Abstract

Hybrid perovskite materials are widely researched due to their high absorptivity, inexpensive synthesis, and promise in photovoltaic devices. These materials are also of interest as highly sensitive photodetectors. In this study, their potential for use in visible light communication is explored in a configuration that allows for simultaneous energy and data harvesting. Using a triple-cation material and appropriate device design, a new record data rate for perovskite photodetectors of 56 Mbps and power conversion efficiencies above 20% under white LED illumination are achieved. With this device design, the 3  dB bandwidth is increased by minimizing the dominating time constant of the system. This correlation between the bandwidth and time constant is proved using measurements of time-resolved photoluminescence, transient photovoltage, and device resistance.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

1. INTRODUCTION

Over recent years, hybrid perovskite solar cells have become an increasingly competitive technology for energy harvesting due to their high solar power conversion efficiencies reaching up to 25% [1], stability reaching several thousands of hours [2], and better performance than inorganic solar cells in low-intensity indoor lighting conditions [35]. In addition, perovskite solar cells can often be made by solution processing, giving the potential for manufacture by roll-to-roll coating. Hybrid perovskites respond strongly to light, making these materials useful in photodetectors in a wide range of applications [6,7].

Here, we explore the potential of hybrid organic–inorganic perovskites for visible light communication (VLC). VLC is a fast and secure method for wireless communication while avoiding increasing congestion in the radio-frequency spectrum. For this technology, ordinary light emitting diode (LED) lighting can be retrofitted with circuitry to act as a fast data transmitter, while photodetectors, typically in the form of avalanche or p-i-n photodiodes, collect the light to allow for data decoding. Solar cells can also be used as a VLC receiver with appropriate circuitry that detects the alternating current (AC) data input separately from the direct current (DC) lighting background. This allows for simultaneous data communication and energy harvesting and it has been explored with inorganic and organic photovoltaics [811]. Within this application, perovskite solar cells could be flexible and offer much simpler fabrication than GaAs, with the potential for higher power conversion efficiency than organic solar cells [8,10].

While much of the attention for receivers has been on silicon photodetectors, perovskite devices have also recently been studied by various groups [1217]. In these studies, the measured 3  dB bandwidths have ranged from 0.1 to 3.0 MHz depending on device area [6,12], structure [14,15], external bias [13,16,17], and active layer composition [12,17], while the highest data rate achieved was 1.0 Mbps [12]. Another study utilized an inorganic perovskite as a color-converter for a perovskite-silicon photoreceiver, which achieved impressive data transmission rates of 34 Mbps [18]. From these studies, the magnitude of the bandwidth for perovskite photodetectors has been attributed to several different mechanisms. While these results could be adequate for transmitting text or audio-based data, these photodetectors do not use their fundamental benefit of harvesting data and energy at the same time.

In this paper, we demonstrate data transfer of 56 Mbps to perovskite solar cells used in a configuration that allows for communication and power generation concurrently. The cells are fabricated using triple-cation perovskites and optimized for VLC application by varying the active layer thickness over a large range. These devices are then put into a circuit to allow for the measurement of their bandwidth, data rate, and bit error ratio (BER). This circuitry allows for the devices to be held under zero bias, with a small load resistor to allow for the exploitation of their ability to collect data and energy simultaneously [19]. By varying the perovskite thickness over such a large range, we are able to identify that the RC time constant is controlling the bandwidth, which is proved using transient photovoltage and internal resistance measurements. Within this paper, we also study the performance of these devices under white LED illumination that could be used within a real indoor VLC setup as well as a red laser used for testing their communication capability.

2. Results

A. Solar Cell Performance

In this study, the triple-cation perovskite Cs0.06MA0.15FA0.79Pb(I0.85Br0.15)3 was used due to its high power conversion efficiency reported elsewhere and higher bandwidth compared with MAPbI3 or MA0.15FA0.85Pb(I0.85Br0.15)3 [17,20]. To identify the factors controlling the device time constant and to maximize the device bandwidth and data rate, a wide range of active layer thicknesses were fabricated and tested. These range from 60 to 965 nm and were made using a single spin-coating method, with antisolvent washing, by varying spin speeds and solution concentration. Figure 1 presents scanning electron microscopy (SEM) images of the perovskite films, which show that the microscopic film quality did not change substantially with these different spin-coating processes. Here, we utilized an n-i-p stacked structure for the devices of the form: ITO/SnO2/perovskite/Spiro-OMeTAD/Au.

 figure: Fig. 1.

Fig. 1. SEM images of triple-cation perovskite films for all thicknesses. The red bar corresponds to a length of 2 μm.

