Abstract

Lead halide perovskites have drawn extensive attention over recent decades owing to their outstanding photoelectric performances. However, their toxicity and instability are big issues that need to be solved for further commercialization. Herein, we adopt a facile dry ball milling method to synthesize lead-free Cs3Cu2X5 (X=I, Cl) perovskites with photoluminescence (PL) quantum yield up to 60%. The optical features including broad emission spectrum, large Stokes shift, and long PL lifetime can be attributed to self-trapped exciton recombination. The as-synthesized blue emissive Cs3Cu2I5 and green emissive Cs3Cu2Cl5 lead-free perovskite powders have good thermal stability and photostability. Furthermore, UV-pumped phosphor-converted light-emitting diodes were obtained by using Cs3Cu2I5 and Cs3Cu2Cl5 as phosphors.

© 2020 Chinese Laser Press

1. INTRODUCTION

Metal-halide perovskite materials have attracted significant attention over the past decades owing to their advantages of high absorption coefficient, large carrier diffusion lengths, and superior photoelectric properties [14], which make them promising candidates for optoelectronic applications including solar cells [57], light-emitting diodes [814], photodetectors [15,16], and lasers [1719]. Unfortunately, toxicity and poor stability are major obstacles that restrict their significant commercialization [20,21]. It is highly necessary to develop lead-free perovskite materials to solve these issues. So far, many efforts have been made to explore lead-free all-inorganic compounds through searching for low- or non-toxic elements to replace lead, including tin (Sn) [2226], bismuth (Bi) [2729], silver (Ag) [30,31], indium (In) [32,33], antimony (Sb) [34,35], germanium (Ge) [36,37], copper (Cu) [3844], zinc (Zn) [45], magnesium (Mg) [46], and rare-earth ions [47]. Among these rising lead-free perovskite materials, cesium copper halide perovskites benefit from being low cost and earth abundant. In previous reports, a limited number of synthetic methods have been used to fabricate cesium copper halide perovskites, which depend on solvents with low recovery rates, causing a certain degree of environmental pollution [48]. Sustainable development of solvent-free technologies for the synthesis of cesium copper halide perovskites has become a critical issue.

The ball milling approach based on mechanochemistry, a kind of green and reemerging efficient synthetic method, was identified by the International Union of Pure and Applied Chemistry (IUPAC) as one of 10 world-changing technologies [49]. The process can promote physical and chemical reactions between solids quickly and quantitatively with no added solvent, consistent with sustainable development. Moreover, the ball milling method offers tremendous advantages compared to traditional solution-based methods by avoiding the solubility limitation for poorly soluble or insoluble reagents and achieving high yield in a relatively short time by controlling materials [50]. Recently, it has been adopted to fabricate lead halide perovskite materials [51,52]. However, there are no reports to our knowledge about using the ball milling approach to fabricate cesium copper halide perovskites. In this work, we first extended the ball milling method to prepare highly luminescent and stable Cs3Cu2I5 and Cs3Cu2Cl5 perovskite powders without solvent. The as-fabricated all-inorganic copper-based perovskites exhibit self-trapped excitons (STE) emission features including broad photoluminescent (PL) emission, large Stokes shift, long PL lifetime, and high PL quantum yield (QY) reaching 60%. The Cs3Cu2I5 and Cs3Cu2Cl5 perovskites with good thermal stability and photostability were employed as phosphors for UV-pumped phosphor-converted (pc)-LEDs.

2. EXPERIMENT

A. Materials and Synthesis

The materials used were cesium iodide (CsI, 99.9% metal basis, Aladdin), cuprous iodide (CuI, 99.9% metal basis, Aladdin), cesium chloride (CsCl, 99.5%, Macklin), and cuprous (I) chloride (CuCl, 99.5%, Macklin). All chemicals were used as received without further purifications. Cs3Cu2X5 powders were fabricated by the dry ball milling method at room temperature. In typical synthesis of Cs3Cu2I5 powder, 3 mmol CsI (0.779 g) and 2 mmol CuI (0.38 g) were first homogeneously mixed in a mortar; the mixture was then transferred into a grinding tank (steel bowl with steel ball, 10 mL). The sealed tank was installed in the vibratory ball mill, and the gray-white Cs3Cu2I5 powder was obtained by grinding at 1000 r/min for half an hour. For the synthesis of Cs3Cu2Cl5 powder, CsI and CuI were simply replaced by CsCl and CuCl in the same process.

B. Fabrication of UV-Pumped pc-LEDs

0.05 g of Cs3Cu2I5 powder and 0.05 g of Cs3Cu2Cl5 powder were mixed with a thermal-curable silicone resin OE-6551A (0.1 g) under vigorous stirring. The hardener OE-6551B (0.2 g) was added to form a fluorescent paste, and then the paste was deposited on a commercial GaN-based UV-LED chip (310 nm, EPILED Co., Ltd).

C. Characterization

The morphologies and elemental analysis of Cs3Cu2I5 and Cs3Cu2Cl5 were collected by scanning electron microscope (SEM), energy dispersive X-ray (EDX, FEI Quanta FEG 250 ESEM), and transmission electron microscope (TEM) (JEOL, JEM-2010F, 200 kV) equipped with an X-ray spectrometer detector. X-ray diffraction (XRD) patterns of Cs3Cu2I5 and Cs3Cu2Cl5 powders were recorded on an X-ray diffractometer (Bruker AXS D8) using Cu-Kα X-ray radiation (λ=1.5406Å). Thermogravimetric analysis (TGA) results of the powder were obtained using a PerkinElmer Diamond TG/DTA6300, conducted at a heating rate of 10°C·min1 to 1500°C in N2 flow with an alumina crucible. X-ray photoelectron spectroscopy (XPS) measurements were performed on a ULVAC-PHI instrument (PHIQUAN-TERA-II SXM) with Al Kα as the X-ray source at 70 W. The UV-Vis diffuse reflectance spectra of the powdered samples were taken on a PerkinElmer Lambda 35 double-beam spectrometer. PL and PL excitation (PLE) spectra were recorded on the Horiba PTI QuantaMaster 400. The absolute PL QY’s time-resolved PL decay curves were measured on an FLSP920 spectrofluorimeter (Edinburgh Instruments, TCSPC system) equipped with an integrating sphere.

D. Computational Methods

First-principle calculations of Cs3Cu2I5 were carried out using the Vienna Ab initio Simulation Package (VASP) code. To guarantee convergence, the projected augmented plane wave basis set was defined by a cutoff of 300 eV. The mesh samplings in the Brillouin zone (BZ) were 3×3×2. Experimental lattice parameters of Cs3Cu2I5 were used, and the atomic positions were fully relaxed until the residual forces were 0.05 eV/Å. Electronic band structures, density of states (DOS), and exciton properties were calculated using the hybrid PBE0 function.

3. RESULTS AND DISCUSSION

The schematic procedure of a typical fabrication of Cs3Cu2I5 powder by using a planetary ball mill is illustrated in Fig. 1(a): the raw powder materials of cesium iodide (CsI) and cuprous iodide (CuI) were first homogeneously mixed in a mortar; the mixture was then transferred into a steel bowl with a steel ball, and the blue emissive product was generated after a grinding process of the mixture for half an hour at room temperature, demonstrating an extremely energy-saving procedure compared to previous reports on lead perovskites [5153]. The SEM image of the Cs3Cu2I5 powder is shown in Fig. 1(b), and it exhibits irregularly shaped particles with the diameter of 0.71±0.3μm, consistent with the TEM result [Fig. 1(c)]. The high-resolution TEM (HRTEM) image [Fig. 1(d)] of the Cs3Cu2I5 powder shows high crystallinity with a lattice fringe of 0.38 nm corresponding to the crystal plane (022). The high crystallinity feature also can be confirmed by the selected area electron diffraction (SAED) pattern as shown in the inset of Fig. 1(d). EDX measurement [Fig. 1(e)] was performed to estimate the chemical composition of Cs3Cu2I5 powder sample, which yielded a Cs:Cu:I ratio of 325, indicating that the Cs3Cu2I5 compound was successfully synthesized. Elemental mapping of the product has been performed to further confirm the presence of Cs, Cu, and I in the resulting Cs3Cu2I5 powder as shown in Figs. 1(f)1(i), exhibiting the homogeneous distribution of three elements over the particles.

 figure: Fig. 1.

Fig. 1. (a) Schematic illustration of synthetic process of Cs3Cu2I5 perovskite powder by using a planetary ball mill. (b) SEM image of Cs3Cu2I5 perovskite powder with inset showing size distribution. (c) TEM image of Cs3Cu2I5 perovskite. (d) HRTEM image of Cs3Cu2I5 perovskite along with an inset of SAED pattern of Cs3Cu2I5 perovskite crystal. (e) EDX spectrum and elemental content analysis of obtained Cs3Cu2I5 perovskite. (f) SEM image and EDX elemental mapping (g) Cs, (h) Cu, and (i) I of the selected Cs3Cu2I5 perovskite powder.

