetic emissions of the laser pulses are explored to reveal the physical mechanisms underlying the lasing behaviors.

2. EXPERIMENTAL SECTION

A. Synthesis Process of CsPbX3 Single Microcrystals

The compounds CsPbX3 single microcrystals were synthesized using a modified low-temperature liquid-phase growth method. Typically, the N,N-dimethylformamide (DMF)–CsPbClxBr3x solution was prepared by mixing CsX (X=Cl or Br, 99.99%, Aladdin) and PbX2 (X=Cl or Br, 99.99%, Aladdin) powders with a suitable stoichiometric ratio in DMF solvent, while the DMF–CsPbBrxI3x(x<3) solution was obtained by mixing CsX (X=Br or I, 99.99%, Aladdin), PbX2 (X=Br or I, 99.99%, Aladdin), and additive β-cyclodextrin (β-CD, 99%, TCI) powders in DMF, and then we kept stirring for 4 h at a temperature of 80°C. Upon cooling to RT, a drop of the DMF–CsPbClxBr3x solution (30 μL) was dispensed onto a Si, sapphire, or quartz substrate, which was preheated to a relatively low temperature (e.g., 40°C), and we kept the temperature unchanged to evaporate the solvent at a controllable rate. After the DMF solvent completely evaporated, high-quality CsPbClxBr3x single microcrystals with microplate, microrod, or microcube geometries were achieved on the substrate. In the contrary, CsPbBrxI3x microcrystals were synthesized by directly dropping the DMF–CsPbBrxI3x solution with β-CD (30 μL) onto the substrate, which was previously heated to a fairly high evaporation temperature of 330°C to ensure the perovskite crystals staying in the black cubic phase.

B. Characterization

Structural and morphological characterizations of the as-grown CsPbX3 microcrystals were all conducted at RT (20°C). The crystal phase of the investigated samples was investigated using an X-ray diffraction (XRD) spectrometer, (Cu Kα, D8-Avance, BrukerAXS, Germany). The morphology micrographs and the elemental analysis of the microcrystals were carried out using a high-resolution scanning electron microscope (SEM) with an energy-dispersive X-ray spectroscopy (EDS) system (XL30, Philips, the Netherlands). The optical absorption spectroscopy was measured using a UV-Vis-NIR spectrophotometer (Cary 5000, Varian, America).

C. Optical Measurements

All the photoluminescence (PL), lasing, and time-resolved PL experiments were performed with the home-built confocal μ-PL system at RT by a Ti:sapphire femtosecond (fs) pulse laser operating at 800 nm (35 fs, 1 kHz, Verdi G8, Coherent, America). The impulsive 400 nm pulses were generated by frequency doubling the 800 nm fs pulses via a β-barium-borate (BBO) crystal, while the impulsive 1300, 1800, and 2300 nm pulses were generated from an optical parametric amplifier (OPA) system pumped by the 800 nm fs pulses. The pump laser beam was introduced into the confocal system and focused to a spot through a 40× objective lens. The time-resolved kinetic investigation on pulse laser outputs was carried out by a streak-camera system (C10910, Hamamatsu, Japan) with a temporal resolution of about 10 ps. The luminescence signals were dispersed by a triple-grating spectrometer (Shamrock SR-303, Andor) and were recorded by a cooled charge-coupled device (CCD) camera.

3. RESULTS AND DISCUSSION

A. Direct Synthesis and Characterizations of CsPbX3 Single Microcrystals

The schematic diagram of facile liquid-phase synthetic strategy for high-quality CsPbX3 single microcrystals is presented in Fig. 1. Briefly, a drop of solution (30  μL) containing dissolved solvent (CsX and PbX2 compounds with a target stoichiometric ratio) and DMF solvent is dispensed onto single-crystal Si, sapphire, amorphous quartz, or other substrates, which were preheated to a given temperature Th (e.g., 40°C) by a heater in ambient atmosphere. After the solution spreads out naturally, the DMF solvent begins to evaporate due to the higher substrate temperature. As the DMF continues to evaporate, the solution gradually experiences a highly supersaturated state. Once the supersaturation reaches the critical value for nucleation, the nuclei start to form on the substrate, and the concentration at the solid–liquid interface is reduced to the saturation concentration of the solution [45]. A concentration gradient is then established in the solution, which serves as the driving force for the ion or molecule diffusion that results in the continuous growth of the CsPbX3 microcrystals until the DMF solvent completely evaporates. The crystal geometry and size, as well as chemical composition, can be controlled by adjusting the evaporation temperature, reactant concentration, substrate material, and stoichiometric ratio. The general chemical form of the perovskite CsPbX3 structure is illustrated in Fig. 1(b).

 

Fig. 1. Preparation of CsPbX3 single microcrystals. (a) Illustration of the synthesis of CsPbX3 microcrystals by the liquid-phase method. First, drop a certain amount of DMF–CsPbX3 solution onto the substrate, which was preheated to a given temperature Th, and keep the temperature unchanged in ambient air. Then, evaporate the DMF solvent under the given temperature (Th). The solution gradually reaches supersaturation, and the nuclei start to form on the substrate. After the solvent is completely evaporated, the CsPbX3 perovskite single microcrystals are obtained on the substrate surface. (b) Schematic chemical form of perovskite CsPbX3 structure.

Download Full Size | PPT Slide | PDF

Figures 2(a)–2(c) show the top-view SEM images of the self-assembled CsPbBr3 single microcrystals based on the liquid-phase recrystallization on single-crystal Si, sapphire, and amorphous quartz substrates, respectively, with the reactant concentration of 40 mmol/L at a evaporation temperature of 40°C. It is seen that the end facets of the CsPbBr3 crystals are smooth, which is critical for efficient emission confinement by a naturally forming high-quality optical cavity. Besides, it is found that the perovskite microcrystals on Si substrate tend to form rectangular microplates that are pressed to the substrate surface. In contrast, the CsPbX3 perovskites show microrod geometry on sapphire, while tilted microcubes appear on amorphous quartz under the same synthesis condition. By simply varying the halide composition, CsPbClxBr3x single microcrystals with the abovementioned three geometries can be easily obtained. The chemical composition and uniform spatial distribution of corresponding elements over the whole crystals, e.g., CsPbCl3 or CsPbBr3, are confirmed by EDS mapping as shown in Figs. 2(e) and 2(f). The EDS analysis indicates that the atomic ratios of Cs/Pb/Cl and Cs/Pb/Br are respectively 1.06:1.02:2.92 and 0.96:0.96:3.08 [Fig. 2(d)], which are in good agreement with the ideal 1:1:3 stoichiometry of a CsPbX3 crystal.

 

Fig. 2. Geometry of the CsPbClxBr3x single microcrystals on different substrates. SEM micrograph of CsPbBr3 on (a) single-crystal Si, (b) sapphire, and (c) amorphous quartz, with the reactant concentration of 40 mmol/L at an evaporation temperature of 40°C. Scale bars: 50 μm. (d) EDS spectra of the CsPbCl3 and CsPbBr3 microplates. Inset: atomic ratios of Cs/Pb/Cl and Cs/Pb/Br (1:1:3). (e), (f) EDS elemental mapping of the corresponding CsPbCl3 and CsPbBr3 microplates, respectively.

Download Full Size | PPT Slide | PDF

B. Broad Wavelength Tunable Emission from CsPbX3 Microcrystals

Through direct compositional modulations, the band-gap energies and emission spectra of the CsPbX3 microcrystals can be tuned over the entire visible spectral region from 420 nm (blue-violet) to 710 nm (red) [Fig. 3(a)]. The corresponding linear optical absorption spectra of pure CsPbCl3, CsPbBr3, and CsPbI3 crystals are concomitantly presented. The PL experiments were conducted under low excitation intensity at RT by fs impulsive optical pumping at 400 nm, namely, a frequency downconversion (one-photon absorption, 1PA) PL process, as illustrated in Fig. 3(b). Notably, the CsPbI3 crystal increase, and then the valence and conduction (δ) phase with a wide band gap (2.82  eV) at RT, while a preferred black cubic (α) perovskite phase with a narrow band gap (1.73  eV) requires high temperature atmospheres (>310°C) [46,47]. Upon cooling, the cubic α-CsPbI3 undergoes immediate transformation to the orthorhombic phase when exposed to ambient conditions [48]. Such intrinsic lack of stability is due to autodegradation and susceptibility to hydrolysis from atmospheric water and oxygen [49,50]. To achieve cubic α-CsPbBrxI3x (x<3) crystals with high phase stability, the supramolecular β-CD is introduced into the DMF–CsPbBrxI3x precursor solution prior to thermal evaporation at 330°C. After cooling to RT, the CsPbBrxI3x crystals with β-CD remain “frozen” in the black photoactive phase due to the drastically enhanced framework of the synthesized CsPbBrxI3x perovskites through the supramolecular interaction [51,52]. Such beneficial interaction tremendously improves the crystalline properties, humidity stability, and illumination stability of the perovskite materials. The molecular structure and approximate hydrophobic-cavity dimensions, as well as the schematic of the water-resistant property of the perovskite with β-CD, are respectively displayed in Figs. 3(c) and 3(d). Remarkably, such a new class of promoter for perovskite formation demonstrates the great potential of β-CD for a wide range of applications in perovskite-based optoelectronic devices, such as light-emitting diodes, lasers, and detectors. Figure 3(e) shows the XRD pattern evolution of the CsPbX3 microcrystals with varying stoichiometric ratio of halide ions (e.g., Cl/Br and Br/I ratios). By comparing the measured XRD patterns with the standard XRD patterns of cubic and orthorhombic CsPbX3, it is found that the CsPbClxBr3x possesses the orthorhombic crystal phase, showing observable peak splitting, while the CsPbBrxI3x counterparts exhibit the cubic crystal phase. The identifiable blueshifts of the diffraction peaks from CsPbCl3 to CsPbI3 are caused by the increasing lattice constant [20]. When the halide elemental weight increases from Cl to I, the energies of the halide p orbital increase, and then the valence and conduction bands move closer [21], leading to the decrease of optical band gap from 2.95  eV (420 nm, CsPbCl3) to 1.75  eV (710 nm, CsPbI3). The band-gap variations of the CsPbX3 microcrystals are plotted in Fig. 4(f) as a function of chemical composition. By linearly fitting the experimental data, the dependence of band gap on composition (x) for the CsPbX3 crystals can be quantitatively obtained as follows:

Eg[CsPb(ClxBr1x)3]=2.332+0.604x(eV),
Eg[CsPb(BrxI1x)3]=1.691+0.641x(eV).

 

Fig. 3. Tunable band-gap energies and emission spectra of the CsPbX3 microcrystals. (a) Tunable emission wavelength and absorption of the CsPbX3 (X=Cl, Cl/Br, Br, Br/I, and I) mixed halide systems. (b) Schematic of the frequency downconversion (1PA) PL process. (c) Molecular structure and approximate cavity dimensions of β-CD. (d) Schematic diagram to show the mechanism for the water-resistant property of the CsPbBrxI3x (0x<3) with β-CD. (e) XRD patterns of the as-grown CsPbX3 mixed halide perovskites. (f) Band gaps of the CsPbX3 with composition x. The filled circles are the experimental data, and the solid lines are the linearly fitted curves.