Download Full Size | PPT Slide | PDF

The indoor energy harvesting performance of these devices measured under illumination from a typical white LED with 0.9  mW/cm2 incident power is reported in Table 1 and Fig. 2. The highest power conversion efficiency current density-voltage (J-V) curves are shown in Fig. 2(a). The performance of the same cells under AM 1.5 solar illumination is given in Appendix A Table 7. Under low-intensity LED lighting, the solar cells exhibit power conversion efficiencies (PCEs) in the range of 18%–21% for 170–640 nm thick devices. This enhanced performance compared with other thicknesses is due to their high FF and Voc. As the active layer thickness is increased, the Voc showed a significant drop. We attribute this to an increase in charge recombination due to roughening at the perovskite–Spiro-OMeTAD interface for thicker perovskite films. Evidence of this roughening for the 840 and 965 nm thick perovskite films is shown in Fig. 3, where large-scale ridges form on the surface due to the low spin-coating speeds used for their fabrication.

Tables Icon

Table 1. Cell Performance of Triple-Cation Devices with Varied Active Layer Thickness Using a White LED with an Incident Optical Power of 0.9  mW/cm2a,b

 figure: Fig. 2.

Fig. 2. Triple-cation perovskite devices with their (a) best J-V curves under 0.9  mW/cm2 indoor white LED illumination, (b) EQE, and (c) I-V curves under 50 mW red laser (660 nm) illumination.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3.

Fig. 3. Low-magnification SEM images of the three thickest triple-cation perovskite films. The blue scale bar represents a length of 10 μm.

Download Full Size | PPT Slide | PDF

The external quantum efficiency (EQE) spectra for all perovskite devices with different thicknesses are shown in Fig. 2(b). The EQE spectrum changes shape as the perovskite film thickness increases, flattening out at thicknesses of 640 nm and above. The most dramatic changes in the spectrum are seen for the 60 to 250 nm devices, where the EQE has two peaks around wavelengths 400 and 600–650 nm. Similar changes in the EQE spectrum have been reported previously in organic solar cells for varying thickness and are attributed to parasitic absorption of the other layers in the device and the nonuniform optical excitation field within the active layer [21].

To assess the capability of these devices for simultaneous energy and data harvesting, the solar cell performance was tested under the lighting conditions subsequently used for VLC experiments. A red (660 nm) laser diode with an output power of 50 mW was incident on the solar cell with a variable resistor across the solar cell to measure the I-V curve. As seen in Table 2, the PCE is in the range of 6%–9% under the full (50 mW) power used in the VLC setup. I-V curves produced with this laser illumination are shown in Fig. 2(c). In Table 2, we also estimate the EQE under this high-intensity illumination condition and note that these values are lower than those measured under lower intensity conditions, as reported in Fig. 2(b). The lower EQE and PCE values under the laser illumination could be due to higher recombination losses and increased resistive losses at higher light intensity, as shown in perovskite devices elsewhere [2224]. Nevertheless, under this illumination, the devices could generate 3–5 mW of power, which is enough to power a typical wireless sensor used for the Internet of Things [25,26].

Tables Icon

Table 2. External Quantum Efficiency of Triple-Cation Solar Cells under 660 nm Low Intensity and Laser Illumination, and Power Conversion Efficiency and Power Generated under 50 mW Laser Power

B. VLC Results

To characterize the capability of these triple-cation devices for VLC, all solar cells were mounted 40 cm from a red (660 nm) laser diode with an incident power of 50 mW. This laser was focused onto the active area of the cell using two lenses at the transmitter and receiver sides. A sequence of random data was transmitted by the laser using the DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) digital modulation technique. The signal is detected by a single perovskite cell, and the output current of the cell is split into its DC and AC components, respectively, for energy harvesting and data detection. The AC component is captured by an oscilloscope and sent to a computer for analysis. A training sequence is used for estimating the system frequency response and signal-to-noise ratio (SNR) at various frequency bands. The bandwidth of the system is determined by the perovskite solar cells, as other components (laser, oscilloscope, etc.) are significantly faster (i.e., 3  dB bandwidth higher than several hundreds of MHz). Based on the system frequency response and SNR, random data are transmitted, and the data rates achieved and associated bit error ratios (BERs) are measured [27,28]. As DCO-OFDM with adaptive bit loading is used, the achievable data rate will depend on the SNR at each subcarrier across the whole used frequency range but not on the 3  dB bandwidth of the device. Examples for the measured frequency response and bit loading for each perovskite thickness device are shown in Appendix B, Figs. 6 and 7.