Download Full Size | PPT Slide | PDF

We performed XRD measurement to verify the phase structure of the as-synthesized Cs3Cu2I5; as shown in Fig. 2(a), the XRD patterns with main 2θ positions of 13.1°, 15.1°, 23.9°, 25.6°, 26.3°, 28.2°, 30.6°, and 47.9° were assigned to the (111), (002), (122), (312), (222), (131), (313), and (152) planes of a bulk Cs3Cu2I5 (JCPDS No. 45-0077). These results indicate that the as-fabricated Cs3Cu2I5 powder has a orthorhombic crystal structure with a space group of Pnma, consistent with previous reports [40]. The stability of Cs3Cu2I5 perovskite is a critical factor for its applications, and thus TGA was carried out to investigate the thermal stability of the Cs3Cu2I5 powder. Figure 2(b) shows that the as-synthesized Cs3Cu2I5 powder is stable to 560°C, indicating that it has a good thermal stability, much better than that of Sn-based perovskite [24]. The valence state and surface chemical composition of Cs3Cu2I5 were reaffirmed from XPS. The XPS survey spectrum [Fig. 2(c)] confirms the presence of Cs, Cu, and I elements. Figures 2(d)2(f) show the high-resolution XPS (HRXPS) spectra of Cs 3d, Cu 2p, and I 3d for the Cs3Cu2I5 powder sample, and all spectra were calibrated with C 1 s. The HRXPS spectrum peaks of Cs 3d are located at 724.2 eV and 738.5 eV corresponding to Cs+ 3d5/2 and 3d3/2; the peaks at 619.0 eV and 930.6 eV for the I 3d XPS spectrum are attributed to I 3d5/2 and 3d3/2, respectively. The binding energies of 932.2 eV and 952.1 eV were observed in the Cu 2p XPS spectrum for Cu 2p1/2 and 2p3/2, respectively, which demonstrates the existence of Cu+ [41].

 figure: Fig. 2.

Fig. 2. (a) XRD pattern of obtained Cs3Cu2I5 powder, compared with the orthorhombic bulk Cs3Cu2I5 at the bottom (JCPDS No. 45-0077). (b) TGA curve of Cs3Cu2I5 powder. (c) XPS survey spectrum and HRXPS spectra of (d) Cs 3d, (e) Cu 2p, and (f) I 3d in Cs3Cu2I5 powder.

Download Full Size | PPT Slide | PDF

The absolute PL QY of Cs3Cu2I5 was measured up to 60%, indicating that our sample has a strong emission feature. Figure 3(a) shows PL spectra of Cs3Cu2I5 powder under different excitation wavelengths ranging from 260 to 340 nm, with a uniform full width at half-maximum (FWHM) of 80 nm. Figure 3(b) predicts the PLE spectra of Cs3Cu2I5 with a fixed peak at 303 nm, which makes it suitable as phosphor for UV-pumped pc-LEDs. The large Stokes shift of 137 nm between the PLE and PL peaks illustrates that the emission mechanism cannot be explained simply by a direct band recombination emission [54,55]. UV-Vis optical diffuse reflectance spectroscopy was adopted to determine the optical bandgap of Cs3Cu2I5 powder as shown in Fig. 3(c), featuring a sharp absorption band centered at 324 nm. A bandgap value of 3.69 eV was given through the Tauc plot [inset of Fig. 3(c)]. To further explore excitonic recombination kinetics, the time-resolved PL decay curve of Cs3Cu2I5 powder was measured under 300 nm excitation as shown in Fig. 3(d). The PL decay can be described by monoexponential fitting, giving a long-lived PL lifetime of 1.13 μs that exhibits the phosphorescence feature of Cs3Cu2I5. Summarizing the optical features of the Cs3Cu2I5 sample, including a broad PL spectrum, a large Stokes shift, and a long PL decay time, we can deduce that the emission of Cs3Cu2I5 is ascribed to the STE recombination mechanism due to the Jahn–Teller distortion of the polyhedron (formed by Cu+ and I) in the excited states [33,56]. The electronic structure calculations were performed using density functional theory (DFT) to further study the fluorescence mechanism of the Cs3Cu2I5 powder, first giving the crystal structure of the Cs3Cu2I5 as viewed down the a axis [Fig. 3(e)] consisting of caged [Cu2I5]3 units with tetrahedral and trigonal Cu+ sites, isolated by Cs+ ions. Figure 3(f) provides the density of states (DOS) of the Cs3Cu2I5 sample, indicating that the valence band maximum (VBM) is mainly composed of Cu 3d orbits, while the conduction band maximum (CBM) originates from Cu 4s and I 5p orbits, and Cs+ has no contribution to CBM or VBM [40]. This means that the [Cu2I5]3 polyhedron plays the dominant role in the crystal distortion and emission mechanism of Cs3Cu2I5, which can confine the excitons trapped by Jahn–Teller distortion in excited states. This is consistent with the previous reports [40,54]. Additionally, DFT calculations also yielded that Cs3Cu2I5 crystal has a direct bandgap at the Γ point with the gap value of 3.70 eV [Fig. 3(g)]. The excitation and emission processes for Cs3Cu2I5 are described in Fig. 3(h): after excitation with a high-energy ultraviolet light, the electron moves first from the ground states to the excited states, and then transits from singlet to triplet states (self-trapped states). Subsequent transition of the electron from the STE states to the ground states occurs, accompanied by blue emission.

 figure: Fig. 3.

Fig. 3. (a) PL spectra of Cs3Cu2I5 powder under different excitation wavelengths from 260 to 340 nm. (b) PLE spectra measured at different PL peaks ranging from 400 to 480 nm. (c) UV-Vis diffuse reflectance spectrum of the Cs3Cu2I5 powder; the inset shows the Tauc plot used for the bandgap estimation. (d) Time-resolved PL decay curve of Cs3Cu2I5 powder excited by the laser of 300 nm. (e) Crystal structure of Cs3Cu2I5, as viewed down the a axis (green, purple, and blue balls indicate Cs, I, and Cu atoms, respectively). (f) DOS plots of the Cs3Cu2I5 powder. (g) Calculated electronic band structure of Cs3Cu2I5; the Fermi energy is set to E=0 and denoted with an orange dash line. (h) Configuration coordinate diagram for the excited-state reorganization; the violet and blue arrows represent transition and radiation processes, respectively, and the black arrow represents intersystem crossing.

Download Full Size | PPT Slide | PDF

The thermal stability and photostability of perovskite materials are critical for their long-term application in lightings and displays. To evaluate the natural stability of Cs3Cu2I5 powder, the evolution of the PL spectra of Cs3Cu2I5 powder after thermal treatment under N2 protection at different temperatures (100°C, 200°C, 300°C) was tested for half an hour. It can be seen clearly from Fig. 4(a) that the PL intensity of the Cs3Cu2I5 powder shows no decrease for 100°C and 200°C and only 21% reduction for 300°C compared to original value. Then the thermal stability of Cs3Cu2I5 powder was tested at 100°C under ambient air environment. The emission intensity remained at 72% of the initial value after 5 h [Fig. 4(b)], indicating that Cs3Cu2I5 powder has a good thermal stability [57]. The photostability of Cs3Cu2I5 powder was also studied [Fig. 4(c)] using a 500 W xenon lamp as the excitation source; the sample only exhibited a 22% reduction in PL intensity after 5 h illumination, which is better than Pb-based perovskites [58]. Interestingly, the Cs3Cu2I5 powder had a remarkable stability in air; the XRD patterns of a Cs3Cu2I5 powder exposed to ambient conditions for three months were identical to that of the initial as-synthesized powder [Fig. 4(d)]. PL intensity remained at 60% of the initial value after 90 days [Fig. 4(e)], much better than that of other reported perovskites [28,42,59]. The reason for the high stability of the as-fabricated Cs3Cu2I5 perovskite is most likely that there are no organic species (organic ions and ligands) contained in its structure and surface [6062].

 figure: Fig. 4.

Fig. 4. (a) Integrated PL intensity as a function of temperatures from 25°C to 300°C. Variation of PL intensity of Cs3Cu2I5 (b) at 100°C and (c) under a xenon lamp irradiation over time. (d) XRD patterns of Cs3Cu2I5 exposed to air for three months. (e) PL intensity of Cs3Cu2I5 exposed to air for three months.