Download Full Size | PPT Slide | PDF

 

Fig. 4. Frequency downconversion single-mode lasing from CsPbClxBr3x microcavities based on 1PA. Single-mode lasing of the CsPbBr3 (a) microplate, (b) microrod, and (c) microcube. Insets: corresponding fluorescence microscopy images of the CsPbBr3 microcrystals. (d) Integrated emission intensity and FWHM as a function of pump fluence showing the lasing threshold at 24.1  μJ/cm2 and gain saturation at 35.2  μJ/cm2. (e) Gaussian fitting of the lasing mode near the threshold, giving the FWHM of the lasing peak (δλ) 0.27  nm and the Q factor 2012. (f) Polarization characteristics of the laser emission at a pump fluence of 1.3Pth. The DOP is estimated to be 73%, corresponding to an orthogonal polarization suppression ratio of 16 dB. (g) Multicolor single-mode laser emissions and corresponding fluorescence microscopy images of the CsPbClxBr3x microcrystals. (h) Integrated emission intensity of a CsPbBr3 microplate under 400 nm fs laser excitation at a constant pump density of 1.5Pth for over 12 h while exposed to ambient atmosphere.

Download Full Size | PPT Slide | PDF

C. Robust Single-Mode Lasing from CsPbClxBr3x Microcavities Based on 1PA

The as-grown microcrystals are directly used for lasing experiments without transferring them to other substrate by a micromanipulator. Owing to the excellent crystal quality and intrinsic high material gain, single-mode lasing from CsPbBr3 microplates, microrods, and microcubes is successfully demonstrated under impulsive pumping at 400 nm. The pump laser beam is introduced into the confocal system and focused to a spot with the beam waist adjusted to be larger than the crystal facets using a 40× objective lens. The end facets of these crystals naturally form a high-quality FP cavity or WGM cavity for optical amplification and oscillations. Under high pump fluence, along with the carrier density in the cavity achieving population inversion, amplified stimulated emission can be established. The lasing spectra and corresponding fluorescence microscopy images (see the insets) are shown in Figs. 4(a)–4(c) for the microplate, microrod, and microcube, respectively. The bright emission localized at the ends is consistent with a strong waveguiding effect and directly indicates that these microcrystals themselves form high-quality optical cavities. Figure 4(d) plots the representative integrated emission intensities (on log–log scales) and the full width at half-maximum (FWHM) as a function of pump fluence (P). The light input–light output (LL) behaviors exhibit the typical “s-shaped” nonlinear characteristic of the transition from original spontaneous emission (SPE) to stimulated emission with the increase of excitation intensity. The laser threshold is derived at about 24.1  μJ/cm2, which is comparable to those reported in previous works [25,53]. Meanwhile, an abrupt narrowing of the spectral linewidth is clearly seen due to spontaneous coherence buildup in the microcavity for the lasing onset. As the excitation density increases above 35.2  μJ/cm2, the lasing intensity increases slowly due to gain saturation. The difference between the heights of the emission intensities before and after lasing roughly corresponds to an SPE coupling factor of 0.05, which physically represents the coupling efficiency of the SPE to the lasing mode [54]. Note that this value of factor is comparable to those reported in well-known vertical-cavity surface-emitting lasers [55,56], indicating the efficient enhancement of the SPE into a lasing mode by the microcavity effect in the crystals. By well fitting the data with a Gaussian function, the lasing peak linewidth can be identified as 0.27 nm [Fig. 4(e)]. The cavity quality factor Q is then calculated to be 2012 according to the relationship of Q=λ/δλ [14], where λ is the peak center wavelength and δλ is the peak width. Figure 4(f) depicts the polarization characteristics of the laser pulses. The integrated emission intensities are plotted as a function of detection polarization angle φ while keeping the pump fluence at 1.3Pth and fitted with a cos2φ function. The degree of polarization (DOP), given by [57]

DOP=LmaxLminLmax+Lmin,
where Lmax and Lmin are respectively the maximum and minimum relative light intensities, is estimated to be 73%, showing a highly polarized excitation response with an orthogonal polarization suppression ratio of 16 dB [58,59]. Additionally, by mixing different amounts of cesium bromide and chloride in the precursor solution, we have realized high-quality single-mode laser emission from CsPbClxBr3x microcrystals over the spectral range from blue-violet to green (427–543 nm) as shown in Fig. 4(g). Note that the lasing operation is hardly achieved for the CsPbBrxI3x mixed halide system due to the irregularity in crystal morphology at a high synthesis temperature of 330°C. Besides, the additive β-CD may possibly enhance the light scattering and thus destroys the phase coherence of photons in the crystal. Nevertheless, the CsPbBrxI3x crystals with β-CD present substantially improved water stability and illumination stability, which are unattainable by conventional methods, and should be very valuable in a wide variety of new application areas, especially for high-efficiency light-emitting devices and solar cells [60,61]. To probe the stability of lasing outputs, the CsPbBr3 microplate was constantly pumped by the 400 nm fs laser source with 35 fs duration and 1 kHz repetition rate in the ambient atmosphere (20°C, 45% relative humidity) at 1.5Pth for over 12 h (up to 4.3×107 excitation cycles). As shown in Fig. 4(h), the laser emission remains stable and robust after long-term high-intensity excitation, demonstrating that the CsPbX3 microlasers have great potential for integration onto on-chip optoelectronic circuitry.

D. Superior Frequency Upconversion Single-Mode Lasing from CsPbClxBr3x Microcavities Based on MPA

MPA processes enable many technologically important applications such as biomedical imaging [62,63], photodynamic therapy [64], and optical limiting [65]. During the past few years, MPA upconversion luminescence and lasing for perovskite materials have received extensive attention, and the CsPbBr3 nanocrystals and bulk phase materials have already been experimentally confirmed to be efficient multiphoton materials with large absorption cross sections [66] and resonantly enhanced multiple exciton generation [67]. However, up to now, although two- and three-photon absorption (2PA and 3PA) upconverted lasing has been recently achieved in all-inorganic perovskite micro/nanocavities [3942], higher-order nonlinear absorption (e.g., 4PA or 5PA) laser action has been rarely reported despite the tremendous efforts. Here we first demonstrate the amazing excellent frequency-upconverted single-mode lasing from the CsPbClxBr3x microcrystals through 2PA to giant 5PA processes, covering an ultrawide pumping wavelength region of 800–2300 nm. Figure 5(a) shows the variation of emission spectra for the CsPbBr3 microplate under progressively higher pump fluences. It is clearly seen that one single sharp peak abruptly appeared above the SPE background and grew drastically with increasing pump density, and no other resonant peaks were found in this process. The distinct evolvement from SPE to stimulated emission indicates the achievement of an upconversion single-mode laser. The 2PA excitation process via virtual energy levels is schematically illustrated in the inset of Fig. 5(a). Figures 5(b) and 5(c) present the corresponding threshold behaviors of emission intensity and FWHM evolution, as well as the Gaussian fitting of the lasing linewidth, respectively. From the “s-shaped” LL curve and the fitting result, the 2PA lasing threshold can be derived as 63.5  μJ/cm2, and the lasing linewidth is about 0.28 nm. The cavity factor Q is then calculated to be 1940, which is comparable to that of 1PA scheme. Figures 5(d)–5(f) show the 3PA, 4PA, and 5PA upconversion single-mode laser emissions for the CsPbBr3 microplates that are pumped by 1300, 1800, and 2300 nm, respectively, together with the corresponding MPA and fluorescence mechanisms (see the insets). Specifically, higher-order nonlinear absorption (4PA or 5PA) is especially desirable for next-generation multiphoton imaging due to its high spatial resolution, large penetration depth, and little photodamage and photobleaching [66,68]. Figures 5(g)–5(j) display the fluorescence microscopy images of a CsPbBr3 microrod via 5PA with increasing pump fluence. As is shown, at excitation densities below the lasing threshold, SPE dominates, and the microrod is uniformly emissive. Upon surpassing the threshold, however, stimulated emission takes over, and the coherent emission from the two end facets is clearly observed, indicating a strong optical confinement effect in the microrod cavity. On the basis of the abovementioned experiments, the pump-wavelength dependence of the lasing threshold for the microrod via MPA is exhibited in Fig. 5(k). The statistical analysis reveals that the lasing threshold of the microrod is superlinearly increased with increasing pumping wavelength. The approximate values of the thresholds are 24.5±4, 64.6±10  μJ/cm2, and 1.3±0.2, 4.5±0.7, 12±2  mJ/cm2 for the respective 400, 800, 1300, 1800, and 2300 nm excitations. Such superlinear increase of threshold can be ascribed to the relatively lower conversion efficiency due to higher-order nonlinear multiphoton effects [66,67]. Remarkably, despite this efficiency degeneration, the superior upconversion single-mode lasing has been unambiguously realized, for the first time, in all-inorganic microstructures via 2PA to giant 5PA processes, indicating excellent optical gain and efficient feedback within the microcavities. Further analysis of the carrier behaviors reveals that the formation of EHP in the cavity eventually contributes to the stimulated emission from the CsPbClxBr3x microcrystals for the 1PA and MPA processes [39,69,70], which is discussed in more detail in Section 3.E.

 

Fig. 5. Nonlinear frequency upconversion single-mode lasing from CsPbX3 microcavities based on MPA. (a) Variation of the emission spectra for the CsPbBr3 microplate pumped by 800 nm (2PA). (b) Integrated emission intensity and FWHM versus pump fluence, and (c) Gaussian fitting of the lasing mode at 1.1Pth based on 2PA. (d)–(f) Single-mode lasing from CsPbBr3 microplate pumped by 1300 nm (3PA), 1800 nm (4PA), and 2300 nm (5PA), respectively. Insets: corresponding MPA and fluorescence mechanisms for the respective pump wavelengths. (g)–(j) Fluorescence microscopy images of the CsPbBr3 microrod via 5PA with increasing pump fluence, showing the transition from original SPE to lasing. (k) Pump-wavelength-dependent lasing threshold of the CsPbBr3 microrod.

Download Full Size | PPT Slide | PDF

E. Lasing Dynamics of Single-Mode Laser Pulses from CsPbClxBr3x Microcavities

To gain additional insight into the lasing dynamics, time-resolved kinetic studies of pulse laser emission were performed using a streak-camera system. Figure 6(a) shows the representative streak-camera images of the detected PL from the CsPbBr3 microplate when the excitation fluences are below (0.8Pth) and above (1.6Pth) the lasing threshold. It is clearly seen that, below the threshold, SPE with a broad emission band and longer decay time dominates the emission process, while a stimulated emission with a much narrower emission band and an ultrashort decay time dominates the process upon surpassing the threshold. Figure 6(b) plots the decay curves at the excitation densities of 0.5Pth, 0.9Pth, and 1.2Pth, from which the lifetimes τ can be obtained through the exponential decay fitting. As is shown, the SPE lifetime is as long as 133  ps at 0.5Pth; with an increase of the pump density, a very fast decay with an ultrashort lifetime of 17 ps is observed above the threshold (1.2Pth), further manifesting the lasing occurrence in the microcavity. Moreover, the pump-density-dependent kinetic emission processes of the laser pulses above the lasing threshold are investigated to reveal the time-integrated spectral response of the perovskite microcavity. The streak-camera images and corresponding spectrally integrated waveforms of the pulses under progressively higher pump densities are shown in Fig. 6(c). As the pump fluence increases from 1.1Pth to 1.8Pth, the delay time of the output pulse (or called laser onset time) is gradually reduced from 47.9 to 37.5 ps. At high excitations, the pump pulse is strong enough to enable carrier inversion in the CsPbBr3 microlasers, whose initial distribution of photoexcited carriers depends on the pump power when the pump photon energy is fixed [71]. This nonequilibrium distribution relaxes by various interaction processes such as carrier–phonon interaction. The fast (fs) energy redistribution with the hot electron (hole) gas causes almost a Fermi distribution with high electron (hole) temperatures much greater than the ambient temperature. The hot electrons and holes then equilibrate by interaction with the CsPbBr3 lattice, mainly by carrier–phonon interactions [72]. Thus, the carrier relaxes to the respective band extremum by interactions with phonons, and the electrons and holes recombine by stimulated emission of photons with energies around the band-gap energy, which is therefore delayed relative to the pump pulse by a few picoseconds. Such onset time delay strongly depends on the pump power, that is, the onset delay of the stimulated emission decreases with increasing carrier density and saturates at a lower minimum when the carrier density is high enough that the spectral gain density becomes independent of any temporal carrier redistribution/relaxation close to the band gap. Conclusively, it is indeed an efficient way to tune the onset delay of CsPbBr3 microlasers by directly modulating the pump power and the respective carrier density. This could also encourage more conceptual thinking for technologically relevant microlaser applications.