The resulting 3  dB bandwidth and data rate are presented in Fig. 4 for devices of each perovskite thickness. Table 3 lists the average bandwidth, data rate, and BER. All BER values are below the hard decision forward-error correction coding threshold of 0.0047, which indicates that error-free detection is achievable by a 6.25% coding overhead [29]. Here, it is seen that the average bandwidth increases as the active layer thickness increases from 114 to 400 kHz, with a maximum measured bandwidth of 586 kHz for the 965 nm devices. This bandwidth magnitude is comparable with that reported elsewhere for triple-cation or similar perovskites, considering the cell active area of 6.5 mm2 [6]. We note that the bandwidth achieved by Salamandra et al. was 800 kHz for a triple-cation perovskite device, which was slightly higher than that measured here [17]. However, the bandwidth from their study was determined by applying a small reverse bias on the solar cell, which increases the achievable bandwidth but does not allow for energy harvesting. In the current study, the highest data rate was achieved by the 250 nm thick perovskite layer devices. This data rate reached 56 Mbps and, to the best of the authors’ knowledge, is the highest data rate for a perovskite receiver reported thus far.

Tables Icon

Table 3. Average and Standard Deviation of 3  dB Bandwidth, Data Rate, BER, and Number of Measured Samples of Triple-Cation Photodetectors with Varied Active Layer Thickness

 figure: Fig. 4.

Fig. 4. (a) Box and whisker distributions of the 3  dB bandwidth and (b) achieved data rate for perovskite devices with varied active layer thickness. Here, the mean of the data is represented as a square, the median a solid line, and the ends of the box represent the 25%–75% range.

Download Full Size | PPT Slide | PDF

3. DISCUSSION

A. Limitation of Bandwidth

Figure 4 highlights a clear trend in the bandwidth as the perovskite film thickness changes. It is known that perovskite films contain slow-moving mobile ions that are unable to react quickly to rapid changes in external bias [30]. This leads to the hysteresis in J-V curves that is commonly found in perovskite solar cells and it has been suggested that it could limit the photodetector bandwidth to the sub-MHz regime [6,17]. However, theoretical studies using a wide frequency range in impedance spectroscopy have seen these ions contribute in the low-frequency range of 103102  Hz [31]. Above this frequency range, the ions are not able to adequately respond and cause a change in the output current of the solar cell, due to their large size. Because of this, mobile ions are not believed to limit the response of the photodetectors in high-frequency ranges above 1 kHz and certainly not at even higher frequency where the 3  dB bandwidth occurs.

Another explanation could be due to the intrinsic properties of the materials used in these devices: the low mobility of the organic hole transporting layer of Spiro-OMeTAD [32]. While organic semiconductors have charge mobilities orders of magnitude lower than perovskites, OLEDs and organic solar cells utilized in previous VLC studies have achieved bandwidths in the MHz region [8]. Because of this, it seems unlikely that the presence of an organic semiconductor limits the bandwidths reported here. As well, if the transit time of charge carriers within the Spiro-OMeTAD did limit the device bandwidth, then we would not expect to change the frequency response by changing the perovskite layer thickness. This is not what we observe in Fig. 4, which shows a dependence on achievable bandwidth with perovskite thickness.

In general, the lifetime of charge carriers within solar cells is sought to be maximized to allow for better collection efficiency and reduced charge recombination [33,34]. However, the charge lifetime being very long is thought to perhaps limit how quickly the device can respond to rapid changes in light level, thus limiting the photodetector bandwidth. To determine if this lifetime could be a limiting factor for these solar cells, time-resolved photoluminescence (TRPL) measurements were performed on devices to estimate the charge carrier lifetime. The extracted lifetimes (using a double-exponential decay fit) are listed in Table 4, and we compare the longer lifetime components for our discussion. The lifetimes fitted from these curves ranged from 8 ns for the 60 nm thick film to 126 ns for a thickness of 965 nm. If this lifetime is used to estimate the upper limit of the bandwidth, the 60 nm devices would have a bandwidth of 19.3 MHz, and the 965 nm thick devices have a bandwidth of 1.3 MHz. Both limits and their trend with perovskite thickness do not follow with what is observed here. Therefore, there must be a different physical mechanism that limits these devices.

Tables Icon

Table 4. Coefficients (B1,B2) and Lifetimes (τ1,τ2) Extracted from the Two-Exponential Fit of TRPL Data for All Perovskite Devices of Varied Active Layer Thicknessa

Instead, these devices could be described as a first-order low-pass filter and limited by their RC time constant. As the active layer thickness increases, the geometric capacitance of the device is expected to decrease, leading to a lower time constant and a faster bandwidth. To test this, the RC time constant of these perovskite solar cells is explored in detail in the following section using multiple methods for measuring and estimating the capacitance.