Download Full Size | PPT Slide | PDF

Notably, green emissive Cs3Cu2Cl5 perovskite was achieved for the first time to our knowledge. The SEM image is shown in Fig. 5(a), and it exhibits irregularly shaped micrometer-sized particles of the obtained Cs3Cu2Cl5. Figure 5(b) shows the HRTEM image of the Cs3Cu2Cl5, indicating high crystallinity with a lattice fringe of 0.35 nm. The SAED pattern of the Cs3Cu2Cl5 [inset of Fig. 5(b)] further confirms the high crystallinity. EDX elemental mappings of the selected Cs3Cu2Cl5 particles [Fig. 5(c)] showcase the uniform distribution of cesium, copper, and chlorine elements in the particles. The XRD pattern [Fig. 5(d)] shows that the diffraction peak positions and corresponding intensities are mainly consistent with the bulk Cs3Cu2Cl5 standard card (JCPDS No. 24-0247). The Cs3Cu2Cl5 exhibits an orthorhombic phase structure with the lattice constants a=9.176Å, b=10.505Å, and c=13.141Å. We found that an additional CsCl phase signal appeared in the XRD pattern, which is marked with black stars; it is unavoidable for synthesis of chloride compounds [39,63]. The existing three elements were further confirmed by XPS results as shown in Fig. 5(e). The HRXPS analysis [Figs. 5(f) and 5(g)] of the Cs 3d (3d5/2, 724.2 eV; 3d3/2, 738.5 eV) and Cl 2p (198.3 eV) reveals that monovalent Cs+ and monovalent Cl existed in the Cs3Cu2Cl5 sample [9,64], while the HRXPS spectrum of Cu 2p [Fig. 5(h)] provides two main peaks of monovalent Cu+ (932.6 eV, 953.2 eV) with two satellite peaks (marked with black diamonds) at 942.4 eV and 962.3 eV attributed to divalent Cu2+ [65]. This may be because of the slight oxidation of partial Cu+ on the surface of the sample. The stability of Cs3Cu2Cl5 is further illustrated by the TGA result [Fig. 5(i)], which shows that the product is stable to 500°C, indicating that it displays a good thermal stability.

 figure: Fig. 5.

Fig. 5. (a) SEM image of Cs3Cu2Cl5 perovskite powder. (b) HRTEM image of Cs3Cu2Cl5 perovskite along with an inset of SAED pattern of Cs3Cu2Cl5 perovskite crystal. (c) EDX elemental mappings of Cs3Cu2Cl5 powder; the scale bar is 10 μm. (d) XRD pattern of Cs3Cu2Cl5 powder with standard JCPDS cards (Cs3Cu2Cl5, 24-0247 and CsCl, 05-0607). (e) XPS survey spectrum of Cs3Cu2Cl5 powder. HRXPS analysis of Cs3Cu2Cl5 powder: (f) Cs 3d spectrum, (g) Cl 2p spectrum, and (h) Cu 2p spectrum. (i) TGA curve of Cs3Cu2Cl5 powder.

Download Full Size | PPT Slide | PDF

The UV-Vis absorption and PL spectra of Cs3Cu2Cl5 powder are depicted in Fig. 6(a), showing peaks at 346 nm for UV-Vis and 510 nm for PL. The broad PL spectrum (FWHM of 90 nm) of Cs3Cu2Cl5 makes it suitable for downconversion white pc-LEDs with high color rendering index. The optical photograph [inset of Fig. 6(a)] shows green color emission of the Cs3Cu2Cl5 powder under a UV-254 nm lamp. The normalized PLE spectra [Fig. 6(b)] exhibit identical shapes and fixed peaks, illustrating that the green emission of Cs3Cu2Cl5 originates from the relaxation of the same excited state [54]. A large Stokes shift of 164 nm between the PL and PLE spectra further makes it a candidate for use in pc-LEDs. The time-resolved PL decay curve [Fig. 6(c)] under 300 nm excitation at room temperature for Cs3Cu2Cl5 perovskite powder shows biexponential behavior with an average lifetime of 103 μs by integrating two individual lifetimes of 73.61 μs (29%) and 116.4 μs (71%), which is longer than that of Cs3Cu2I5 perovskite. The long PL lifetime is commonly known as phosphorescence originated from STEs [33,39]. Mott and Stoneham reported that the STE lifetime is related to the energy barrier that is required to be conquered for STE formation [66]. The potential barrier should be lower for Cs3Cu2I5 compared to Cs3Cu2Cl5, which may explain the shorter relaxation time for excitons in Cs3Cu2I5 compared to that for excitons in Cs3Cu2Cl5. It is consistent with the reported one [67]. The crystal structure of Cs3Cu2Cl5 powder is similar to Cs3Cu2I5 crystal, containing unique [Cu2Cl5]3 dimers made of a trigonal planar CuCl3 sharing an edge with a tetrahedral CuCl4 unit, all surrounded by Cs+ [Fig. 6(d)]. And the electrons and phonons of Cs3Cu2Cl5 are strongly coupled to induce Jahn–Teller distortion of polyhedron [Cu2Cl5]3 under UV light excitation. The excited-state electrons become self-trapped by the distortion and then release energy by a recombination process, and a similar emission behavior was also observed for other 0D lead-free crystal [68]. DFT calculations confirm that Cs3Cu2Cl5 has a direct bandgap at the Γ point with the value of 2.45 eV [Fig. 6(e)]. Furthermore, the absolute PL QY of Cs3Cu2Cl5 powder was measured up to 53%. The stability of the Cs3Cu2Cl5 powder was also studied in air conditions at room temperature by detecting variations of XRD patterns and PL intensity for 60 days. The XRD patterns [Fig. 6(f)] of Cs3Cu2Cl5 powder exhibit no changes; the PL intensity remained at 70% of the initial value, indicating that Cs3Cu2Cl5 powder also has better stability than other reported perovskites [28,42,59].

 figure: Fig. 6.

Fig. 6. (a) Normalized UV-Vis absorption (purple dash line) and PL (green solid line) spectra of the as-obtained Cs3Cu2Cl5 powder; inset: green emission image under UV-254 nm lamp. (b) Normalized PLE spectra measured over different PL peaks ranging from 470 to 550 nm. (c) Time-resolved PL decay curve of the Cs3Cu2Cl5 powder detected at 510 nm with excitation of 300 nm. (d) Crystal structure of Cs3Cu2Cl5, as viewed down the a axis (green, brown, and blue balls indicate Cs, Cl, and Cu atoms, respectively). (e) DFT electronic band structure of Cs3Cu2Cl5 with a direct bandgap (2.45 eV). (f) XRD patterns of Cs3Cu2Cl5 exposed to air for two months.

Download Full Size | PPT Slide | PDF

In order to illustrate the potential lighting application of the obtained perovskite powders, we fabricated a UV-pumped pc-LED device by using blue emissive Cs3Cu2I5 and green emissive Cs3Cu2Cl5 as phosphors. It is the first time to our knowledge that pc-LED based on all copper-based perovskites without other phosphors has been prepared. Figure 7(a) provides a photograph of the as-fabricated pc-LED with brown color observed by the naked eye as shown in Fig. 7(b). The green-yellow emission color was obtained when the pc-LED device operated at a forward bias current of 20 mA. The electroluminescence (EL) spectrum [Fig. 7(c)] of the UV-pumped pc-LED exhibits two peaks: at 479 nm from the blue emissive Cs3Cu2I5 and at 547 nm from green emissive Cs3Cu2Cl5. The Commission International de l’Eclairage (CIE) color coordinates of the UV-pumped pc-LED are (0.278, 0.383); this is marked in the CIE 1931 color space, and the color points are laid on the green-yellow region near the black-body Planckian locus [Fig. 7(d)].

 figure: Fig. 7.

Fig. 7. (a) Photograph of the as-fabricated pc-LED based on dual phosphors of blue emissive Cs3Cu2I5 and green emissive Cs3Cu2Cl5. (b) Photograph of the pc-LED device operated at a forward bias current of 20 mA. (c) EL spectrum and (d) CIE chromaticity diagram of the LED device.

Download Full Size | PPT Slide | PDF

4. CONCLUSIONS

In summary, we have developed a simple and energy-saving route to synthesize stable lead-free perovskites in a dry ball milling process. The obtained blue emissive Cs3Cu2I5 powder exhibits a high PL QY of 60% with a long lifetime of 1.13 μs and a huge Stokes shift of 137 nm. The luminescence mechanism of Cs3Cu2I5 could be explained by self-trapped excitons that originate from Jahn–Teller distortion of the Cu tetrahedral site. The green emissive Cs3Cu2Cl5 perovskite with PL QY of 53% was successfully fabricated by using the same process for the first time, with the PL peak at 510 nm. We finally realized a UV-pumped LED device by using blue emissive Cs3Cu2I5 and green emissive Cs3Cu2Cl5 as phosphors.

Funding

National Key R&D Program of China (2017YFB1002900); National Natural Science Foundation of China (51602024, 61420106014, 61574017, 61775019); Beijing Nova Program (Z171100001117047); Beijing Outstanding Young Scientist Program (BJJWZYJH01201910007022); Open Fund of the State Key Laboratory on Integrated Optoelectronics (IOSKL2017KF13).