 

Fig. 6. Lasing dynamics of the CsPbX3 microcavity lasers. (a) Streak-camera images of the CsPbBr3 microplate at the pump densities of 0.8Pth (top panel) and 1.6Pth (bottom panel). (b) Typical PL decay curve obtained at three different excitation densities of 0.5Pth, 0.9Pth, and 1.2Pth. (c) Streak-camera images and the corresponding spectral integrated waveforms of output pulses of gain-switched CsPbBr3 microcavity lasers for various pump fluences. (d) Wavelength dependence of the delay time and pulse width of the laser outputs extracted from the streak-camera image (inset) with a pump density of 1.4Pth. (e) Spectral evolution of the lasing pulses from the CsPbBr3 microplate, showing the obvious peak blueshift and linewidth broadening with increasing pump fluences from 1.05Pth to 1.95Pth. (f) Peak position and FWHM as a function of pump fluence extracted from (e).

Download Full Size | PPT Slide | PDF

Figure 6(d) presents the wavelength dependence of pulse width and delay time of the output pulses at a pump density of 1.4Pth. The delay time and pulse width at each wavelength are directly extracted from the streak-camera images (shown in the inset) for quantitative analysis. It is disclosed that, over the wavelength range from 541.1 to 541.5 nm, the delay time increases almost linearly with increasing wavelength (linear down chirp) with a slope (i.e., wavelength chirp) of 42 ps/nm. In the meanwhile, the pulse width for wavelengths below 541.3 nm remains almost constant at 20  ps, while it gradually increases to 28  ps with increasing wavelength for wavelengths longer than 541.3 nm. Actually, the reduction of delay time (laser onset time) at elevated excitation levels, the dependence of pulse width on wavelength, as well as the exponential rise and decay of the pulses are the typical characteristics of gain-switched pulses in semiconductor lasers [73,74]. Thanks to their outstanding optical gain, CsPbX3 perovskites should be very fascinating for advancing the field of low-cost, compact, and short-pulse semiconductor lasers based on the gain-switching technique for a variety of applications [75]. However, to the best of our knowledge, investigation on gain-switching characteristics in a perovskite laser is still lacking. Thus, great efforts should be devoted to both theoretical and experimental studies on this issue because of their significant academic and application value. Figures 6(e) and 6(f) show the variation of the normalized lasing spectra and corresponding peak position and FWHM with the increase of pump intensities, respectively. We can clearly identify the peak blueshifts and linewidth broadening with elevating pump levels, which can be unraveled by the chirping effect that results from changes in the carrier density and thus in the refractive index of the CsPbBr3 matrix [74,76].

Based on the above results, the EHP mechanism is believed to be responsible for the stimulated emission in our CsPbBr3 microcavities [19,39,69,70] because the formation of an EHP as the density of electron–hole pairs exceeds the Mott density (nM) is expected to lead to a blueshift in the cavity modes due to a decrease in the refractive index that arises from exciton absorption saturation [77]. According to the previous systematic studies, the Mott density for CsPbBr3 perovskites is reported from 1.8×1017 to 4.7×1017  cm3 [19,21,70,78]. The carrier density (np) at the threshold of the CsPbBr3 microplate in our system is estimated to be 3.7×1019  cm3 by the relationship of [79]

npη·Pexcωexc·V,
where η is the PL quantum yield, Pexc the average excitation fluence, the reduced Planck constant, ωexc the angular frequency of excitation photon, and V the effective active volume of the CsPbBr3. This value of np is almost 2 orders of magnitude higher than the reported Mott density, resulting in the stimulated emission from the EHP. Note that the lasing peak above the threshold appears only on the low-energy side of the PL spectrum, which further indicates the transition from the excitonic state to the EHP state that leads to the observed lasing, as reported for many other semiconductor nanostructures [8083]. It is noteworthy that, for the multiphoton excitation conditions, the lasing thresholds are much higher than in the case of 1PA, as shown in Fig. 5(k), and thus the corresponding carrier density at the threshold far exceeds the Mott density for the MPA scenarios [84]. Consequently, we can reasonably conclude that the formation of EHP is the origin of the contribution from stimulated emission to optical gain in our CsPbBr3 microcavities in the high-density regimes for both single- and multiphoton excitations.

4. CONCLUSION

In summary, we have realized unprecedented single-mode laser operations at RT in self-assembly CsPbX3 single microcrystals (including microplate, microrod, and microcube geometries) over an ultrawide pumping wavelength region of 400–2300 nm, covering 1PA to 5PA processes. The as-grown microcrystals are single crystalline with well-formed facets and act as high-quality FP or WGM optical cavities. The higher-order nonlinear absorption (4PA or 5PA) single-mode laser action manifests high MPA efficiency, efficient feedback, and excellent optical gain in the perovskite microcavities. The superlinear increase in lasing threshold for the microstructures with increasing pumping wavelengths is mainly attributed to the relatively lower conversion efficiency induced by higher-order nonlinear multiphoton effects. Through direct compositional modulation, the single-mode lasing emission can be continuously tuned from blue-violet to green (427–543 nm) with low threshold and high stability. The time-resolved kinetic studies of pulse laser emission provide additional insight into the lasing dynamics, including gain-switching and chirp characteristics, and the EHP recombination is considered the most convincing mechanism for the stimulated emission in the CsPbX3 microcavities. These results suggest that self-assembly CsPbX3 microcavities could be more promising and fascinating candidates for use in versatile optoelectronic integrated devices.

Funding

National Natural Science Foundation of China (61704055, 61874044, 61604055); Program of Shanghai Science and Technology Committee (17142202500); Strategic Priority Research Program of ECNU of China; Research Funds of MoE Nanophotonics & Advanced Instrument Engineering Research Center; Fundamental Research Funds for the Central Universities; Japan Society for the Promotion of Science (18H01469).

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415, 617–620 (2002). [CrossRef]  

2. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003). [CrossRef]  

3. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009). [CrossRef]  

4. Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives,” Photon. Res. 3, B10–B27 (2015). [CrossRef]  

5. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]  

6. W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014). [CrossRef]  

7. R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012). [CrossRef]  

8. K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018). [CrossRef]  

9. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007). [CrossRef]  

10. K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019). [CrossRef]  

11. L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009). [CrossRef]  

12. S. W. Eaton, A. Fu, A. B. Wong, C.-Z. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1, 16028 (2016). [CrossRef]  

13. Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014). [CrossRef]  

14. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015). [CrossRef]  

15. B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014). [CrossRef]  

16. F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014). [CrossRef]  

17. J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015). [CrossRef]  

18. P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, “Organic-inorganic hybrid perovskite nanowire laser arrays,” ACS Nano 11, 5766–5773 (2017). [CrossRef]  

19. S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016). [CrossRef]  

20. Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, “Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” ACS Nano 10, 7963–7972 (2016). [CrossRef]  

21. Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, “High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets,” Adv. Funct. Mater. 26, 6238–6245 (2016). [CrossRef]  

22. Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, and X. Duan, “Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications,” Nano Res. 10, 1223–1233 (2017). [CrossRef]  

23. B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017). [CrossRef]  

24. H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017). [CrossRef]  

25. B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018). [CrossRef]  

26. X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019). [CrossRef]  

27. H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020). [CrossRef]  

28. H. He, E. Ma, X. Chen, D. Yang, B. Chen, and G. Qian, “Single crystal perovskite microplate for high-order multiphoton excitation,” Small Methods 3, 1900396 (2019). [CrossRef]  

29. K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao, and Q. Song, “Single crystal microrod based homonuclear photonic molecule lasers,” Adv. Opt. Mater. 5, 1600744 (2017). [CrossRef]  

30. Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019). [CrossRef]  

31. Z. Liu, S. Huang, J. Du, C. Wang, and Y. Leng, “Advances in inorganic and hybrid perovskites for miniaturized lasers,” Nanophotonics 9, 2251–2272 (2020). [CrossRef]  

32. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014). [CrossRef]  

33. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015). [CrossRef]  

34. C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, and C. Adachi, “Stable room-temperature continuous-wave lasing in quasi-2D perovskite films,” Nature 585, 53–57 (2020). [CrossRef]  

35. C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020). [CrossRef]  

36. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015). [CrossRef]  

37. Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015). [CrossRef]  

38. Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016). [CrossRef]  

39. X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017). [CrossRef]  

40. Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020). [CrossRef]  

41. Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017). [CrossRef]  

42. B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, “High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity,” ACS Photon. 6, 793–801 (2019). [CrossRef]  

43. L. W. Casperson, “Threshold characteristics of multimode laser oscillators,” J. Appl. Phys. 46, 5194–5201 (1975). [CrossRef]  

44. W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, and F. Huang, “Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals,” ACS Appl. Mater. Interfaces 10, 1865–1870 (2018). [CrossRef]  

45. M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing, and J. A. Switzer, “Spin coating epitaxial films,” Science 364, 166–169 (2019). [CrossRef]  

46. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013). [CrossRef]  

47. G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, “Inorganic caesium lead iodide perovskite solar cell,” J. Mater. Chem. A 3, 19688–19695 (2015). [CrossRef]  

48. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, “Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science 354, 92–95 (2016). [CrossRef]  

49. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015). [CrossRef]  

50. Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017). [CrossRef]  

51. S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018). [CrossRef]  

52. D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019). [CrossRef]  

53. Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018). [CrossRef]  

54. S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017). [CrossRef]  

55. T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee, and S.-C. Wang, “Development of GaN-based vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 850–860 (2009). [CrossRef]  

56. G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020). [CrossRef]  

57. Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017). [CrossRef]  

58. G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016). [CrossRef]  

59. Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008). [CrossRef]  

60. L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019). [CrossRef]  

61. M. A. Green, A. H. Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014). [CrossRef]  

62. S. J. J. Kwok, N. Martino, P. H. Dannenberg, and S.-H. Yun, “Multiplexed laser particles for spatially resolved single-cell analysis,” Light Sci. Appl. 8, 74 (2019). [CrossRef]  

63. Y. Peng, W. Lu, P. Ren, Y. Ni, Y. Wang, L. Zhang, Y. Zeng, W. Zhang, and S. Ruan, “Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals,” Photon. Res. 6, 943–947 (2018). [CrossRef]  

64. P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile photosensitizers for photodynamic therapy at infrared excitation,” J. Am. Chem. Soc. 129, 4526–4527 (2007). [CrossRef]  

65. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997). [CrossRef]  

66. W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017). [CrossRef]  

67. A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, and J. Feldmann, “Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals,” Nat. Commun. 9, 1518 (2018). [CrossRef]  