B. RC Time Constant Estimation

An initial estimation of the solar cell’s RC time constant can be made by using its bandwidth and measuring the resistance. For an RC low-pass filter, the 3  dB bandwidth, f3  dB, is given by f3  dB=1/(2πRC), such that R is the device resistance and C is its capacitance. The cell capacitance can be subsequently calculated with the knowledge of the resistance. This resistance is calculated by measuring the cell voltage under open-circuit conditions, then putting a load resistor in series, and measuring the voltage again. Calculating this can be done using the following approximation:

R=R0(Voc/Vload1).

Here, R is the device resistance, R0 is the load resistance, and Vload is the output voltage of the solar cell when the load resistor is connected. Table 5 presents values for f3  dB, R, and C under the “bandwidth estimation” columns. It is seen that the RC time constant is a maximum for the thinnest devices and decreases steadily as the perovskite thickness increases.

Tables Icon

Table 5. Measured Device Resistance, Calculated Capacitance, and RC Time Constant for Triple-Cation Devices of Varied Active Layer Thickness Using Two Methods: Bandwidth Estimation and Transient Photovoltage

To assess if the RC time constant is what limits the bandwidth, transient photovoltage tests were performed. In this measurement, the solar cell is illuminated by a square-wave light signal of frequency 200 kHz, and its output voltage as a function of time is measured. Fitting the rise of this curve with an exponential allows for the extraction of an RC time constant. Example data from this measurement and the extracted time constants as a function of perovskite thickness are shown in Fig. 5. Results from this fitting are given in Table 5 under the “transient photovoltage” columns. The results show that the RC time constants agree well with the values extracted from the bandwidth estimation.

 figure: Fig. 5.

Fig. 5. (a) Transient photovoltage measurements for triple-cation perovskite solar cells with varied thickness. (b) Fitted RC time constant from this measurement.

Download Full Size | PPT Slide | PDF

Using the time constant from transient photovoltage measurements, the corresponding bandwidth can be calculated and is shown in the final column of Table 5. These values show bandwidths only marginally higher than those in Fig. 4, leading to the conclusion that the VLC performance of these solar cells is limited by their RC time constant, rather than by other mechanisms. For practical application, this implies that perovskite solar cells for VLC need to have their active layers carefully tuned to allow for higher achievable bandwidth while still taking care to avoid gaining too much resistance to maximize the data rate. Devices can also have their time constant optimized by adjusting the active area; reducing this too much, however, could result in larger noise and poor data rate.

4. CONCLUSIONS

In this study, triple-cation perovskite solar cells are optimized for VLC applications by varying the active layer thickness over an order of magnitude. This study is the first of its kind to show these devices in a configuration that allows for simultaneous energy and data harvesting. Here, it is observed that the device bandwidth increases with perovskite thickness, and the highest data rate is achieved for the 250 nm thick perovskite solar cells using an OFDM signal. To the best of the authors’ knowledge, this average data rate of 49 Mbps and maximum of 56 Mbps are the highest reported for perovskite photodetectors thus far. Using several measurements, it is shown here that these solar cells have bandwidth limited by their RC time constant. Our results suggest that hybrid perovskite solar cell technology is promising for VLC due to its high-power conversion efficiency and competitive data transmission rates.

5. EXPERIMENTAL METHODS

A. Solar Cell Fabrication

Perovskite precursor solutions were prepared in a N2 glovebox approximately 4 h before use. Triple-cation stoichiometry was achieved by combining CsI(0.07  mol)+FAI(1.1  mol)+MABr(0.2  mol)+PbBr2(0.2  mol)+PbI2(1.2  mol) with DMF (800 μL) and DMSO (200 μL). Finished solar cells had an n-i-p structure: ITO/SnO2/Cs0.06MA0.15FA0.79Pb(I0.85Br0.15)3/Spiro-OMeTAD/Au (60–80 nm). ITO glass substrates (Xin Yan Tech. Ltd.) were cleaned in an ultrasonic bath with a detergent solution (Hellmanex III), acetone, and then isopropyl alcohol for 10 min each. These substrates were then dried with N2 and then plasma ashed (GaLa Instrumente GmbH) with O2 gas for 3 min. A SnO2 solution was prepared by diluting a stock nanoparticle solution (Alfa Aesar) in a 1∶6.5 volume ratio with DI water, vortex mixed to ensure mixing. This solution was then spun onto the cleaned substrates at 3000 r/min for 30 s, and the film was annealed at 150°C for 30 min. The SnO2-coated substrates were then transferred into a N2 glovebox for perovskite spin coating. To form the large range of perovskite thicknesses, the precursor concentration and spin speed were adjusted. All conditions to form the films used in this study are included in Table 6.