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. Q. A. Akkerman, G. Raino, M. V. Kovalenko, and L. Manna, “Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals,” Nat. Mater. 17, 394–405 (2018). [CrossRef]  

2. S. Chang, Z. L. Bai, and H. Z. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6, 1800380 (2018). [CrossRef]  

3. M. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, “Properties and potential optoelectronic applications of lead halide perovskite nanocrystals,” Science 358, 745–750 (2017). [CrossRef]  

4. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13, 897–903 (2014). [CrossRef]  

5. C. X. Ran, J. Xi, W. Y. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, and Z. X. Wu, “Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,” ACS Energy Lett. 3, 713–721 (2018). [CrossRef]  

6. E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017). [CrossRef]  

7. J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016). [CrossRef]  

8. Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018). [CrossRef]  

9. T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018). [CrossRef]  

10. K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018). [CrossRef]  

11. M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu, and A. L. Rogach, “Metal halide perovskite light-emitting devices: promising technology for next-generation displays,” Adv. Funct. Mater. 29, 1902008 (2019). [CrossRef]  

12. D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018). [CrossRef]  

13. Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019). [CrossRef]  

14. Z. C. Li, Z. M. Chen, Y. C. Yang, Q. F. Xue, H.-L. Yip, and Y. Cao, “Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%,” Nat. Commun. 10, 1027 (2019). [CrossRef]  

15. Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015). [CrossRef]  

16. M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015). [CrossRef]  

17. L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019). [CrossRef]  

18. Y. F. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017). [CrossRef]  

19. Q. Wei, X. J. Li, C. Liang, Z. P. Zhang, J. Guo, G. Hong, G. C. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019). [CrossRef]  

20. B.-W. Park and S. I. Seok, “Intrinsic instability of inorganic-organic hybrid halide perovskite materials,” Adv. Mater. 31, 1805337 (2019). [CrossRef]  

21. A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, “Toxicity of organometal halide perovskite solar cells,” Nat. Mater. 15, 247–251 (2016). [CrossRef]  

22. A. F. Wang, Y. Y. Guo, F. Muhammad, and Z. T. Deng, “Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability,” Chem. Mater. 29, 6493–6501 (2017). [CrossRef]  

23. D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016). [CrossRef]  

24. B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018). [CrossRef]  

25. X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019). [CrossRef]  

26. J.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, and C.-W. Chiu, “Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%,” J. Am. Chem. Soc. 141, 10324–10330 (2019). [CrossRef]  

27. M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017). [CrossRef]  

28. B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017). [CrossRef]  

29. M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018). [CrossRef]  

30. Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, “The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions,” Nano Lett. 18, 3502–3508 (2018). [CrossRef]  

31. Q. Li, Y. G. Wang, W. C. Pan, W. G. Yang, B. Zou, J. Tang, and Z. W. Quan, “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem. (Int. Ed.) 56, 15969–15973 (2017). [CrossRef]  

32. L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019). [CrossRef]  

33. L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, H. Y. Chen, and D. B. Kuang, “Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal,” Angew. Chem. (Int. Ed.) 58, 2–8 (2019).

34. F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019). [CrossRef]  

35. J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, “High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots,” ACS Nano 11, 9294–9302 (2017). [CrossRef]  

36. X. T. Wu, W. D. Song, Q. Li, X. X. Zhao, D. S. He, and Z. W. Quan, “Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam-induced transformations,” Chem. Asian J. 13, 1654–1659 (2018). [CrossRef]  

37. P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017). [CrossRef]  

38. D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016). [CrossRef]  

39. P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019). [CrossRef]  

40. T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, and H. Hosono, “Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure,” Adv. Mater. 30, 1804547 (2018). [CrossRef]  

41. T. Li, X. M. Mo, C. Y. Peng, Q. C. Lu, C. J. Qi, X. M. Tao, Y. Ouyang, and Y. L. Zhou, “Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses,” Chem. Commun. 55, 4554–4557 (2019). [CrossRef]  

42. R. Roccanova, A. Yangui, H. Nhalil, H. L. Shi, M. H. Du, and B. Saparov, “Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0 ≤ x ≤ 5),” ACS Appl. Electron. Mater. 1, 269–274 (2019). [CrossRef]  

43. E. P. Booker, J. T. Griffiths, L. Eyre, C. Ducati, N. C. Greenham, and N. J. L. K. Davis, “Synthesis, characterization, and morphological control of Cs2CuCl4 nanocrystals,” J. Phys. Chem. C 123, 16951–16956 (2019). [CrossRef]  

44. P. Yang, G. N. Liu, B. D. Liu, X. D. Liu, Y. B. Lou, J. X. Chen, and Y. X. Zhao, “All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence,” Chem. Commun. 54, 11638–11641 (2018). [CrossRef]  

45. S. Thapa, G. C. Adhikari, H. Y. Zhu, A. Grigoriev, and P. F. Zhu, “Zn-alloyed all-inorganic halide perovskite-based white light-emitting diodes with superior color quality,” Sci. Rep. 9, 1 (2019). [CrossRef]  

46. G. C. Adhikari, S. Thapa, H. Zhu, and P. Zhu, “Mg2+-alloyed all-inorganic halide perovskites for white light-emitting diodes by 3D-printing method,” Adv. Opt. Mater. 7, 1900916 (2019). [CrossRef]  

47. Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, and J. Tang, “Rare earth ion-doped CsPbBr3 nanocrystals,” Adv. Opt. Mater. 6, 1700864 (2018). [CrossRef]  

48. R. A. Sheldon, “Green solvents for sustainable organic synthesis: state of the art,” Green Chem. 7, 267–278 (2005). [CrossRef]  

49. F. Gomollón-Bel, “Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable,” Chem. Int. 41, 12–17 (2019). [CrossRef]  

50. D. Prochowicz, M. Saski, P. Yadav, M. Grätzel, and J. Lewinski, “Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication,” Acc. Chem. Res. 52, 3233–3243 (2019). [CrossRef]  

51. Z. Y. Zhu, Q. Q. Yang, L. F. Gao, L. Zhang, A. Y. Shi, C. L. Sun, Q. Wang, and H. L. Zhang, “Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots,” J. Phys. Chem. Lett. 8, 1610–1614 (2017). [CrossRef]  

52. L. Protesescu, S. Yakunin, O. Nazarenko, D. N. Dirin, and M. V. Kovalenko, “Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling,” ACS Appl. Nano Mater. 1, 1300–1308 (2018). [CrossRef]  

53. D. Q. Chen, J. N. Li, X. Chen, J. K. Chen, and J. S. Zhong, “Grinding synthesis of APbX3 (A = Ma, Fa, Cs; X = Cl, Br, I) perovskite nanocrystals,” ACS Appl. Mater Interfaces 11, 10059–10067 (2019). [CrossRef]  

54. J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018). [CrossRef]  

55. Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017). [CrossRef]  

56. S. Seth and A. Samanta, “Photoluminescence of zero-dimensional perovskites and perovskite-related materials,” J. Phys. Chem. Lett. 9, 176–183 (2018). [CrossRef]  

57. B. T. Diroll, G. Nedelcu, M. V. Kovalenko, and R. D. Schaller, “High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals,” Adv. Funct. Mater. 27, 1606750 (2017). [CrossRef]  

58. R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018). [CrossRef]  

59. M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019). [CrossRef]  

60. C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019). [CrossRef]  

61. G. D. Niu, W. Z. Li, F. Q. Meng, L. D. Wang, H. P. Dong, and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” J. Mater. Chem. A 2, 705–710 (2014). [CrossRef]  

62. T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017). [CrossRef]  

63. S. Hull and P. Berastegui, “Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides–II: ordered phases within the (AgX)x-(MX)1-x and (CuX)x-(MX)1-x (M=K, Rb and Cs; X=Cl, Br and I) systems,” J. Solid State Chem. 177, 3156–3173 (2004). [CrossRef]  

64. A. Verma, D. P. Jaihindh, and Y.-P. Fu, “Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping,” Dalton Trans. 48, 8594–8610 (2019). [CrossRef]  

65. L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013). [CrossRef]  

66. N. F. Mott and A. M. Stoneham, “The lifetime of electrons, holes and excitons before self-trapping,” J. Phys. C 10, 3391–3398 (1977). [CrossRef]  

67. Z. Luo, Q. Li, L. Zhang, T. L. Wu, C. Zou, Y. Liu, and Z. Quan, “0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties,” Small 16, 1905226 (2019). [CrossRef]  