68. J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013). [CrossRef]  

69. M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014). [CrossRef]  

70. A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019). [CrossRef]  

71. R. Röder and C. Ronning, “Review on the dynamics of semiconductor nanowier lasers,” Semicond. Sci. Technol. 33, 033001 (2018). [CrossRef]  

72. J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017). [CrossRef]  

73. T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018). [CrossRef]  

74. S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014). [CrossRef]  

75. G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018). [CrossRef]  

76. J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015). [CrossRef]  

77. J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003). [CrossRef]  

78. A. P. Schlaus, M. S. Spencer, and X.-Y. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019). [CrossRef]  

79. Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020). [CrossRef]  

80. S. Mitsubori, I. Katayama, S. H. Lee, T. Yao, and J. Takeda, “Ultrafast lasing due to electron-hole plasma in ZnO nano-multipods,” J. Phys. Condens. Matter 21, 064211 (2009). [CrossRef]  

81. J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010). [CrossRef]  

82. J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008). [CrossRef]  

83. S. Peng, G. Xing, and Z. Tang, “Hot electron-hole plasma dynamics and amplified spontaneous emission in ZnTe nanowires,” Nanoscale 9, 15612–15621 (2017). [CrossRef]  

84. M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415, 617–620 (2002).
    [Crossref]
  2. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
    [Crossref]
  3. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
    [Crossref]
  4. Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives,” Photon. Res. 3, B10–B27 (2015).
    [Crossref]
  5. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref]
  6. W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
    [Crossref]
  7. R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
    [Crossref]
  8. K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018).
    [Crossref]
  9. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
    [Crossref]
  10. K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
    [Crossref]
  11. L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
    [Crossref]
  12. S. W. Eaton, A. Fu, A. B. Wong, C.-Z. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1, 16028 (2016).
    [Crossref]
  13. Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
    [Crossref]
  14. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
    [Crossref]
  15. B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
    [Crossref]
  16. F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
    [Crossref]
  17. J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
    [Crossref]
  18. P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, “Organic-inorganic hybrid perovskite nanowire laser arrays,” ACS Nano 11, 5766–5773 (2017).
    [Crossref]
  19. S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016).
    [Crossref]
  20. Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, “Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” ACS Nano 10, 7963–7972 (2016).
    [Crossref]
  21. Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, “High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets,” Adv. Funct. Mater. 26, 6238–6245 (2016).
    [Crossref]
  22. Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, and X. Duan, “Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications,” Nano Res. 10, 1223–1233 (2017).
    [Crossref]
  23. B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017).
    [Crossref]
  24. H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
    [Crossref]
  25. B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018).
    [Crossref]
  26. X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019).
    [Crossref]
  27. H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
    [Crossref]
  28. H. He, E. Ma, X. Chen, D. Yang, B. Chen, and G. Qian, “Single crystal perovskite microplate for high-order multiphoton excitation,” Small Methods 3, 1900396 (2019).
    [Crossref]
  29. K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao, and Q. Song, “Single crystal microrod based homonuclear photonic molecule lasers,” Adv. Opt. Mater. 5, 1600744 (2017).
    [Crossref]
  30. Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
    [Crossref]
  31. Z. Liu, S. Huang, J. Du, C. Wang, and Y. Leng, “Advances in inorganic and hybrid perovskites for miniaturized lasers,” Nanophotonics 9, 2251–2272 (2020).
    [Crossref]
  32. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
    [Crossref]
  33. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
    [Crossref]
  34. C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, and C. Adachi, “Stable room-temperature continuous-wave lasing in quasi-2D perovskite films,” Nature 585, 53–57 (2020).
    [Crossref]
  35. C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
    [Crossref]
  36. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
    [Crossref]
  37. Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
    [Crossref]
  38. Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016).
    [Crossref]
  39. X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
    [Crossref]
  40. Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020).
    [Crossref]
  41. Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
    [Crossref]
  42. B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, “High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity,” ACS Photon. 6, 793–801 (2019).
    [Crossref]
  43. L. W. Casperson, “Threshold characteristics of multimode laser oscillators,” J. Appl. Phys. 46, 5194–5201 (1975).
    [Crossref]
  44. W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, and F. Huang, “Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals,” ACS Appl. Mater. Interfaces 10, 1865–1870 (2018).
    [Crossref]
  45. M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing, and J. A. Switzer, “Spin coating epitaxial films,” Science 364, 166–169 (2019).
    [Crossref]
  46. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).
    [Crossref]
  47. G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, “Inorganic caesium lead iodide perovskite solar cell,” J. Mater. Chem. A 3, 19688–19695 (2015).
    [Crossref]
  48. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, “Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science 354, 92–95 (2016).
    [Crossref]
  49. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
    [Crossref]
  50. Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
    [Crossref]
  51. S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
    [Crossref]
  52. D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
    [Crossref]
  53. Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
    [Crossref]
  54. S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017).
    [Crossref]
  55. T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee, and S.-C. Wang, “Development of GaN-based vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 850–860 (2009).
    [Crossref]
  56. G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020).
    [Crossref]
  57. Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
    [Crossref]
  58. G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
    [Crossref]
  59. Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
    [Crossref]
  60. L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
    [Crossref]
  61. M. A. Green, A. H. Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014).
    [Crossref]
  62. S. J. J. Kwok, N. Martino, P. H. Dannenberg, and S.-H. Yun, “Multiplexed laser particles for spatially resolved single-cell analysis,” Light Sci. Appl. 8, 74 (2019).
    [Crossref]
  63. Y. Peng, W. Lu, P. Ren, Y. Ni, Y. Wang, L. Zhang, Y. Zeng, W. Zhang, and S. Ruan, “Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals,” Photon. Res. 6, 943–947 (2018).
    [Crossref]
  64. P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile photosensitizers for photodynamic therapy at infrared excitation,” J. Am. Chem. Soc. 129, 4526–4527 (2007).
    [Crossref]
  65. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
    [Crossref]
  66. W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
    [Crossref]
  67. A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, and J. Feldmann, “Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals,” Nat. Commun. 9, 1518 (2018).
    [Crossref]
  68. J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
    [Crossref]
  69. M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
    [Crossref]
  70. A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019).
    [Crossref]
  71. R. Röder and C. Ronning, “Review on the dynamics of semiconductor nanowier lasers,” Semicond. Sci. Technol. 33, 033001 (2018).
    [Crossref]
  72. J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
    [Crossref]
  73. T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018).
    [Crossref]
  74. S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014).
    [Crossref]
  75. G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018).
    [Crossref]
  76. J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
    [Crossref]
  77. J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
    [Crossref]
  78. A. P. Schlaus, M. S. Spencer, and X.-Y. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019).
    [Crossref]
  79. Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
    [Crossref]
  80. S. Mitsubori, I. Katayama, S. H. Lee, T. Yao, and J. Takeda, “Ultrafast lasing due to electron-hole plasma in ZnO nano-multipods,” J. Phys. Condens. Matter 21, 064211 (2009).
    [Crossref]
  81. J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
    [Crossref]
  82. J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
    [Crossref]
  83. S. Peng, G. Xing, and Z. Tang, “Hot electron-hole plasma dynamics and amplified spontaneous emission in ZnTe nanowires,” Nanoscale 9, 15612–15621 (2017).
    [Crossref]
  84. M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
    [Crossref]

2020 (8)

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

Z. Liu, S. Huang, J. Du, C. Wang, and Y. Leng, “Advances in inorganic and hybrid perovskites for miniaturized lasers,” Nanophotonics 9, 2251–2272 (2020).
[Crossref]

C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, and C. Adachi, “Stable room-temperature continuous-wave lasing in quasi-2D perovskite films,” Nature 585, 53–57 (2020).
[Crossref]

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020).
[Crossref]

G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020).
[Crossref]

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

2019 (11)

A. P. Schlaus, M. S. Spencer, and X.-Y. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019).
[Crossref]

A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019).
[Crossref]

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

S. J. J. Kwok, N. Martino, P. H. Dannenberg, and S.-H. Yun, “Multiplexed laser particles for spatially resolved single-cell analysis,” Light Sci. Appl. 8, 74 (2019).
[Crossref]

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, “High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity,” ACS Photon. 6, 793–801 (2019).
[Crossref]

Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing, and J. A. Switzer, “Spin coating epitaxial films,” Science 364, 166–169 (2019).
[Crossref]

H. He, E. Ma, X. Chen, D. Yang, B. Chen, and G. Qian, “Single crystal perovskite microplate for high-order multiphoton excitation,” Small Methods 3, 1900396 (2019).
[Crossref]

X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019).
[Crossref]

K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
[Crossref]

2018 (10)

K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018).
[Crossref]

B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018).
[Crossref]

W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, and F. Huang, “Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals,” ACS Appl. Mater. Interfaces 10, 1865–1870 (2018).
[Crossref]

S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
[Crossref]

A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, and J. Feldmann, “Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals,” Nat. Commun. 9, 1518 (2018).
[Crossref]

Y. Peng, W. Lu, P. Ren, Y. Ni, Y. Wang, L. Zhang, Y. Zeng, W. Zhang, and S. Ruan, “Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals,” Photon. Res. 6, 943–947 (2018).
[Crossref]

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
[Crossref]

R. Röder and C. Ronning, “Review on the dynamics of semiconductor nanowier lasers,” Semicond. Sci. Technol. 33, 033001 (2018).
[Crossref]

T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018).
[Crossref]

G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018).
[Crossref]

2017 (13)

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

S. Peng, G. Xing, and Z. Tang, “Hot electron-hole plasma dynamics and amplified spontaneous emission in ZnTe nanowires,” Nanoscale 9, 15612–15621 (2017).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017).
[Crossref]

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
[Crossref]

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, and X. Duan, “Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications,” Nano Res. 10, 1223–1233 (2017).
[Crossref]

B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017).
[Crossref]

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, “Organic-inorganic hybrid perovskite nanowire laser arrays,” ACS Nano 11, 5766–5773 (2017).
[Crossref]

K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao, and Q. Song, “Single crystal microrod based homonuclear photonic molecule lasers,” Adv. Opt. Mater. 5, 1600744 (2017).
[Crossref]

2016 (7)

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016).
[Crossref]

Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, “Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” ACS Nano 10, 7963–7972 (2016).
[Crossref]

Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, “High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets,” Adv. Funct. Mater. 26, 6238–6245 (2016).
[Crossref]

S. W. Eaton, A. Fu, A. B. Wong, C.-Z. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1, 16028 (2016).
[Crossref]

Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016).
[Crossref]

A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, “Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science 354, 92–95 (2016).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

2015 (9)

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, “Inorganic caesium lead iodide perovskite solar cell,” J. Mater. Chem. A 3, 19688–19695 (2015).
[Crossref]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives,” Photon. Res. 3, B10–B27 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

2014 (8)

S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014).
[Crossref]

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
[Crossref]

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

M. A. Green, A. H. Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014).
[Crossref]

2013 (2)

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).
[Crossref]

2012 (1)

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

2010 (1)

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[Crossref]

2009 (4)

S. Mitsubori, I. Katayama, S. H. Lee, T. Yao, and J. Takeda, “Ultrafast lasing due to electron-hole plasma in ZnO nano-multipods,” J. Phys. Condens. Matter 21, 064211 (2009).
[Crossref]

L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
[Crossref]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee, and S.-C. Wang, “Development of GaN-based vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 850–860 (2009).
[Crossref]

2008 (2)

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
[Crossref]

2007 (2)

P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile photosensitizers for photodynamic therapy at infrared excitation,” J. Am. Chem. Soc. 129, 4526–4527 (2007).
[Crossref]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

2003 (2)

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
[Crossref]

2002 (1)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415, 617–620 (2002).
[Crossref]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

1997 (1)

1975 (1)

L. W. Casperson, “Threshold characteristics of multimode laser oscillators,” J. Appl. Phys. 46, 5194–5201 (1975).
[Crossref]

Adachi, C.