Tables Icon

Table 6. Spin Coating Conditions for the Triple-Cation Perovskite Film Formationa

All films underwent an antisolvent washing step using chlorobenzene 10 s before the end of the spinning time, and then were annealed at 100°C for 1 h. The Spiro-OMeTAD solution was prepared at a 100 mg/mL concentration in chlorobenzene and doped with tBP (36 μL, Sigma Aldrich) + Li-TFSI (20 μL, 517 mg/mL in acetonitrile) + FK209 (8 μL, 376 mg/mL in acetonitrile). All solutions for this film were prepared just before use with a vortex mixer, and the final solution was spun at 4000 r/min for 30 s. This film was then allowed to oxygen dope for more than 12 h before being put into an evaporator for gold electrode deposition. The evaporator was pumped down to a pressure of 1×106  5×106  mbar and 60 nm of gold was thermally evaporated at a rate of 0.05 nm/s. The ITO electrode in these devices was 115 nm thick, the SnO2 layer was 30 nm thick, and the Spiro-OMeTAD film was approximately 250 nm thick.

B. Solar Cell Performance

Performance was measured using an AM 1.5 solar simulator and a Keithley 2400 source meter to supply the bias voltage and measure current. EQE was calibrated using a photodiode, and the measurement was made using a Bentham lamp (Model 605) to send light through a monochromator (Bentham TMc300) connected to a fiber-couple. This fiber was set at the calibrated height, and a Keithley 6517A captured the output current from the solar cell. Performance for indoor lighting was tested using a white LED (UltraFire, CREEXML-T6) controlled by a function generator (Keithley 3390) with variable output voltage to adjust the output light intensity. The irradiance level was measured using an RK5710 power radiometer and optometer P9710. The same Keithley 2400 source meter for solar simulator performance was used to measure device performance under white LED illumination.

To calculate the power conversion efficiency of the I-V curves produced under red laser illumination, the curves were fitted to a modified ideal diode equation:

I=I0(eqVnkBT1)Iph,
where q is the charge of an electron, kB is Boltzmann’s constant, T is temperature, and n is a fitting parameter to correct for the nonideal nature of the devices. This equation for each perovskite solar cell was multiplied by V to find the maximum power point, which was then used to calculate the power conversion efficiency for the device.

C. Bandwidth and Data Rate Measurements

A DCO-OFDM scheme is used for measuring the system bandwidth and estimating the achievable data rate. Due to the low-pass frequency response of the system, adaptive bit and energy loading is used for estimating the maximum achievable data rate. Details of the communication technique can be found in Refs. [27,28] and references therein. A communication system is set up for the measurement in the lab. On the transmitter side, a red laser (Thorlabs, HL6544FM) with a central wavelength of 660 nm is used as the light source. The DC bias value supplied by a bench power supply (TENMA 72-10505) and the AC signal generated by an arbitrary waveform generator (AWG, Keysight 81180A) are combined in a bias-Tee (Mini-Circuit, ZFBT-4R2GW+) and sent to the laser. On the receiver end, a single perovskite cell is used for capturing the optical signal. The output is connected to a custom-designed receiver circuit, which contains two branches: one branch with an inductor for energy harvesting and another branch with a capacitor for data detection. The received AC signal is captured by an oscilloscope (Keysight, MSO7104B) and sent to a computer, where the data are processed offline in MATLAB software.

D. TRPL Measurement

Time-resolved PL was captured using an Edinburgh Instruments fluorimeter with excitation using a 640 nm laser. For this measurement, devices with the complete interlayer structure were used to determine the charge lifetime within these solar cells. All fitting was done using the software for the Edinburgh Instrument control and measurement.

E. Transient Photovoltage

A similar setup to the one described for the bandwidth and data rate measurements was used. The output of each perovskite cell is directly captured by the oscilloscope without any additional circuit at the receiver. The estimation of RC constant is performed in MATLAB software. Square waves with different frequencies and peak-to-peak values have been used for the measurements, and all the results are consistent.

Appendix A

The main text presents solar cell results under conditions most relevant to VLC, i.e. illumination by an LED or communications laser. Here shows the solar cell performance of these devices under standard AM 1.5 solar simulator light. Table 7 shows the performance of these triple cation perovskite devices with the voltage scanned in forward (short to open circuit) and reverse (open to short circuit) sweeping directions.

Tables Icon

Table 7. Solar Cell Performance of Triple-Cation Perovskite Devices in Forward and Reverse Scans, under AM 1.5 Solar Simulator Illumination

Appendix B

DCO-OFDM is an adaptive bit-loading technique for transferring data to a receiver. Because of this, the signal to noise ratio (SNR) of the receiver over a wide frequency range will determine its achievable data rate, rather than just having a direct relation with the bandwidth. Figure 6 shows example SNR curves for each perovskite device of varied active layer thickness, and Fig. 7 shows example bit loading based on the SNR.

 figure: Fig. 6.