68. R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Q. A. Akkerman, G. Raino, M. V. Kovalenko, and L. Manna, “Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals,” Nat. Mater. 17, 394–405 (2018).
    [Crossref]
  2. S. Chang, Z. L. Bai, and H. Z. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6, 1800380 (2018).
    [Crossref]
  3. M. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, “Properties and potential optoelectronic applications of lead halide perovskite nanocrystals,” Science 358, 745–750 (2017).
    [Crossref]
  4. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13, 897–903 (2014).
    [Crossref]
  5. C. X. Ran, J. Xi, W. Y. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, and Z. X. Wu, “Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,” ACS Energy Lett. 3, 713–721 (2018).
    [Crossref]
  6. E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
    [Crossref]
  7. J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
    [Crossref]
  8. Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
    [Crossref]
  9. T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
    [Crossref]
  10. K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
    [Crossref]
  11. M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu, and A. L. Rogach, “Metal halide perovskite light-emitting devices: promising technology for next-generation displays,” Adv. Funct. Mater. 29, 1902008 (2019).
    [Crossref]
  12. D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
    [Crossref]
  13. Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
    [Crossref]
  14. Z. C. Li, Z. M. Chen, Y. C. Yang, Q. F. Xue, H.-L. Yip, and Y. Cao, “Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%,” Nat. Commun. 10, 1027 (2019).
    [Crossref]
  15. Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
    [Crossref]
  16. M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
    [Crossref]
  17. L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
    [Crossref]
  18. Y. F. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
    [Crossref]
  19. Q. Wei, X. J. Li, C. Liang, Z. P. Zhang, J. Guo, G. Hong, G. C. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
    [Crossref]
  20. B.-W. Park and S. I. Seok, “Intrinsic instability of inorganic-organic hybrid halide perovskite materials,” Adv. Mater. 31, 1805337 (2019).
    [Crossref]
  21. A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, “Toxicity of organometal halide perovskite solar cells,” Nat. Mater. 15, 247–251 (2016).
    [Crossref]
  22. A. F. Wang, Y. Y. Guo, F. Muhammad, and Z. T. Deng, “Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability,” Chem. Mater. 29, 6493–6501 (2017).
    [Crossref]
  23. D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
    [Crossref]
  24. B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
    [Crossref]
  25. X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
    [Crossref]
  26. J.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, and C.-W. Chiu, “Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%,” J. Am. Chem. Soc. 141, 10324–10330 (2019).
    [Crossref]
  27. M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
    [Crossref]
  28. B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
    [Crossref]
  29. M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
    [Crossref]
  30. Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, “The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions,” Nano Lett. 18, 3502–3508 (2018).
    [Crossref]
  31. Q. Li, Y. G. Wang, W. C. Pan, W. G. Yang, B. Zou, J. Tang, and Z. W. Quan, “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem. (Int. Ed.) 56, 15969–15973 (2017).
    [Crossref]
  32. L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019).
    [Crossref]
  33. L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, H. Y. Chen, and D. B. Kuang, “Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal,” Angew. Chem. (Int. Ed.) 58, 2–8 (2019).
  34. F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
    [Crossref]
  35. J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, “High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots,” ACS Nano 11, 9294–9302 (2017).
    [Crossref]
  36. X. T. Wu, W. D. Song, Q. Li, X. X. Zhao, D. S. He, and Z. W. Quan, “Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam-induced transformations,” Chem. Asian J. 13, 1654–1659 (2018).
    [Crossref]
  37. P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
    [Crossref]
  38. D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
    [Crossref]
  39. P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
    [Crossref]
  40. T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, and H. Hosono, “Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure,” Adv. Mater. 30, 1804547 (2018).
    [Crossref]
  41. T. Li, X. M. Mo, C. Y. Peng, Q. C. Lu, C. J. Qi, X. M. Tao, Y. Ouyang, and Y. L. Zhou, “Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses,” Chem. Commun. 55, 4554–4557 (2019).
    [Crossref]
  42. R. Roccanova, A. Yangui, H. Nhalil, H. L. Shi, M. H. Du, and B. Saparov, “Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0 ≤ x ≤ 5),” ACS Appl. Electron. Mater. 1, 269–274 (2019).
    [Crossref]
  43. E. P. Booker, J. T. Griffiths, L. Eyre, C. Ducati, N. C. Greenham, and N. J. L. K. Davis, “Synthesis, characterization, and morphological control of Cs2CuCl4 nanocrystals,” J. Phys. Chem. C 123, 16951–16956 (2019).
    [Crossref]
  44. P. Yang, G. N. Liu, B. D. Liu, X. D. Liu, Y. B. Lou, J. X. Chen, and Y. X. Zhao, “All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence,” Chem. Commun. 54, 11638–11641 (2018).
    [Crossref]
  45. S. Thapa, G. C. Adhikari, H. Y. Zhu, A. Grigoriev, and P. F. Zhu, “Zn-alloyed all-inorganic halide perovskite-based white light-emitting diodes with superior color quality,” Sci. Rep. 9, 1 (2019).
    [Crossref]
  46. G. C. Adhikari, S. Thapa, H. Zhu, and P. Zhu, “Mg2+-alloyed all-inorganic halide perovskites for white light-emitting diodes by 3D-printing method,” Adv. Opt. Mater. 7, 1900916 (2019).
    [Crossref]
  47. Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, and J. Tang, “Rare earth ion-doped CsPbBr3 nanocrystals,” Adv. Opt. Mater. 6, 1700864 (2018).
    [Crossref]
  48. R. A. Sheldon, “Green solvents for sustainable organic synthesis: state of the art,” Green Chem. 7, 267–278 (2005).
    [Crossref]
  49. F. Gomollón-Bel, “Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable,” Chem. Int. 41, 12–17 (2019).
    [Crossref]
  50. D. Prochowicz, M. Saski, P. Yadav, M. Grätzel, and J. Lewinski, “Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication,” Acc. Chem. Res. 52, 3233–3243 (2019).
    [Crossref]
  51. Z. Y. Zhu, Q. Q. Yang, L. F. Gao, L. Zhang, A. Y. Shi, C. L. Sun, Q. Wang, and H. L. Zhang, “Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots,” J. Phys. Chem. Lett. 8, 1610–1614 (2017).
    [Crossref]
  52. L. Protesescu, S. Yakunin, O. Nazarenko, D. N. Dirin, and M. V. Kovalenko, “Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling,” ACS Appl. Nano Mater. 1, 1300–1308 (2018).
    [Crossref]
  53. D. Q. Chen, J. N. Li, X. Chen, J. K. Chen, and J. S. Zhong, “Grinding synthesis of APbX3 (A = Ma, Fa, Cs; X = Cl, Br, I) perovskite nanocrystals,” ACS Appl. Mater Interfaces 11, 10059–10067 (2019).
    [Crossref]
  54. J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
    [Crossref]
  55. Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
    [Crossref]
  56. S. Seth and A. Samanta, “Photoluminescence of zero-dimensional perovskites and perovskite-related materials,” J. Phys. Chem. Lett. 9, 176–183 (2018).
    [Crossref]
  57. B. T. Diroll, G. Nedelcu, M. V. Kovalenko, and R. D. Schaller, “High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals,” Adv. Funct. Mater. 27, 1606750 (2017).
    [Crossref]
  58. R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
    [Crossref]
  59. M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
    [Crossref]
  60. C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
    [Crossref]
  61. G. D. Niu, W. Z. Li, F. Q. Meng, L. D. Wang, H. P. Dong, and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” J. Mater. Chem. A 2, 705–710 (2014).
    [Crossref]
  62. T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
    [Crossref]
  63. S. Hull and P. Berastegui, “Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides–II: ordered phases within the (AgX)x-(MX)1-x and (CuX)x-(MX)1-x (M=K, Rb and Cs; X=Cl, Br and I) systems,” J. Solid State Chem. 177, 3156–3173 (2004).
    [Crossref]
  64. A. Verma, D. P. Jaihindh, and Y.-P. Fu, “Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping,” Dalton Trans. 48, 8594–8610 (2019).
    [Crossref]
  65. L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013).
    [Crossref]
  66. N. F. Mott and A. M. Stoneham, “The lifetime of electrons, holes and excitons before self-trapping,” J. Phys. C 10, 3391–3398 (1977).
    [Crossref]
  67. Z. Luo, Q. Li, L. Zhang, T. L. Wu, C. Zou, Y. Liu, and Z. Quan, “0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties,” Small 16, 1905226 (2019).
    [Crossref]
  68. R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019).
    [Crossref]

2019 (25)

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Z. C. Li, Z. M. Chen, Y. C. Yang, Q. F. Xue, H.-L. Yip, and Y. Cao, “Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%,” Nat. Commun. 10, 1027 (2019).
[Crossref]

M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu, and A. L. Rogach, “Metal halide perovskite light-emitting devices: promising technology for next-generation displays,” Adv. Funct. Mater. 29, 1902008 (2019).
[Crossref]

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Q. Wei, X. J. Li, C. Liang, Z. P. Zhang, J. Guo, G. Hong, G. C. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

B.-W. Park and S. I. Seok, “Intrinsic instability of inorganic-organic hybrid halide perovskite materials,” Adv. Mater. 31, 1805337 (2019).
[Crossref]

X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
[Crossref]

J.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, and C.-W. Chiu, “Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%,” J. Am. Chem. Soc. 141, 10324–10330 (2019).
[Crossref]

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019).
[Crossref]

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, H. Y. Chen, and D. B. Kuang, “Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal,” Angew. Chem. (Int. Ed.) 58, 2–8 (2019).