C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, and C. Adachi, “Stable room-temperature continuous-wave lasing in quasi-2D perovskite films,” Nature 585, 53–57 (2020).
[Crossref]

Adachi, M. M.

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

Agarwal, R.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref]

Aiello, F.

S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
[Crossref]

Akiyama, H.

G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020).
[Crossref]

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018).
[Crossref]

S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014).
[Crossref]

Altamura, D.

S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
[Crossref]

Arakawa, Y.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Aresti, M.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Asahara, A.

S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014).
[Crossref]

Atatüre, M.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Babayigit, A.

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

Baillie, A. H.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

M. A. Green, A. H. Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014).
[Crossref]

Balzano, F.

S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
[Crossref]

Bao, X.

G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018).
[Crossref]

Barretta, G. U.

S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
[Crossref]

Bermudez, R. Q.

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Bhaumik, S.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Bian, Y.

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Bodnarchuk, M. I.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Bogy, D. B.

L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
[Crossref]

Bongiovanni, G.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Boyen, H.-G.

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

Braun, K.

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

Bu, Y.

Cacialli, F.

G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, “Inorganic caesium lead iodide perovskite solar cell,” J. Mater. Chem. A 3, 19688–19695 (2015).
[Crossref]

Cadelano, M.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Caliandro, R.

S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
[Crossref]

Cannas, C.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Caputo, R.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Casperson, L. W.

L. W. Casperson, “Threshold characteristics of multimode laser oscillators,” J. Appl. Phys. 46, 5194–5201 (1975).
[Crossref]

Chakrabarti, T.

A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, “Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science 354, 92–95 (2016).
[Crossref]

Chen, B.

H. He, E. Ma, X. Chen, D. Yang, B. Chen, and G. Qian, “Single crystal perovskite microplate for high-order multiphoton excitation,” Small Methods 3, 1900396 (2019).
[Crossref]

Chen, F.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Chen, H.

X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019).
[Crossref]

Chen, J.-R.

T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee, and S.-C. Wang, “Development of GaN-based vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 850–860 (2009).
[Crossref]

Chen, Q.

M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing, and J. A. Switzer, “Spin coating epitaxial films,” Science 364, 166–169 (2019).
[Crossref]

Chen, S.

G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020).
[Crossref]

G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018).
[Crossref]

T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018).
[Crossref]

S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014).
[Crossref]

Chen, S. J.

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

Chen, S. Q.

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

Chen, S.-W.

T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee, and S.-C. Wang, “Development of GaN-based vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 850–860 (2009).
[Crossref]

Chen, W.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Chen, X.

H. He, E. Ma, X. Chen, D. Yang, B. Chen, and G. Qian, “Single crystal perovskite microplate for high-order multiphoton excitation,” Small Methods 3, 1900396 (2019).
[Crossref]

Chen, Z.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

Cheng, H.-C.

Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, and X. Duan, “Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications,” Nano Res. 10, 1223–1233 (2017).
[Crossref]

Cheng, Y.-B.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Chernomordik, B. D.

A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, “Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science 354, 92–95 (2016).
[Crossref]

Choi, M.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Choi, Y.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Chow, W. W.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017).
[Crossref]

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
[Crossref]

Christians, J. A.

A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, “Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science 354, 92–95 (2016).
[Crossref]

Chu, J.

G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020).
[Crossref]

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018).
[Crossref]

Chu, L.

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

Colella, S.

S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
[Crossref]

Conibeer, G.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Conings, B.

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

Cui, M.

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

Cui, P.

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

D’Haen, J.

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

D’Olieslaeger, L.

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

Dai, J.

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[Crossref]

Dannenberg, P. H.

S. J. J. Kwok, N. Martino, P. H. Dannenberg, and S.-H. Yun, “Multiplexed laser particles for spatially resolved single-cell analysis,” Light Sci. Appl. 8, 74 (2019).
[Crossref]

Datta, I.

A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019).
[Crossref]

De Angelis, F.

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

Deschler, F.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Ding, Q.

Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, “Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” ACS Nano 10, 7963–7972 (2016).
[Crossref]

Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Dong, H.

B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, “High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity,” ACS Photon. 6, 793–801 (2019).
[Crossref]

B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018).
[Crossref]

B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017).
[Crossref]

Dou, L.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016).
[Crossref]

Dou, S.

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

Drijkoningen, J.

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

Du, J.

Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020).
[Crossref]

Z. Liu, S. Huang, J. Du, C. Wang, and Y. Leng, “Advances in inorganic and hybrid perovskites for miniaturized lasers,” Nanophotonics 9, 2251–2272 (2020).
[Crossref]

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
[Crossref]

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Duan, X.

Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, and X. Duan, “Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications,” Nano Res. 10, 1223–1233 (2017).
[Crossref]

Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, and X. Duan, “Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications,” Nano Res. 10, 1223–1233 (2017).
[Crossref]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref]

Eaton, S. W.

S. W. Eaton, A. Fu, A. B. Wong, C.-Z. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1, 16028 (2016).
[Crossref]

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016).
[Crossref]

Ehrlich, J. E.

Eperon, G. E.

G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, “Inorganic caesium lead iodide perovskite solar cell,” J. Mater. Chem. A 3, 19688–19695 (2015).
[Crossref]

Ethirajan, A.

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

Fallert, J.

Fan, P.

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

Fan, Y.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

Feldmann, J.

A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, and J. Feldmann, “Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals,” Nat. Commun. 9, 1518 (2018).
[Crossref]

Feucht, J.

A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, and J. Feldmann, “Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals,” Nat. Commun. 9, 1518 (2018).
[Crossref]

Fiebig, M.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Figus, C.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Friend, R. H.

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Fu, A.

S. W. Eaton, A. Fu, A. B. Wong, C.-Z. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1, 16028 (2016).
[Crossref]

Fu, H.

P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, “Organic-inorganic hybrid perovskite nanowire laser arrays,” ACS Nano 11, 5766–5773 (2017).
[Crossref]

Fu, Y.

Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, “Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” ACS Nano 10, 7963–7972 (2016).
[Crossref]

Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Fujihara, T.

C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, and C. Adachi, “Stable room-temperature continuous-wave lasing in quasi-2D perovskite films,” Nature 585, 53–57 (2020).
[Crossref]

Gao, T.

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Gauquelin, N.

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

Ge, L.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

Giannini, C.

S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
[Crossref]

Gibson, N. A.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016).
[Crossref]

Gies, C.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017).
[Crossref]

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
[Crossref]

Gong, Z.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Grätzel, M.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Green, M.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Green, M. A.

M. A. Green, A. H. Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014).
[Crossref]

Guan, X.

Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, and X. Duan, “Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications,” Nano Res. 10, 1223–1233 (2017).
[Crossref]

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415, 617–620 (2002).
[Crossref]

Guo, J.

Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Guo, J. Y.

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[Crossref]

Gustafsson, M. V.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Ha, S. T.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

Haghighirad, A. A.

G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, “Inorganic caesium lead iodide perovskite solar cell,” J. Mater. Chem. A 3, 19688–19695 (2015).
[Crossref]

Han, J.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, “High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity,” ACS Photon. 6, 793–801 (2019).
[Crossref]

Han, Q.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

Harada, T.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Hazama, Y.

T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018).
[Crossref]

He, H.

H. He, E. Ma, X. Chen, D. Yang, B. Chen, and G. Qian, “Single crystal perovskite microplate for high-order multiphoton excitation,” Small Methods 3, 1900396 (2019).
[Crossref]

He, M.

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

He, X.

P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, “Organic-inorganic hybrid perovskite nanowire laser arrays,” ACS Nano 11, 5766–5773 (2017).
[Crossref]

Heiss, W.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Hendon, C. H.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Heo, C.-J.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Higler, R.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Higuchi, Y.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Ho, J.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Höfling, S.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017).
[Crossref]

Hofmann, W.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

Hong, G.

Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Hoogland, S.

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

Hu, W.

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Hu, X.

G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020).
[Crossref]

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018).
[Crossref]

Hu, Z.

Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020).
[Crossref]

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
[Crossref]

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Hu, Z.-Y.

Huang, C.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018).
[Crossref]

Huang, F.

W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, and F. Huang, “Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals,” ACS Appl. Mater. Interfaces 10, 1865–1870 (2018).
[Crossref]

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Huang, H.

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

Huang, S.

Z. Liu, S. Huang, J. Du, C. Wang, and Y. Leng, “Advances in inorganic and hybrid perovskites for miniaturized lasers,” Nanophotonics 9, 2251–2272 (2020).
[Crossref]

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Huang, W.

Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Huang, Y.

B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, “High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity,” ACS Photon. 6, 793–801 (2019).
[Crossref]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref]

Humer, M.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Hüttner, S.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Hwang, L.

Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016).
[Crossref]

Hyeon, T.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Ito, T.

T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018).
[Crossref]

S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014).
[Crossref]

Iwamoto, S.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Jahnke, F.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017).
[Crossref]

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
[Crossref]

Jarausch, D.-D.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Ji, H.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

Ji, J.

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

Jia, E.

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

Jiang, B.

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

Jiang, M.

B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, “High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity,” ACS Photon. 6, 793–801 (2019).
[Crossref]

B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018).
[Crossref]

Jiang, X.

B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017).
[Crossref]

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Jiang, Y.

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

Jin, S.

Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016).
[Crossref]

Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, “Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” ACS Nano 10, 7963–7972 (2016).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Johnson, J. C.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
[Crossref]

Joshi, P.

Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016).
[Crossref]

Jun, S. W.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Kako, S.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Kalt, H.

Kamp, M.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017).
[Crossref]

Kanatzidis, M. G.

Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, “Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” ACS Nano 10, 7963–7972 (2016).
[Crossref]

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).
[Crossref]

Katayama, I.

S. Mitsubori, I. Katayama, S. H. Lee, T. Yao, and J. Takeda, “Ultrafast lasing due to electron-hole plasma in ZnO nano-multipods,” J. Phys. Condens. Matter 21, 064211 (2009).
[Crossref]

Kee, T. W.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Kelso, M. V.

M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing, and J. A. Switzer, “Spin coating epitaxial films,” Science 364, 166–169 (2019).
[Crossref]

Kim, C.

T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018).
[Crossref]

Kim, J.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Kim, J. H.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Kivshar, Y.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

Klingshirn, C.

Klintberg, L. E.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Kobayashi, Y.

T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018).
[Crossref]

Kovalenko, M. V.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Kreinberg, S.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017).
[Crossref]

Krieg, F.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Kumar, M.

P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile photosensitizers for photodynamic therapy at infrared excitation,” J. Am. Chem. Soc. 129, 4526–4527 (2007).
[Crossref]

Kuo, C.-C.

T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee, and S.-C. Wang, “Development of GaN-based vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 850–860 (2009).
[Crossref]

Kuo, H.-C.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
[Crossref]

T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee, and S.-C. Wang, “Development of GaN-based vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 850–860 (2009).
[Crossref]

Kwok, S. J. J.