Fig. 6. Example frequency response for each perovskite thickness device.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7.

Fig. 7. Example of bit loading from one measurement of each thickness: (a) 60 nm, (b) 170 nm, (c) 250 nm, (d) 640 nm, (e) 840 nm, (f) 965 nm.

Download Full Size | PPT Slide | PDF

Funding

Engineering and Physical Sciences Research Council (EP/L015110/1, EP/L017008/1, EP/R007101/1); European Commission (MCIF 745776).

Acknowledgment

We are grateful to J. A. Smith and D. G. Lidzey for useful discussions on interlayers. H.H. also acknowledges support from the Wolfson Foundation, and the Royal Society.

Disclosures

H.H. is the founder, director, and a shareholder in PureLiFi, a company developing LiFi technology. The other authors declare no competing interests.

Research data supporting this publication is available at http://doi.org/10.17630/2bde6593-32d5-47fe-849c-d34c3dabbe58.

REFERENCES

1. NREL, “Best research-cell efficiencies,” https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf.

2. G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017). [CrossRef]  

3. C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015). [CrossRef]  

4. L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019). [CrossRef]  

5. M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013). [CrossRef]  

6. L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014). [CrossRef]  

7. Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015). [CrossRef]  

8. S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015). [CrossRef]  

9. S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019). [CrossRef]  

10. J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018). [CrossRef]  

11. Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.

12. C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018). [CrossRef]  

13. M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018). [CrossRef]  

14. G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019). [CrossRef]  

15. C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019). [CrossRef]  

16. E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019). [CrossRef]  

17. L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019). [CrossRef]  

18. C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019). [CrossRef]  

19. Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015). [CrossRef]  

20. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016). [CrossRef]  

21. A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014). [CrossRef]  

22. H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020). [CrossRef]  

23. T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017). [CrossRef]  

24. D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020). [CrossRef]  

25. J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014). [CrossRef]  

26. X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018). [CrossRef]  

27. R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” J. Lightwave Technol. 37, 2418–2424 (2019). [CrossRef]  

28. M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, and M. D. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res. 5, A35–A43 (2017). [CrossRef]  

29. L. M. Zhang and F. R. Kschischang, “Staircase codes with 6% to 33% overhead,” J. Lightwave Technol. 32, 1999–2002 (2014). [CrossRef]  

30. G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016). [CrossRef]  

31. D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018). [CrossRef]  

32. H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017). [CrossRef]  

33. S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018). [CrossRef]  

34. H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. NREL, “Best research-cell efficiencies,” https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf .
  2. G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
    [Crossref]
  3. C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
    [Crossref]
  4. L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
    [Crossref]
  5. M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013).
    [Crossref]
  6. L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
    [Crossref]
  7. Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
    [Crossref]
  8. S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
    [Crossref]
  9. S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
    [Crossref]
  10. J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
    [Crossref]
  11. Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.
  12. C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
    [Crossref]
  13. M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
    [Crossref]
  14. G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
    [Crossref]
  15. C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
    [Crossref]
  16. E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
    [Crossref]
  17. L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
    [Crossref]
  18. C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
    [Crossref]
  19. Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
    [Crossref]
  20. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
    [Crossref]
  21. A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
    [Crossref]
  22. H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
    [Crossref]
  23. T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
    [Crossref]
  24. D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
    [Crossref]
  25. J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
    [Crossref]
  26. X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
    [Crossref]
  27. R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” J. Lightwave Technol. 37, 2418–2424 (2019).
    [Crossref]
  28. M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, and M. D. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res. 5, A35–A43 (2017).
    [Crossref]
  29. L. M. Zhang and F. R. Kschischang, “Staircase codes with 6% to 33% overhead,” J. Lightwave Technol. 32, 1999–2002 (2014).
    [Crossref]
  30. G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
    [Crossref]
  31. D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
    [Crossref]
  32. H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
    [Crossref]
  33. S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
    [Crossref]
  34. H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
    [Crossref]

2020 (2)

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

2019 (8)

R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” J. Lightwave Technol. 37, 2418–2424 (2019).
[Crossref]

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

2018 (6)

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
[Crossref]

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

2017 (4)

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, and M. D. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res. 5, A35–A43 (2017).
[Crossref]

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

2016 (2)

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

2015 (5)

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
[Crossref]

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

2014 (4)

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
[Crossref]

L. M. Zhang and F. R. Kschischang, “Staircase codes with 6% to 33% overhead,” J. Lightwave Technol. 32, 1999–2002 (2014).
[Crossref]

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

2013 (1)

M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013).
[Crossref]

Abate, A.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Armin, A.