F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
[Crossref]

T. Li, X. M. Mo, C. Y. Peng, Q. C. Lu, C. J. Qi, X. M. Tao, Y. Ouyang, and Y. L. Zhou, “Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses,” Chem. Commun. 55, 4554–4557 (2019).
[Crossref]

R. Roccanova, A. Yangui, H. Nhalil, H. L. Shi, M. H. Du, and B. Saparov, “Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0 ≤ x ≤ 5),” ACS Appl. Electron. Mater. 1, 269–274 (2019).
[Crossref]

E. P. Booker, J. T. Griffiths, L. Eyre, C. Ducati, N. C. Greenham, and N. J. L. K. Davis, “Synthesis, characterization, and morphological control of Cs2CuCl4 nanocrystals,” J. Phys. Chem. C 123, 16951–16956 (2019).
[Crossref]

S. Thapa, G. C. Adhikari, H. Y. Zhu, A. Grigoriev, and P. F. Zhu, “Zn-alloyed all-inorganic halide perovskite-based white light-emitting diodes with superior color quality,” Sci. Rep. 9, 1 (2019).
[Crossref]

G. C. Adhikari, S. Thapa, H. Zhu, and P. Zhu, “Mg2+-alloyed all-inorganic halide perovskites for white light-emitting diodes by 3D-printing method,” Adv. Opt. Mater. 7, 1900916 (2019).
[Crossref]

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

F. Gomollón-Bel, “Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable,” Chem. Int. 41, 12–17 (2019).
[Crossref]

D. Prochowicz, M. Saski, P. Yadav, M. Grätzel, and J. Lewinski, “Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication,” Acc. Chem. Res. 52, 3233–3243 (2019).
[Crossref]

D. Q. Chen, J. N. Li, X. Chen, J. K. Chen, and J. S. Zhong, “Grinding synthesis of APbX3 (A = Ma, Fa, Cs; X = Cl, Br, I) perovskite nanocrystals,” ACS Appl. Mater Interfaces 11, 10059–10067 (2019).
[Crossref]

M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
[Crossref]

C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
[Crossref]

A. Verma, D. P. Jaihindh, and Y.-P. Fu, “Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping,” Dalton Trans. 48, 8594–8610 (2019).
[Crossref]

Z. Luo, Q. Li, L. Zhang, T. L. Wu, C. Zou, Y. Liu, and Z. Quan, “0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties,” Small 16, 1905226 (2019).
[Crossref]

R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019).
[Crossref]

2018 (18)

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

S. Seth and A. Samanta, “Photoluminescence of zero-dimensional perovskites and perovskite-related materials,” J. Phys. Chem. Lett. 9, 176–183 (2018).
[Crossref]

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
[Crossref]

L. Protesescu, S. Yakunin, O. Nazarenko, D. N. Dirin, and M. V. Kovalenko, “Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling,” ACS Appl. Nano Mater. 1, 1300–1308 (2018).
[Crossref]

T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, and H. Hosono, “Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure,” Adv. Mater. 30, 1804547 (2018).
[Crossref]

Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, and J. Tang, “Rare earth ion-doped CsPbBr3 nanocrystals,” Adv. Opt. Mater. 6, 1700864 (2018).
[Crossref]

P. Yang, G. N. Liu, B. D. Liu, X. D. Liu, Y. B. Lou, J. X. Chen, and Y. X. Zhao, “All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence,” Chem. Commun. 54, 11638–11641 (2018).
[Crossref]

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, “The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions,” Nano Lett. 18, 3502–3508 (2018).
[Crossref]

X. T. Wu, W. D. Song, Q. Li, X. X. Zhao, D. S. He, and Z. W. Quan, “Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam-induced transformations,” Chem. Asian J. 13, 1654–1659 (2018).
[Crossref]

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

Q. A. Akkerman, G. Raino, M. V. Kovalenko, and L. Manna, “Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals,” Nat. Mater. 17, 394–405 (2018).
[Crossref]

S. Chang, Z. L. Bai, and H. Z. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6, 1800380 (2018).
[Crossref]

C. X. Ran, J. Xi, W. Y. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, and Z. X. Wu, “Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,” ACS Energy Lett. 3, 713–721 (2018).
[Crossref]

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
[Crossref]

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

2017 (13)

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
[Crossref]

M. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, “Properties and potential optoelectronic applications of lead halide perovskite nanocrystals,” Science 358, 745–750 (2017).
[Crossref]

Y. F. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
[Crossref]

Q. Li, Y. G. Wang, W. C. Pan, W. G. Yang, B. Zou, J. Tang, and Z. W. Quan, “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem. (Int. Ed.) 56, 15969–15973 (2017).
[Crossref]

J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, “High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots,” ACS Nano 11, 9294–9302 (2017).
[Crossref]

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
[Crossref]

A. F. Wang, Y. Y. Guo, F. Muhammad, and Z. T. Deng, “Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability,” Chem. Mater. 29, 6493–6501 (2017).
[Crossref]

Z. Y. Zhu, Q. Q. Yang, L. F. Gao, L. Zhang, A. Y. Shi, C. L. Sun, Q. Wang, and H. L. Zhang, “Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots,” J. Phys. Chem. Lett. 8, 1610–1614 (2017).
[Crossref]

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

B. T. Diroll, G. Nedelcu, M. V. Kovalenko, and R. D. Schaller, “High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals,” Adv. Funct. Mater. 27, 1606750 (2017).
[Crossref]

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

2016 (4)

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, “Toxicity of organometal halide perovskite solar cells,” Nat. Mater. 15, 247–251 (2016).
[Crossref]

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

2015 (2)

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
[Crossref]

2014 (2)

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13, 897–903 (2014).
[Crossref]

G. D. Niu, W. Z. Li, F. Q. Meng, L. D. Wang, H. P. Dong, and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” J. Mater. Chem. A 2, 705–710 (2014).
[Crossref]

2013 (1)

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013).
[Crossref]

2005 (1)

R. A. Sheldon, “Green solvents for sustainable organic synthesis: state of the art,” Green Chem. 7, 267–278 (2005).
[Crossref]

2004 (1)

S. Hull and P. Berastegui, “Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides–II: ordered phases within the (AgX)x-(MX)1-x and (CuX)x-(MX)1-x (M=K, Rb and Cs; X=Cl, Br and I) systems,” J. Solid State Chem. 177, 3156–3173 (2004).
[Crossref]

1977 (1)

N. F. Mott and A. M. Stoneham, “The lifetime of electrons, holes and excitons before self-trapping,” J. Phys. C 10, 3391–3398 (1977).
[Crossref]

Abdelhady, A. L.

M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
[Crossref]

Adhikari, G. C.

S. Thapa, G. C. Adhikari, H. Y. Zhu, A. Grigoriev, and P. F. Zhu, “Zn-alloyed all-inorganic halide perovskite-based white light-emitting diodes with superior color quality,” Sci. Rep. 9, 1 (2019).
[Crossref]

G. C. Adhikari, S. Thapa, H. Zhu, and P. Zhu, “Mg2+-alloyed all-inorganic halide perovskites for white light-emitting diodes by 3D-printing method,” Adv. Opt. Mater. 7, 1900916 (2019).
[Crossref]

Adinolfi, V.

M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
[Crossref]

Akkerman, Q. A.

Q. A. Akkerman, G. Raino, M. V. Kovalenko, and L. Manna, “Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals,” Nat. Mater. 17, 394–405 (2018).
[Crossref]

Ali, S.

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

Alivisatos, A. P.

Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, “The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions,” Nano Lett. 18, 3502–3508 (2018).
[Crossref]

An, R.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Babayigit, A.

A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, “Toxicity of organometal halide perovskite solar cells,” Nat. Mater. 15, 247–251 (2016).
[Crossref]

Bai, Z. L.

S. Chang, Z. L. Bai, and H. Z. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6, 1800380 (2018).
[Crossref]

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013).
[Crossref]

Baikie, T.

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

Bakr, O. M.

M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
[Crossref]

Beard, M. C.

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
[Crossref]

Bechtel, J. S.

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

Bekenstein, Y.

Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, “The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions,” Nano Lett. 18, 3502–3508 (2018).
[Crossref]

Benin, B. M.

B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
[Crossref]

Berastegui, P.

S. Hull and P. Berastegui, “Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides–II: ordered phases within the (AgX)x-(MX)1-x and (CuX)x-(MX)1-x (M=K, Rb and Cs; X=Cl, Br and I) systems,” J. Solid State Chem. 177, 3156–3173 (2004).
[Crossref]

Bodnarchuk, M. I.

M. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, “Properties and potential optoelectronic applications of lead halide perovskite nanocrystals,” Science 358, 745–750 (2017).
[Crossref]

Boix, P. P.

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

Booker, E. P.

E. P. Booker, J. T. Griffiths, L. Eyre, C. Ducati, N. C. Greenham, and N. J. L. K. Davis, “Synthesis, characterization, and morphological control of Cs2CuCl4 nanocrystals,” J. Phys. Chem. C 123, 16951–16956 (2019).
[Crossref]

Bruno, A.

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

Canton, S. E.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Cao, H.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Cao, Y.

Z. C. Li, Z. M. Chen, Y. C. Yang, Q. F. Xue, H.-L. Yip, and Y. Cao, “Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%,” Nat. Commun. 10, 1027 (2019).
[Crossref]

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Chaaban, M.

C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
[Crossref]

Chan, E. M.

Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, “The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions,” Nano Lett. 18, 3502–3508 (2018).
[Crossref]

Chang, S.

S. Chang, Z. L. Bai, and H. Z. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6, 1800380 (2018).
[Crossref]

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

Chang, W.-H.

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Chen, D.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Chen, D. Q.