S. J. J. Kwok, N. Martino, P. H. Dannenberg, and S.-H. Yun, “Multiplexed laser particles for spatially resolved single-cell analysis,” Light Sci. Appl. 8, 74 (2019).
[Crossref]

Kwon, S.-H.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Lai, M.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016).
[Crossref]

Lauhon, L. J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415, 617–620 (2002).
[Crossref]

Lee, C.-C.

T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee, and S.-C. Wang, “Development of GaN-based vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 850–860 (2009).
[Crossref]

Lee, D. W.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Lee, I.-Y. S.

Lee, L. P.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Lee, N.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Lee, S. H.

S. Mitsubori, I. Katayama, S. H. Lee, T. Yao, and J. Takeda, “Ultrafast lasing due to electron-hole plasma in ZnO nano-multipods,” J. Phys. Condens. Matter 21, 064211 (2009).
[Crossref]

Lee, T.-W.

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

Lehmann, A. G.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Leijtens, T.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Leng, Y.

Z. Liu, S. Huang, J. Du, C. Wang, and Y. Leng, “Advances in inorganic and hybrid perovskites for miniaturized lasers,” Nanophotonics 9, 2251–2272 (2020).
[Crossref]

Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020).
[Crossref]

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
[Crossref]

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Leone, S. R.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016).
[Crossref]

Li, B.

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Li, D.

Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, and X. Duan, “Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications,” Nano Res. 10, 1223–1233 (2017).
[Crossref]

Li, G.

K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018).
[Crossref]

Li, H.

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

Li, M.

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

Li, R.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
[Crossref]

Li, X.

Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

Li, Y.

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives,” Photon. Res. 3, B10–B27 (2015).
[Crossref]

Li, Z.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

Li, Z. H.

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[Crossref]

Liang, C.

Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Liang, D.

Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016).
[Crossref]

Liao, Q.

P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, “Organic-inorganic hybrid perovskite nanowire laser arrays,” ACS Nano 11, 5766–5773 (2017).
[Crossref]

Liao, Y.

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Lieber, C. M.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415, 617–620 (2002).
[Crossref]

Lim, S. S.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Lin, H.

G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018).
[Crossref]

Lin, R.

W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, and F. Huang, “Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals,” ACS Appl. Mater. Interfaces 10, 1865–1870 (2018).
[Crossref]

Lin, Z.

Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, and X. Duan, “Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications,” Nano Res. 10, 1223–1233 (2017).
[Crossref]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Lipson, M.

A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019).
[Crossref]

Listorti, A.

S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
[Crossref]

Liu, D.

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Liu, F.

A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019).
[Crossref]

Liu, H.

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Liu, J.

G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020).
[Crossref]

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

Liu, P.

P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, “Organic-inorganic hybrid perovskite nanowire laser arrays,” ACS Nano 11, 5766–5773 (2017).
[Crossref]

Liu, Q.

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

Liu, S.

K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018).
[Crossref]

K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao, and Q. Song, “Single crystal microrod based homonuclear photonic molecule lasers,” Adv. Opt. Mater. 5, 1600744 (2017).
[Crossref]

Liu, W.

Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020).
[Crossref]

S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014).
[Crossref]

Liu, X.

Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, “High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets,” Adv. Funct. Mater. 26, 6238–6245 (2016).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Liu, X. F.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Liu, Y.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020).
[Crossref]

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
[Crossref]

Liu, Z.

Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020).
[Crossref]

Z. Liu, S. Huang, J. Du, C. Wang, and Y. Leng, “Advances in inorganic and hybrid perovskites for miniaturized lasers,” Nanophotonics 9, 2251–2272 (2020).
[Crossref]

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
[Crossref]

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Lu, J.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

Lu, T.-C.

T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee, and S.-C. Wang, “Development of GaN-based vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 850–860 (2009).
[Crossref]

Lu, W.

Luca, G. D.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Luo, Z.

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

Luther, J. M.

A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, “Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science 354, 92–95 (2016).
[Crossref]

Lyu, F.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

Ma, E.

H. He, E. Ma, X. Chen, D. Yang, B. Chen, and G. Qian, “Single crystal perovskite microplate for high-order multiphoton excitation,” Small Methods 3, 1900396 (2019).
[Crossref]

Ma, J.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016).
[Crossref]

Ma, Q.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Ma, R.

X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019).
[Crossref]

Mahenderkar, N. K.

M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing, and J. A. Switzer, “Spin coating epitaxial films,” Science 364, 166–169 (2019).
[Crossref]

Malliakas, C. D.

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).
[Crossref]

Manca, J.

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

Manzi, A.

A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, and J. Feldmann, “Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals,” Nat. Commun. 9, 1518 (2018).
[Crossref]

Marder, S. R.

Marongiu, D.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Marshall, A. R.

A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, “Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science 354, 92–95 (2016).
[Crossref]

Martino, N.

S. J. J. Kwok, N. Martino, P. H. Dannenberg, and S.-H. Yun, “Multiplexed laser particles for spatially resolved single-cell analysis,” Light Sci. Appl. 8, 74 (2019).
[Crossref]

Masi, S.

S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
[Crossref]

Mathews, N.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Matsumura, H.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Matsushima, T.

C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, and C. Adachi, “Stable room-temperature continuous-wave lasing in quasi-2D perovskite films,” Nature 585, 53–57 (2020).
[Crossref]

Mei, Y.

G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020).
[Crossref]

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

Meixner, A. J.

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

Meng, F.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Mhaisalkar, S.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Mhaisalkar, S. G.

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

Mi, Q.

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Mitsubori, S.

S. Mitsubori, I. Katayama, S. H. Lee, T. Yao, and J. Takeda, “Ultrafast lasing due to electron-hole plasma in ZnO nano-multipods,” J. Phys. Condens. Matter 21, 064211 (2009).
[Crossref]

Miyata, K.

A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019).
[Crossref]

Moore, D. T.

A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, “Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science 354, 92–95 (2016).
[Crossref]

Mosconi, E.

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

Mukai, T.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Mura, A.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Musinu, A.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Na, H. B.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Nakamae, H.

T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018).
[Crossref]

Nakamura, T.

T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018).
[Crossref]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Nedelcu, G.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Ni, Y.

Ning, C.-Z.

S. W. Eaton, A. Fu, A. B. Wong, C.-Z. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1, 16028 (2016).
[Crossref]

Ning, Z.

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Omae, K.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Ota, Y.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Ouyang, C.

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

Pan, A.

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019).
[Crossref]

A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019).
[Crossref]

B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, “High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity,” ACS Photon. 6, 793–801 (2019).
[Crossref]

B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018).
[Crossref]

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017).
[Crossref]

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

Pan, L.

L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
[Crossref]

Pan, Y.

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

Park, J.-H.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Park, K.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Park, O. K.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Park, Y. I.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Paternò, G. M.

G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, “Inorganic caesium lead iodide perovskite solar cell,” J. Mater. Chem. A 3, 19688–19695 (2015).
[Crossref]

Pathak, S.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Patterson, R.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Peng, S.

S. Peng, G. Xing, and Z. Tang, “Hot electron-hole plasma dynamics and amplified spontaneous emission in ZnTe nanowires,” Nanoscale 9, 15612–15621 (2017).
[Crossref]

Peng, Y.

Perry, J. W.

Petrášek, Z.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Phillips, R. T.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Piras, R.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Polavarapu, L.

A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, and J. Feldmann, “Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals,” Nat. Commun. 9, 1518 (2018).
[Crossref]

Poon, A. W.

Price, M.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Protesescu, L.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Qian, G.

H. He, E. Ma, X. Chen, D. Yang, B. Chen, and G. Qian, “Single crystal perovskite microplate for high-order multiphoton excitation,” Small Methods 3, 1900396 (2019).
[Crossref]

Qin, C.

C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, and C. Adachi, “Stable room-temperature continuous-wave lasing in quasi-2D perovskite films,” Nature 585, 53–57 (2020).
[Crossref]

Qu, G.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

Quan, L. N.

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Quochi, F.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Rand, B. P.

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

Reiser, A.

Reitzenstein, S.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017).
[Crossref]

Ren, J.

P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, “Organic-inorganic hybrid perovskite nanowire laser arrays,” ACS Nano 11, 5766–5773 (2017).
[Crossref]

Ren, P.

Rizzo, A.

S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
[Crossref]

Röckel, H.

Röder, R.

R. Röder and C. Ronning, “Review on the dynamics of semiconductor nanowier lasers,” Semicond. Sci. Technol. 33, 033001 (2018).
[Crossref]

Ronning, C.

R. Röder and C. Ronning, “Review on the dynamics of semiconductor nanowier lasers,” Semicond. Sci. Technol. 33, 033001 (2018).
[Crossref]

Ruan, S.

Saba, M.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Sabba, D.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Sajid, S.

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

Sandanayaka, A. S. D.

C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, and C. Adachi, “Stable room-temperature continuous-wave lasing in quasi-2D perovskite films,” Nature 585, 53–57 (2020).
[Crossref]

Sanehira, E. M.

A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, “Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science 354, 92–95 (2016).
[Crossref]

Sargent, E. H.

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

Sarritzu, V.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Sauer, R.

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
[Crossref]

Schlaus, A. P.

A. P. Schlaus, M. S. Spencer, and X.-Y. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019).
[Crossref]

A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019).
[Crossref]

Schneider, C.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017).
[Crossref]

Scholfield, M.

P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile photosensitizers for photodynamic therapy at infrared excitation,” J. Am. Chem. Soc. 129, 4526–4527 (2007).
[Crossref]

Schrader, A. W.

Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016).
[Crossref]

Schwille, P.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Sestu, N.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Shang, Y.

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Shen, C.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Sheng, R.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Shi, T.

Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020).
[Crossref]

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
[Crossref]

Shi, Z.

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Shi, Z. L.

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[Crossref]

Shin, K.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Shrestha, S.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415, 617–620 (2002).
[Crossref]

Snaith, H. J.

G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, “Inorganic caesium lead iodide perovskite solar cell,” J. Mater. Chem. A 3, 19688–19695 (2015).
[Crossref]

M. A. Green, A. H. Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014).
[Crossref]

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Song, J.

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

Song, Q.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
[Crossref]

K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018).
[Crossref]

K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao, and Q. Song, “Single crystal microrod based homonuclear photonic molecule lasers,” Adv. Opt. Mater. 5, 1600744 (2017).
[Crossref]

Spencer, M. S.

A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019).
[Crossref]

A. P. Schlaus, M. S. Spencer, and X.-Y. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019).
[Crossref]

Steelant, W.

P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile photosensitizers for photodynamic therapy at infrared excitation,” J. Am. Chem. Soc. 129, 4526–4527 (2007).
[Crossref]

Stelzl, F.

Stoumpos, C. C.

Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, “Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” ACS Nano 10, 7963–7972 (2016).
[Crossref]

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).
[Crossref]

Stranks, S. D.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Su, R.

Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, “High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets,” Adv. Funct. Mater. 26, 6238–6245 (2016).
[Crossref]

Suemoto, T.

S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014).
[Crossref]

Sum, T. C.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, “High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets,” Adv. Funct. Mater. 26, 6238–6245 (2016).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Sun, F.

B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017).
[Crossref]

Sun, H.

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

Sun, L.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018).
[Crossref]

B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017).
[Crossref]

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Sun, W.

K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
[Crossref]

K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018).
[Crossref]

K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao, and Q. Song, “Single crystal microrod based homonuclear photonic molecule lasers,” Adv. Opt. Mater. 5, 1600744 (2017).
[Crossref]

Sutherland, B. R.

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

Sutton, R. J.

G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, “Inorganic caesium lead iodide perovskite solar cell,” J. Mater. Chem. A 3, 19688–19695 (2015).
[Crossref]

Swarnkar, A.