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Arredondo, B.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Asiri, A. M.

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

Ávila, J.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Bai, S.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Baig, H.

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

Bakr, O. M.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Ball, A.

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

Bamiedakis, N.

Bao, C.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Bawendi, M. G.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Beck, F. J.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Beeby, S. P.

J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
[Crossref]

Bian, R.

Bin Song, T.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Blaszczyk, O.

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

Bolink, H. J.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Brunetti, F.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Burn, P. L.

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Cameron, P. J.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Catchpole, K. R.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Cattley, R.

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

Cen, G.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Chang, J.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Chang, J. H.

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Chang, W. H.

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Chen, C. Y.

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Chen, D.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Chen, H.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Chen, Q.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Chiang, K. M.

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Cinà, L.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Correa-Baena, J. P.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Correa-Baena, J.-P.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Das, S.

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

Dawson, M. D.

De Angelis, F.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

De Marco, N.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

del Pozo, G.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Di Carlo, A.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Di Giacomo, F.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

Di Natali, M.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Domanski, K.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Dou, L.

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Dursun, I.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Erodici, M. P.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Fakidis, J.

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
[Crossref]

Fang, Y.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Fazolo, C.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Ferreira, R. X.

Foster, J. M.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Freunek, M.

M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013).
[Crossref]

Fu, Y.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Galagan, Y.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Gao, F.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Ghosh, S.

Gil-Escrig, L.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Glowienka, D.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

Grabham, N. J.

J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
[Crossref]

Graetzel, M.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Grancini, G.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Grätzel, M.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Gu, E.

Gu, F.

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

Haas, H.

R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” J. Lightwave Technol. 37, 2418–2424 (2019).
[Crossref]

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
[Crossref]

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, and M. D. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res. 5, A35–A43 (2017).
[Crossref]

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.

Hagfeldt, A.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

He, X.

Helmers, H.

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
[Crossref]

Hong, Z.

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Hou, Y.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Hsiao, S. Y.

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Hu, Y.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Huang, W.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Islim, M. S.

Jacobs, D. A.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Jagadamma, L. K.

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

Juárez-Santiesteban, H.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Kanda, H.

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

Kang, C. H.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Kelly, A. E.

Kong, M.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Koster, L. J. A.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Kschischang, F. R.

La Notte, L.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Lee, X.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Li, C.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Li, G.

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Lin, H. L.

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Lin, H. W.

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Lin, Q.

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

Lin, Z.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Liu, G.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Liu, J.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Liu, Y.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

López-Fraguas, E.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Lou, Z.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Lu, J.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Lyons, D. M.

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

Ma, X.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Ma, Y.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Mai, W.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Maiello, S.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Maity, P.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Mallick, T.

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

Martineau, D.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Martín-Martín, D.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Mathew, X.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Matiko, J. W.

J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
[Crossref]

Matsui, T.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Matteocci, F.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Mattiello, L.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Mayer, M. T.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Meredith, P.

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Mohammed, O. F.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Momblona, C.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Mosconi, E.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Müller, M. F.

M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013).
[Crossref]

Najafi, M.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Narbey, S.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Nazeeruddin, M. K.

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Ng, T. K.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Nia, N. Y.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Niemann, R. G.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Nienhaus, L.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

O’Kane, S. E. J.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Ooi, B. S.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Ooi, E. N.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Oswald, F.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Pan, J.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Peltola, T. A.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Peng, J.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Penty, R. V.

Pfeffer, F.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Pivrikas, A.

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Pizzoleo, A.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Poves, E.

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

Reale, A.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Reindl, L. M.

M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013).
[Crossref]

Richardson, G.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Roldán-Carmona, C.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Romero, B.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Ruseckas, A.

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

Sajjad, M. T.

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

Salamandra, L.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Saliba, M.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Samuel, I. D. W.

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
[Crossref]

Sánchez-Pena, J. M.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Seo, J.-Y.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Sessolo, M.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Shen, H.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Shen, L.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Sher, M. J.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Sherkar, T. S.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Sinatra, L.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Song, L.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Sparks, A.

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

St Louis, Z.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Su, C.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Sun, L.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Sun, P.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Sun, X.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Susanna, G.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Szmytkowski, J.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

Tang, S.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Tang, X.

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

Tavakkolnia, I.

Teng, F.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Tress, W.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Tsonev, D.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
[Crossref]

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.

Tudor, M. J.

J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
[Crossref]

Turnbull, G. A.

Turren-Cruz, S. H.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Veenstra, S.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

Vega-Colado, C.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Velusamy, M.