D. Q. Chen, J. N. Li, X. Chen, J. K. Chen, and J. S. Zhong, “Grinding synthesis of APbX3 (A = Ma, Fa, Cs; X = Cl, Br, I) perovskite nanocrystals,” ACS Appl. Mater Interfaces 11, 10059–10067 (2019).
[Crossref]

Chen, D.-G.

J.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, and C.-W. Chiu, “Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%,” J. Am. Chem. Soc. 141, 10324–10330 (2019).
[Crossref]

Chen, H.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Chen, H. J.

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Chen, H. Y.

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019).
[Crossref]

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, H. Y. Chen, and D. B. Kuang, “Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal,” Angew. Chem. (Int. Ed.) 58, 2–8 (2019).

Chen, H.-M.

J.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, and C.-W. Chiu, “Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%,” J. Am. Chem. Soc. 141, 10324–10330 (2019).
[Crossref]

Chen, J. K.

D. Q. Chen, J. N. Li, X. Chen, J. K. Chen, and J. S. Zhong, “Grinding synthesis of APbX3 (A = Ma, Fa, Cs; X = Cl, Br, I) perovskite nanocrystals,” ACS Appl. Mater Interfaces 11, 10059–10067 (2019).
[Crossref]

Chen, J. S.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
[Crossref]

Chen, J. X.

P. Yang, G. N. Liu, B. D. Liu, X. D. Liu, Y. B. Lou, J. X. Chen, and Y. X. Zhao, “All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence,” Chem. Commun. 54, 11638–11641 (2018).
[Crossref]

Chen, L.

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Chen, Q.

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Chen, S.

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

Chen, X.

D. Q. Chen, J. N. Li, X. Chen, J. K. Chen, and J. S. Zhong, “Grinding synthesis of APbX3 (A = Ma, Fa, Cs; X = Cl, Br, I) perovskite nanocrystals,” ACS Appl. Mater Interfaces 11, 10059–10067 (2019).
[Crossref]

Chen, Z.

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

Chen, Z. M.

Z. C. Li, Z. M. Chen, Y. C. Yang, Q. F. Xue, H.-L. Yip, and Y. Cao, “Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%,” Nat. Commun. 10, 1027 (2019).
[Crossref]

Chen, Z. W.

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Cheng, P. F.

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
[Crossref]

Chiba, T.

T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
[Crossref]

Chiu, C.-W.

J.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, and C.-W. Chiu, “Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%,” J. Am. Chem. Soc. 141, 10324–10330 (2019).
[Crossref]

Chou, P.-T.

J.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, and C.-W. Chiu, “Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%,” J. Am. Chem. Soc. 141, 10324–10330 (2019).
[Crossref]

Christians, J. A.

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
[Crossref]

Ciesielski, P. N.

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
[Crossref]

Clark, R.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Comin, R.

M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
[Crossref]

Conings, B.

A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, “Toxicity of organometal halide perovskite solar cells,” Nat. Mater. 15, 247–251 (2016).
[Crossref]

Cortecchia, D.

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

Cui, H.

X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
[Crossref]

Cui, J. Y.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Dahl, J. C.

Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, “The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions,” Nano Lett. 18, 3502–3508 (2018).
[Crossref]

Dai, D. X.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Dai, G.

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Dar, M. I.

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

Davis, N. J. L. K.

E. P. Booker, J. T. Griffiths, L. Eyre, C. Ducati, N. C. Greenham, and N. J. L. K. Davis, “Synthesis, characterization, and morphological control of Cs2CuCl4 nanocrystals,” J. Phys. Chem. C 123, 16951–16956 (2019).
[Crossref]

de Arquer, F. P. G.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Deng, H.

F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
[Crossref]

J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, “High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots,” ACS Nano 11, 9294–9302 (2017).
[Crossref]

Deng, L. G.

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013).
[Crossref]

Deng, W. Q.

R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019).
[Crossref]

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
[Crossref]

B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
[Crossref]

Deng, Y. Z.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Deng, Z. T.

A. F. Wang, Y. Y. Guo, F. Muhammad, and Z. T. Deng, “Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability,” Chem. Mater. 29, 6493–6501 (2017).
[Crossref]

Dewi, H. A.

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

Di, D. W.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Dirin, D. N.

B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
[Crossref]

L. Protesescu, S. Yakunin, O. Nazarenko, D. N. Dirin, and M. V. Kovalenko, “Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling,” ACS Appl. Nano Mater. 1, 1300–1308 (2018).
[Crossref]

Diroll, B. T.

B. T. Diroll, G. Nedelcu, M. V. Kovalenko, and R. D. Schaller, “High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals,” Adv. Funct. Mater. 27, 1606750 (2017).
[Crossref]

Dong, H. P.

G. D. Niu, W. Z. Li, F. Q. Meng, L. D. Wang, H. P. Dong, and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” J. Mater. Chem. A 2, 705–710 (2014).
[Crossref]

Dong, Q. F.

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Dong, Q. S.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Du, K.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Du, M. H.

R. Roccanova, A. Yangui, H. Nhalil, H. L. Shi, M. H. Du, and B. Saparov, “Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0 ≤ x ≤ 5),” ACS Appl. Electron. Mater. 1, 269–274 (2019).
[Crossref]

Du, M.-H.

C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
[Crossref]

Ducati, C.

E. P. Booker, J. T. Griffiths, L. Eyre, C. Ducati, N. C. Greenham, and N. J. L. K. Davis, “Synthesis, characterization, and morphological control of Cs2CuCl4 nanocrystals,” J. Phys. Chem. C 123, 16951–16956 (2019).
[Crossref]

Dursun, I.

M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
[Crossref]

Ebe, H.

T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
[Crossref]

Etheridge, J.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Ethirajan, A.

A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, “Toxicity of organometal halide perovskite solar cells,” Nat. Mater. 15, 247–251 (2016).
[Crossref]

Evans, H. A.

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

Eyre, L.

E. P. Booker, J. T. Griffiths, L. Eyre, C. Ducati, N. C. Greenham, and N. J. L. K. Davis, “Synthesis, characterization, and morphological control of Cs2CuCl4 nanocrystals,” J. Phys. Chem. C 123, 16951–16956 (2019).
[Crossref]

Fabini, D. H.

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

Falaras, P.

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

Fang, Y. J.

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Farooq, U.

J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, “High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots,” ACS Nano 11, 9294–9302 (2017).
[Crossref]

Feng, L.

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

Fischer, M.

B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
[Crossref]

Friend, R. H.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Fu, W. P.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013).
[Crossref]

Fu, Y. H.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Fu, Y. P.

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Fu, Y.-P.

A. Verma, D. P. Jaihindh, and Y.-P. Fu, “Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping,” Dalton Trans. 48, 8594–8610 (2019).
[Crossref]

Fu, Z. W.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Gao, L.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Gao, L. F.

Z. Y. Zhu, Q. Q. Yang, L. F. Gao, L. Zhang, A. Y. Shi, C. L. Sun, Q. Wang, and H. L. Zhang, “Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots,” J. Phys. Chem. Lett. 8, 1610–1614 (2017).
[Crossref]

Gao, M. Y.

M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
[Crossref]

Gao, W.

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

Gao, W. Y.

C. X. Ran, J. Xi, W. Y. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, and Z. X. Wu, “Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,” ACS Energy Lett. 3, 713–721 (2018).
[Crossref]

Ge, C.

Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, and J. Tang, “Rare earth ion-doped CsPbBr3 nanocrystals,” Adv. Opt. Mater. 6, 1700864 (2018).
[Crossref]

Geng, H. F.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Giebink, N. C.

Y. F. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

Gomollón-Bel, F.

F. Gomollón-Bel, “Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable,” Chem. Int. 41, 12–17 (2019).
[Crossref]

Gong, X. W.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Grätzel, M.

D. Prochowicz, M. Saski, P. Yadav, M. Grätzel, and J. Lewinski, “Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication,” Acc. Chem. Res. 52, 3233–3243 (2019).
[Crossref]

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

Grede, A. J.

Y. F. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

Greenham, N. C.

E. P. Booker, J. T. Griffiths, L. Eyre, C. Ducati, N. C. Greenham, and N. J. L. K. Davis, “Synthesis, characterization, and morphological control of Cs2CuCl4 nanocrystals,” J. Phys. Chem. C 123, 16951–16956 (2019).
[Crossref]

Griffiths, J. T.

E. P. Booker, J. T. Griffiths, L. Eyre, C. Ducati, N. C. Greenham, and N. J. L. K. Davis, “Synthesis, characterization, and morphological control of Cs2CuCl4 nanocrystals,” J. Phys. Chem. C 123, 16951–16956 (2019).
[Crossref]

Grigoriev, A.

S. Thapa, G. C. Adhikari, H. Y. Zhu, A. Grigoriev, and P. F. Zhu, “Zn-alloyed all-inorganic halide perovskite-based white light-emitting diodes with superior color quality,” Sci. Rep. 9, 1 (2019).
[Crossref]

Guo, J.