A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, “Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science 354, 92–95 (2016).
[Crossref]

Switzer, J. A.

M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing, and J. A. Switzer, “Spin coating epitaxial films,” Science 364, 166–169 (2019).
[Crossref]

Takeda, J.

S. Mitsubori, I. Katayama, S. H. Lee, T. Yao, and J. Takeda, “Ultrafast lasing due to electron-hole plasma in ZnO nano-multipods,” J. Phys. Condens. Matter 21, 064211 (2009).
[Crossref]

Tang, B.

B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018).
[Crossref]

B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017).
[Crossref]

Tang, J.

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Tang, X.

Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020).
[Crossref]

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
[Crossref]

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Tang, Z.

S. Peng, G. Xing, and Z. Tang, “Hot electron-hole plasma dynamics and amplified spontaneous emission in ZnTe nanowires,” Nanoscale 9, 15612–15621 (2017).
[Crossref]

Tao, J.

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

Tapping, P.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Tatebayashi, J.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Thonke, K.

Tian, J.

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018).
[Crossref]

Tong, Y.

A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, and J. Feldmann, “Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals,” Nat. Commun. 9, 1518 (2018).
[Crossref]

Trinh, M. T.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Tubbesing, J. Z.

M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing, and J. A. Switzer, “Spin coating epitaxial films,” Science 364, 166–169 (2019).
[Crossref]

Urban, A. S.

A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, and J. Feldmann, “Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals,” Nat. Commun. 9, 1518 (2018).
[Crossref]

Veldhuis, S. A.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Verbeeck, J.

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

Walsh, A.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Wang, C.

Z. Liu, S. Huang, J. Du, C. Wang, and Y. Leng, “Advances in inorganic and hybrid perovskites for miniaturized lasers,” Nanophotonics 9, 2251–2272 (2020).
[Crossref]

Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020).
[Crossref]

Wang, H.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

Wang, J.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, “Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” ACS Nano 10, 7963–7972 (2016).
[Crossref]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415, 617–620 (2002).
[Crossref]

Wang, K.

K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
[Crossref]

K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018).
[Crossref]

K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao, and Q. Song, “Single crystal microrod based homonuclear photonic molecule lasers,” Adv. Opt. Mater. 5, 1600744 (2017).
[Crossref]

Wang, L.-W.

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016).
[Crossref]

Wang, Q.

B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017).
[Crossref]

Wang, S.

K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
[Crossref]

K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018).
[Crossref]

K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao, and Q. Song, “Single crystal microrod based homonuclear photonic molecule lasers,” Adv. Opt. Mater. 5, 1600744 (2017).
[Crossref]

Wang, S.-C.

T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee, and S.-C. Wang, “Development of GaN-based vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 850–860 (2009).
[Crossref]

Wang, X.

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019).
[Crossref]

X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019).
[Crossref]

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

Wang, X. X.

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019).
[Crossref]

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

Wang, Y.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018).
[Crossref]

Y. Peng, W. Lu, P. Ren, Y. Ni, Y. Wang, L. Zhang, Y. Zeng, W. Zhang, and S. Ruan, “Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals,” Photon. Res. 6, 943–947 (2018).
[Crossref]

Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, and X. Duan, “Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications,” Nano Res. 10, 1223–1233 (2017).
[Crossref]

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

Wang, Y. H.

K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
[Crossref]

Wang, Y. J.

K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
[Crossref]

Wang, Z.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

Wei, D.

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

Wei, Q.

Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Wen, X.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Weng, G.

G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020).
[Crossref]

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018).
[Crossref]

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

Wolters, J.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017).
[Crossref]

Wong, A. B.

S. W. Eaton, A. Fu, A. B. Wong, C.-Z. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1, 16028 (2016).
[Crossref]

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016).
[Crossref]

Wong, C. T. O.

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

Wu, P.

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[Crossref]

Wu, X.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Wu, X. L.

Xia, H.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Xiao, L.

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

Xiao, S.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
[Crossref]

K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018).
[Crossref]

K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao, and Q. Song, “Single crystal microrod based homonuclear photonic molecule lasers,” Adv. Opt. Mater. 5, 1600744 (2017).
[Crossref]

Xing, G.

Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

S. Peng, G. Xing, and Z. Tang, “Hot electron-hole plasma dynamics and amplified spontaneous emission in ZnTe nanowires,” Nanoscale 9, 15612–15621 (2017).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Xing, J.

Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, “High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets,” Adv. Funct. Mater. 26, 6238–6245 (2016).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Xiong, Q.

Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, “High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets,” Adv. Funct. Mater. 26, 6238–6245 (2016).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

Xiong, X.

W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, and F. Huang, “Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals,” ACS Appl. Mater. Interfaces 10, 1865–1870 (2018).
[Crossref]

Xu, C.

W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, and F. Huang, “Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals,” ACS Appl. Mater. Interfaces 10, 1865–1870 (2018).
[Crossref]

Xu, C. X.

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[Crossref]

Xu, Q.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Xu, T.

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

Xue, J.

G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018).
[Crossref]

Yakunin, S.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Yan, H.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
[Crossref]

Yan, J.

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

Yan, R.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Yang, D.

H. He, E. Ma, X. Chen, D. Yang, B. Chen, and G. Qian, “Single crystal perovskite microplate for high-order multiphoton excitation,” Small Methods 3, 1900396 (2019).
[Crossref]

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Yang, H.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

Yang, J.

Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020).
[Crossref]

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
[Crossref]

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Yang, P.

S. W. Eaton, A. Fu, A. B. Wong, C.-Z. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1, 16028 (2016).
[Crossref]

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016).
[Crossref]

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
[Crossref]

Yang, R. X.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Yang, S.-M.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Yang, W.

K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
[Crossref]

Yang, Z.

X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019).
[Crossref]

Yantara, N.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Yao, E.-P.

A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, and J. Feldmann, “Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals,” Nat. Commun. 9, 1518 (2018).
[Crossref]

Yao, J.

P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, “Organic-inorganic hybrid perovskite nanowire laser arrays,” ACS Nano 11, 5766–5773 (2017).
[Crossref]

Yao, T.

S. Mitsubori, I. Katayama, S. H. Lee, T. Yao, and J. Takeda, “Ultrafast lasing due to electron-hole plasma in ZnO nano-multipods,” J. Phys. Condens. Matter 21, 064211 (2009).
[Crossref]

Ying, L.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

Yoshita, M.

T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018).
[Crossref]

S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014).
[Crossref]

Yu, J. H.

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Yuan, S.

X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019).
[Crossref]

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

Yuan, Y. W.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Yun, S.-H.

S. J. J. Kwok, N. Martino, P. H. Dannenberg, and S.-H. Yun, “Multiplexed laser particles for spatially resolved single-cell analysis,” Light Sci. Appl. 8, 74 (2019).
[Crossref]

Zampetti, A.

G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, “Inorganic caesium lead iodide perovskite solar cell,” J. Mater. Chem. A 3, 19688–19695 (2015).
[Crossref]

Zang, Z.

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Zeng, H.

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

Zeng, Y.

Zhang, B.

G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020).
[Crossref]

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014).
[Crossref]

Zhang, C.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
[Crossref]

Zhang, D.

C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, and C. Adachi, “Stable room-temperature continuous-wave lasing in quasi-2D perovskite films,” Nature 585, 53–57 (2020).
[Crossref]

Zhang, H.

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

Zhang, J.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
[Crossref]

G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, and B. Zhang, “Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers,” Opt. Express 24, 15546–15553 (2016).
[Crossref]

S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014).
[Crossref]

Zhang, L.

B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, “High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity,” ACS Photon. 6, 793–801 (2019).
[Crossref]

Y. Peng, W. Lu, P. Ren, Y. Ni, Y. Wang, L. Zhang, Y. Zeng, W. Zhang, and S. Ruan, “Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals,” Photon. Res. 6, 943–947 (2018).
[Crossref]

B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018).
[Crossref]

B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017).
[Crossref]

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives,” Photon. Res. 3, B10–B27 (2015).
[Crossref]

Zhang, N.

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
[Crossref]

K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao, and Q. Song, “Single crystal microrod based homonuclear photonic molecule lasers,” Adv. Opt. Mater. 5, 1600744 (2017).
[Crossref]

Zhang, P.

P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile photosensitizers for photodynamic therapy at infrared excitation,” J. Am. Chem. Soc. 129, 4526–4527 (2007).
[Crossref]

Zhang, Q.

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, “High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets,” Adv. Funct. Mater. 26, 6238–6245 (2016).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

Zhang, W.

Zhang, Y.

Zhang, Z.

Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, and Y. Leng, “Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates,” Photon. Res. 8, A31–A38 (2020).
[Crossref]

Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, and F. Huang, “Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals,” ACS Appl. Mater. Interfaces 10, 1865–1870 (2018).
[Crossref]

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
[Crossref]

Zhao, B.

B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018).
[Crossref]

Zhao, C.

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, and C. Adachi, “Stable room-temperature continuous-wave lasing in quasi-2D perovskite films,” Nature 585, 53–57 (2020).
[Crossref]

Zheng, W.

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, “High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity,” ACS Photon. 6, 793–801 (2019).
[Crossref]

W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, and F. Huang, “Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals,” ACS Appl. Mater. Interfaces 10, 1865–1870 (2018).
[Crossref]

B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018).
[Crossref]

B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017).
[Crossref]

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

Zhou, B.

B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, “High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity,” ACS Photon. 6, 793–801 (2019).
[Crossref]

B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018).
[Crossref]

Zhou, H.

X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019).
[Crossref]

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
[Crossref]

Zhou, M.

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

Zhou, W.

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

Zhu, H.

Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016).
[Crossref]

Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, “Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” ACS Nano 10, 7963–7972 (2016).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Zhu, X.

X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019).
[Crossref]

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, “Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” ACS Nano 10, 7963–7972 (2016).
[Crossref]

Zhu, X.-Y.

A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019).
[Crossref]

A. P. Schlaus, M. S. Spencer, and X.-Y. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019).
[Crossref]

Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Zhu, Z.

G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018).
[Crossref]

Zhuang, X.