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Vergaz, R.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Videv, S.

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
[Crossref]

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, and M. D. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res. 5, A35–A43 (2017).
[Crossref]

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.

Viola, S.

Walker, A. B.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Wang, G.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Wang, H.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Wang, H. H.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Wang, X.

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

Wang, Y.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Wang, Z.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.

Watson, S.

White, I. H.

White, T. P.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Wolfer, P.

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Xi, H.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Xie, E.

Xu, Q.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Xu, W.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Yan, G.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Yan, Z.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Yang, J.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Yang, Y.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Yang, Y. M.

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

You, J.

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Yuan, Y.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Zakeeruddin, S. M.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Zhang, C.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Zhang, D.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

Zhang, F.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Zhang, L. M.

Zhang, M.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Zhang, S.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
[Crossref]

Zhang, W.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Zhang, Y.

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Zhao, C.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Zhao, Y.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Zhao, Z.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Zhong, P.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Zhou, H.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Zhou, J.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Zhu, L.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Zimmermann, I.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

ACS Energy Lett. (1)

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

ACS Omega (1)

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

ACS Photon. (1)

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Adv. Funct. Mater. (1)

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Adv. Mater. (2)

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Energies (1)

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

Energy Environ. Sci. (3)

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

IEEE J. Photovoltaics (1)

M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
[Crossref]

J. Appl. Phys. (1)

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

J. Lightwave Technol. (2)

J. Mater. Chem. A (1)

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Light Sci. Appl. (1)

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Meas. Sci. Technol. (1)

J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
[Crossref]

Nano Energy (1)

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

Nat. Commun. (2)

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Optica (1)

Org. Electron. (2)

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Photon. Res. (1)

Sci. Rep. (1)

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Sensors (1)

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

Small (2)

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

Sustain. Energy Fuels (1)

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

Other (2)

NREL, “Best research-cell efficiencies,” https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf .

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. SEM images of triple-cation perovskite films for all thicknesses. The red bar corresponds to a length of 2 μm.
Fig. 2.
Fig. 2. Triple-cation perovskite devices with their (a) best J-V curves under 0.9  mW/cm2 indoor white LED illumination, (b) EQE, and (c) I-V curves under 50 mW red laser (660 nm) illumination.
Fig. 3.
Fig. 3. Low-magnification SEM images of the three thickest triple-cation perovskite films. The blue scale bar represents a length of 10 μm.
Fig. 4.
Fig. 4. (a) Box and whisker distributions of the 3  dB bandwidth and (b) achieved data rate for perovskite devices with varied active layer thickness. Here, the mean of the data is represented as a square, the median a solid line, and the ends of the box represent the 25%–75% range.
Fig. 5.
Fig. 5. (a) Transient photovoltage measurements for triple-cation perovskite solar cells with varied thickness. (b) Fitted RC time constant from this measurement.
Fig. 6.
Fig. 6. Example frequency response for each perovskite thickness device.
Fig. 7.
Fig. 7. Example of bit loading from one measurement of each thickness: (a) 60 nm, (b) 170 nm, (c) 250 nm, (d) 640 nm, (e) 840 nm, (f) 965 nm.

Tables (7)

Tables Icon

Table 1. Cell Performance of Triple-Cation Devices with Varied Active Layer Thickness Using a White LED with an Incident Optical Power of 0.9  mW/cm2a,b

Tables Icon

Table 2. External Quantum Efficiency of Triple-Cation Solar Cells under 660 nm Low Intensity and Laser Illumination, and Power Conversion Efficiency and Power Generated under 50 mW Laser Power

Tables Icon

Table 3. Average and Standard Deviation of 3  dB Bandwidth, Data Rate, BER, and Number of Measured Samples of Triple-Cation Photodetectors with Varied Active Layer Thickness

Tables Icon

Table 4. Coefficients (B1,B2) and Lifetimes (τ1,τ2) Extracted from the Two-Exponential Fit of TRPL Data for All Perovskite Devices of Varied Active Layer Thicknessa

Tables Icon

Table 5. Measured Device Resistance, Calculated Capacitance, and RC Time Constant for Triple-Cation Devices of Varied Active Layer Thickness Using Two Methods: Bandwidth Estimation and Transient Photovoltage

Tables Icon

Table 6. Spin Coating Conditions for the Triple-Cation Perovskite Film Formationa

Tables Icon

Table 7. Solar Cell Performance of Triple-Cation Perovskite Devices in Forward and Reverse Scans, under AM 1.5 Solar Simulator Illumination

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R=R0(Voc/Vload1).
I=I0(eqVnkBT1)Iph,

Metrics