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

Acc. Chem. Res. (1)

A. P. Schlaus, M. S. Spencer, and X.-Y. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019).
[Crossref]

ACS Appl. Mater. Interfaces (1)

W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, and F. Huang, “Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals,” ACS Appl. Mater. Interfaces 10, 1865–1870 (2018).
[Crossref]

ACS Nano (6)

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12, 5923–5931 (2018).
[Crossref]

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, “Organic-inorganic hybrid perovskite nanowire laser arrays,” ACS Nano 11, 5766–5773 (2017).
[Crossref]

B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, “Single-mode lasers based on cesium lead halide perovskite submicron spheres,” ACS Nano 11, 10681–10688 (2017).
[Crossref]

H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, and A. Pan, “Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section,” ACS Nano 11, 1189–1195 (2017).
[Crossref]

Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, “Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” ACS Nano 10, 7963–7972 (2016).
[Crossref]

ACS Photon. (3)

B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, “High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity,” ACS Photon. 6, 793–801 (2019).
[Crossref]

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, and J. Chu, “Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films,” ACS Photon. 5, 2951–2959 (2018).
[Crossref]

Adv. Energy Mater. (1)

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Adv. Energy Mater. 5, 1500477 (2015).
[Crossref]

Adv. Funct. Mater. (2)

Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, “High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets,” Adv. Funct. Mater. 26, 6238–6245 (2016).
[Crossref]

K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, and Q. Song, “Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging,” Adv. Funct. Mater. 29, 1904868 (2019).
[Crossref]

Adv. Mater. (2)

K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, and S. Xiao, “Dark-field sensors based on organometallic halide perovskite microlasers,” Adv. Mater. 30, 1801481 (2018).
[Crossref]

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

Adv. Opt. Mater. (3)

Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, and Y. Leng, “Robust cesium lead halide perovskite microcubes for frequency upconversion lasing,” Adv. Opt. Mater. 5, 1700419 (2017).
[Crossref]

K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao, and Q. Song, “Single crystal microrod based homonuclear photonic molecule lasers,” Adv. Opt. Mater. 5, 1600744 (2017).
[Crossref]

Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Ann. Phys. (1)

G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, and J. Chu, “Multiwavelength GaN-based surface-emitting lasers and their design principles,” Ann. Phys. 532, 1900308 (2020).
[Crossref]

Appl. Phys. Express (1)

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Appl. Phys. Lett. (1)

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[Crossref]

Chem. Eng. J. (1)

H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, and J. Chu, “Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition,” Chem. Eng. J. 389, 124395 (2020).
[Crossref]

Chem. Rev. (1)

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

Chem. Sci. (1)

S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, and S. Colella, “Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites,” Chem. Sci. 9, 3200–3208 (2018).
[Crossref]

Commun. Phys. (1)

T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, and H. Akiyama, “Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers,” Commun. Phys. 1, 42 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee, and S.-C. Wang, “Development of GaN-based vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 850–860 (2009).
[Crossref]

Inorg. Chem. (1)

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).
[Crossref]

J. Am. Chem. Soc. (2)

Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” J. Am. Chem. Soc. 139, 6693–6699 (2017).
[Crossref]

P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile photosensitizers for photodynamic therapy at infrared excitation,” J. Am. Chem. Soc. 129, 4526–4527 (2007).
[Crossref]

J. Appl. Phys. (1)

L. W. Casperson, “Threshold characteristics of multimode laser oscillators,” J. Appl. Phys. 46, 5194–5201 (1975).
[Crossref]

J. Mater. Chem. A (1)

G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, “Inorganic caesium lead iodide perovskite solar cell,” J. Mater. Chem. A 3, 19688–19695 (2015).
[Crossref]

J. Mater. Chem. C (1)

B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, “Single-mode lasing and 3D confinement from perovskite micro-cubic cavity,” J. Mater. Chem. C 6, 11740–11748 (2018).
[Crossref]

J. Phys. Chem. B (1)

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
[Crossref]

J. Phys. Chem. Lett. (1)

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

J. Phys. Condens. Matter (1)

S. Mitsubori, I. Katayama, S. H. Lee, T. Yao, and J. Takeda, “Ultrafast lasing due to electron-hole plasma in ZnO nano-multipods,” J. Phys. Condens. Matter 21, 064211 (2009).
[Crossref]

Light Sci. Appl. (4)

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light Sci. Appl. 6, e17030 (2017).
[Crossref]

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H.-C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6, e16199 (2017).
[Crossref]

S. J. J. Kwok, N. Martino, P. H. Dannenberg, and S.-H. Yun, “Multiplexed laser particles for spatially resolved single-cell analysis,” Light Sci. Appl. 8, 74 (2019).
[Crossref]

Nano Lett. (4)

Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, “Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability,” Nano Lett. 16, 1000–1008 (2016).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Nano Res. (2)

Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, and X. Duan, “Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications,” Nano Res. 10, 1223–1233 (2017).
[Crossref]

X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, and A. Pan, “Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing,” Nano Res. 10, 3385–3395 (2017).
[Crossref]

Nanophotonics (1)

Z. Liu, S. Huang, J. Du, C. Wang, and Y. Leng, “Advances in inorganic and hybrid perovskites for miniaturized lasers,” Nanophotonics 9, 2251–2272 (2020).
[Crossref]

Nanoscale (3)

X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, and A. Pan, “Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers,” Nanoscale 11, 2393–2400 (2019).
[Crossref]

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, and M. Li, “Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air,” Nanoscale 11, 1228–1235 (2019).
[Crossref]

S. Peng, G. Xing, and Z. Tang, “Hot electron-hole plasma dynamics and amplified spontaneous emission in ZnTe nanowires,” Nanoscale 9, 15612–15621 (2017).
[Crossref]

Nat. Commun. (6)

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, and J. Feldmann, “Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals,” Nat. Commun. 9, 1518 (2018).
[Crossref]

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X.-Y. Zhu, “How lasing happens in CsPbBr3 perovskite nanowires,” Nat. Commun. 10, 265 (2019).
[Crossref]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Nat. Mater. (3)

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, and T. Hyeon, “High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nat. Mater. 12, 359–366 (2013).
[Crossref]

Nat. Nanotechnol. (1)

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Nat. Photonics (4)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
[Crossref]

M. A. Green, A. H. Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014).
[Crossref]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Nat. Rev. Mater. (1)

S. W. Eaton, A. Fu, A. B. Wong, C.-Z. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1, 16028 (2016).
[Crossref]

Nature (5)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415, 617–620 (2002).
[Crossref]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, and C. Adachi, “Stable room-temperature continuous-wave lasing in quasi-2D perovskite films,” Nature 585, 53–57 (2020).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Photon. Res. (3)

Phys. Rev. Appl. (1)

M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, and A. Pan, “Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature,” Phys. Rev. Appl. 13, 044072 (2020).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, “Lasing in robust cesium lead halide perovskite nanowires,” Proc. Natl. Acad. Sci. USA 113, 1993–1998 (2016).
[Crossref]

Sci. Rep. (1)

S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, and H. Akiyama, “Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers,” Sci. Rep. 4, 4325 (2014).
[Crossref]

Science (3)

M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing, and J. A. Switzer, “Spin coating epitaxial films,” Science 364, 166–169 (2019).
[Crossref]

A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, “Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science 354, 92–95 (2016).
[Crossref]

C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, “Ultrafast control of vortex microlasers,” Science 367, 1018–1021 (2020).
[Crossref]

Semicond. Sci. Technol. (1)

R. Röder and C. Ronning, “Review on the dynamics of semiconductor nanowier lasers,” Semicond. Sci. Technol. 33, 033001 (2018).
[Crossref]

Small Methods (1)

H. He, E. Ma, X. Chen, D. Yang, B. Chen, and G. Qian, “Single crystal perovskite microplate for high-order multiphoton excitation,” Small Methods 3, 1900396 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Preparation of CsPbX3 single microcrystals. (a) Illustration of the synthesis of CsPbX3 microcrystals by the liquid-phase method. First, drop a certain amount of DMF–CsPbX3 solution onto the substrate, which was preheated to a given temperature Th, and keep the temperature unchanged in ambient air. Then, evaporate the DMF solvent under the given temperature (Th). The solution gradually reaches supersaturation, and the nuclei start to form on the substrate. After the solvent is completely evaporated, the CsPbX3 perovskite single microcrystals are obtained on the substrate surface. (b) Schematic chemical form of perovskite CsPbX3 structure.
Fig. 2.
Fig. 2. Geometry of the CsPbClxBr3x single microcrystals on different substrates. SEM micrograph of CsPbBr3 on (a) single-crystal Si, (b) sapphire, and (c) amorphous quartz, with the reactant concentration of 40 mmol/L at an evaporation temperature of 40°C. Scale bars: 50 μm. (d) EDS spectra of the CsPbCl3 and CsPbBr3 microplates. Inset: atomic ratios of Cs/Pb/Cl and Cs/Pb/Br (1:1:3). (e), (f) EDS elemental mapping of the corresponding CsPbCl3 and CsPbBr3 microplates, respectively.
Fig. 3.
Fig. 3. Tunable band-gap energies and emission spectra of the CsPbX3 microcrystals. (a) Tunable emission wavelength and absorption of the CsPbX3 (X=Cl, Cl/Br, Br, Br/I, and I) mixed halide systems. (b) Schematic of the frequency downconversion (1PA) PL process. (c) Molecular structure and approximate cavity dimensions of β-CD. (d) Schematic diagram to show the mechanism for the water-resistant property of the CsPbBrxI3x (0x<3) with β-CD. (e) XRD patterns of the as-grown CsPbX3 mixed halide perovskites. (f) Band gaps of the CsPbX3 with composition x. The filled circles are the experimental data, and the solid lines are the linearly fitted curves.
Fig. 4.
Fig. 4. Frequency downconversion single-mode lasing from CsPbClxBr3x microcavities based on 1PA. Single-mode lasing of the CsPbBr3 (a) microplate, (b) microrod, and (c) microcube. Insets: corresponding fluorescence microscopy images of the CsPbBr3 microcrystals. (d) Integrated emission intensity and FWHM as a function of pump fluence showing the lasing threshold at 24.1  μJ/cm2 and gain saturation at 35.2  μJ/cm2. (e) Gaussian fitting of the lasing mode near the threshold, giving the FWHM of the lasing peak (δλ) 0.27  nm and the Q factor 2012. (f) Polarization characteristics of the laser emission at a pump fluence of 1.3Pth. The DOP is estimated to be 73%, corresponding to an orthogonal polarization suppression ratio of 16 dB. (g) Multicolor single-mode laser emissions and corresponding fluorescence microscopy images of the CsPbClxBr3x microcrystals. (h) Integrated emission intensity of a CsPbBr3 microplate under 400 nm fs laser excitation at a constant pump density of 1.5Pth for over 12 h while exposed to ambient atmosphere.
Fig. 5.
Fig. 5. Nonlinear frequency upconversion single-mode lasing from CsPbX3 microcavities based on MPA. (a) Variation of the emission spectra for the CsPbBr3 microplate pumped by 800 nm (2PA). (b) Integrated emission intensity and FWHM versus pump fluence, and (c) Gaussian fitting of the lasing mode at 1.1Pth based on 2PA. (d)–(f) Single-mode lasing from CsPbBr3 microplate pumped by 1300 nm (3PA), 1800 nm (4PA), and 2300 nm (5PA), respectively. Insets: corresponding MPA and fluorescence mechanisms for the respective pump wavelengths. (g)–(j) Fluorescence microscopy images of the CsPbBr3 microrod via 5PA with increasing pump fluence, showing the transition from original SPE to lasing. (k) Pump-wavelength-dependent lasing threshold of the CsPbBr3 microrod.
Fig. 6.
Fig. 6. Lasing dynamics of the CsPbX3 microcavity lasers. (a) Streak-camera images of the CsPbBr3 microplate at the pump densities of 0.8Pth (top panel) and 1.6Pth (bottom panel). (b) Typical PL decay curve obtained at three different excitation densities of 0.5Pth, 0.9Pth, and 1.2Pth. (c) Streak-camera images and the corresponding spectral integrated waveforms of output pulses of gain-switched CsPbBr3 microcavity lasers for various pump fluences. (d) Wavelength dependence of the delay time and pulse width of the laser outputs extracted from the streak-camera image (inset) with a pump density of 1.4Pth. (e) Spectral evolution of the lasing pulses from the CsPbBr3 microplate, showing the obvious peak blueshift and linewidth broadening with increasing pump fluences from 1.05Pth to 1.95Pth. (f) Peak position and FWHM as a function of pump fluence extracted from (e).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Eg[CsPb(ClxBr1x)3]=2.332+0.604x(eV),
Eg[CsPb(BrxI1x)3]=1.691+0.641x(eV).
DOP=LmaxLminLmax+Lmin,
npη·Pexcωexc·V,