Q. Wei, X. J. Li, C. Liang, Z. P. Zhang, J. Guo, G. Hong, G. C. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu, and A. L. Rogach, “Metal halide perovskite light-emitting devices: promising technology for next-generation displays,” Adv. Funct. Mater. 29, 1902008 (2019).
[Crossref]

Guo, J. S.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Guo, J. W.

M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
[Crossref]

Guo, N.

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

Guo, T.-F.

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Guo, Y. M.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Guo, Y. Y.

A. F. Wang, Y. Y. Guo, F. Muhammad, and Z. T. Deng, “Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability,” Chem. Mater. 29, 6493–6501 (2017).
[Crossref]

Han, D. B.

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

Han, J.

Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, and J. Tang, “Rare earth ion-doped CsPbBr3 nanocrystals,” Adv. Opt. Mater. 6, 1700864 (2018).
[Crossref]

Han, J. B.

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Han, K. L.

R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019).
[Crossref]

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
[Crossref]

B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
[Crossref]

Harvey, S. P.

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
[Crossref]

Hautzinger, M. P.

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Hayashi, Y.

T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
[Crossref]

He, D. S.

X. T. Wu, W. D. Song, Q. Li, X. X. Zhao, D. S. He, and Z. W. Quan, “Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam-induced transformations,” Chem. Asian J. 13, 1654–1659 (2018).
[Crossref]

He, Q.

C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
[Crossref]

He, Y. R.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

He, Z. F.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Holt, E.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Honarfar, A.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Hong, F.

B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
[Crossref]

Hong, G.

Q. Wei, X. J. Li, C. Liang, Z. P. Zhang, J. Guo, G. Hong, G. C. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Hong, Z. R.

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Hoogland, S.

M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
[Crossref]

Hoshi, K.

T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
[Crossref]

Hosono, H.

T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, and H. Hosono, “Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure,” Adv. Mater. 30, 1804547 (2018).
[Crossref]

Hou, X.

C. X. Ran, J. Xi, W. Y. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, and Z. X. Wu, “Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,” ACS Energy Lett. 3, 713–721 (2018).
[Crossref]

Hsu, C.-S.

J.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, and C.-W. Chiu, “Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%,” J. Am. Chem. Soc. 141, 10324–10330 (2019).
[Crossref]

Hu, Q.

Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, and J. Tang, “Rare earth ion-doped CsPbBr3 nanocrystals,” Adv. Opt. Mater. 6, 1700864 (2018).
[Crossref]

Hu, Q. S.

F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
[Crossref]

Huang, J. M.

Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, “The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions,” Nano Lett. 18, 3502–3508 (2018).
[Crossref]

Huang, J. S.

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Huang, S.

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Huang, W.

Q. Wei, X. J. Li, C. Liang, Z. P. Zhang, J. Guo, G. Hong, G. C. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Huang, Z. G.

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019).
[Crossref]

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, H. Y. Chen, and D. B. Kuang, “Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal,” Angew. Chem. (Int. Ed.) 58, 2–8 (2019).

Hull, S.

S. Hull and P. Berastegui, “Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides–II: ordered phases within the (AgX)x-(MX)1-x and (CuX)x-(MX)1-x (M=K, Rb and Cs; X=Cl, Br and I) systems,” J. Solid State Chem. 177, 3156–3173 (2004).
[Crossref]

Iimura, S.

T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, and H. Hosono, “Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure,” Adv. Mater. 30, 1804547 (2018).
[Crossref]

Imran, M.

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

Infante, I.

B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
[Crossref]

Jahangeer, K.

F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
[Crossref]

Jaihindh, D. P.

A. Verma, D. P. Jaihindh, and Y.-P. Fu, “Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping,” Dalton Trans. 48, 8594–8610 (2019).
[Crossref]

Jeon, N. J.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13, 897–903 (2014).
[Crossref]

Jia, Y. F.

Y. F. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

Jiang, L.

P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
[Crossref]

Jiao, B.

C. X. Ran, J. Xi, W. Y. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, and Z. X. Wu, “Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,” ACS Energy Lett. 3, 713–721 (2018).
[Crossref]

Jin, S.

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Jin, S. Y.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Jin, Y. Z.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Jin, Z. X.

F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
[Crossref]

Jun, T.

T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, and H. Hosono, “Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure,” Adv. Mater. 30, 1804547 (2018).
[Crossref]

Kamioka, H.

T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, and H. Hosono, “Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure,” Adv. Mater. 30, 1804547 (2018).
[Crossref]

Kanatzidis, M. G.

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

Ke, Y.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Kerner, R. A.

Y. F. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

Kershaw, S. V.

X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
[Crossref]

Khan, J.

J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, “High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots,” ACS Nano 11, 9294–9302 (2017).
[Crossref]

Kido, J.

T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
[Crossref]

Kim, J.

T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, and H. Hosono, “Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure,” Adv. Mater. 30, 1804547 (2018).
[Crossref]

Kim, Y. C.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13, 897–903 (2014).
[Crossref]

Kirman, J.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Kong, D. C.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Kontos, A. G.

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

Kountouriotis, K.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Kovalenko, M. V.

L. Protesescu, S. Yakunin, O. Nazarenko, D. N. Dirin, and M. V. Kovalenko, “Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling,” ACS Appl. Nano Mater. 1, 1300–1308 (2018).
[Crossref]

B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
[Crossref]

Q. A. Akkerman, G. Raino, M. V. Kovalenko, and L. Manna, “Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals,” Nat. Mater. 17, 394–405 (2018).
[Crossref]

M. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, “Properties and potential optoelectronic applications of lead halide perovskite nanocrystals,” Science 358, 745–750 (2017).
[Crossref]

B. T. Diroll, G. Nedelcu, M. V. Kovalenko, and R. D. Schaller, “High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals,” Adv. Funct. Mater. 27, 1606750 (2017).
[Crossref]

Kuang, D. B.

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, H. Y. Chen, and D. B. Kuang, “Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal,” Angew. Chem. (Int. Ed.) 58, 2–8 (2019).

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019).
[Crossref]

Laurita, G.

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

Lee, S.

C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
[Crossref]

Lei, T.

C. X. Ran, J. Xi, W. Y. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, and Z. X. Wu, “Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,” ACS Energy Lett. 3, 713–721 (2018).
[Crossref]

Leng, M.

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

Leng, M. Y.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Lewinski, J.

D. Prochowicz, M. Saski, P. Yadav, M. Grätzel, and J. Lewinski, “Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication,” Acc. Chem. Res. 52, 3233–3243 (2019).
[Crossref]

Li, C. S.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Li, D.

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

Li, D. B.

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Li, G.

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

Li, G. Q.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Li, H.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Li, H. L.

M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
[Crossref]

Li, J. H.

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Li, J. N.

D. Q. Chen, J. N. Li, X. Chen, J. K. Chen, and J. S. Zhong, “Grinding synthesis of APbX3 (A = Ma, Fa, Cs; X = Cl, Br, I) perovskite nanocrystals,” ACS Appl. Mater Interfaces 11, 10059–10067 (2019).
[Crossref]

Li, Q.

Z. Luo, Q. Li, L. Zhang, T. L. Wu, C. Zou, Y. Liu, and Z. Quan, “0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties,” Small 16, 1905226 (2019).
[Crossref]

X. T. Wu, W. D. Song, Q. Li, X. X. Zhao, D. S. He, and Z. W. Quan, “Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam-induced transformations,” Chem. Asian J. 13, 1654–1659 (2018).
[Crossref]

Q. Li, Y. G. Wang, W. C. Pan, W. G. Yang, B. Zou, J. Tang, and Z. W. Quan, “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem. (Int. Ed.) 56, 15969–15973 (2017).
[Crossref]

Li, S. R.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Li, T.

T. Li, X. M. Mo, C. Y. Peng, Q. C. Lu, C. J. Qi, X. M. Tao, Y. Ouyang, and Y. L. Zhou, “Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses,” Chem. Commun. 55, 4554–4557 (2019).
[Crossref]

Li, W. G.

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019).
[Crossref]

Li, W. Q.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Li, W. Z.

G. D. Niu, W. Z. Li, F. Q. Meng, L. D. Wang, H. P. Dong, and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” J. Mater. Chem. A 2, 705–710 (2014).
[Crossref]

Li, X. G.

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

Li, X. J.

Q. Wei, X. J. Li, C. Liang, Z. P. Zhang, J. Guo, G. Hong, G. C. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Li, Y. J.

B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
[Crossref]

P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
[Crossref]

Li, Z.

Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, and J. Tang, “Rare earth ion-doped CsPbBr3 nanocrystals,” Adv. Opt. Mater. 6, 1700864 (2018).
[Crossref]

Li, Z. C.

Z. C. Li, Z. M. Chen, Y. C. Yang, Q. F. Xue, H.-L. Yip, and Y. Cao, “Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%,” Nat. Commun. 10, 1027 (2019).
[Crossref]

Lian, L. Y.

M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
[Crossref]

Liang, C.

Q. Wei, X. J. Li, C. Liang, Z. P. Zhang, J. Guo, G. Hong, G. C. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Liang, M. L.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Liang, W. X.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Liao, C.-C.

J.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, and C.-W. Chiu, “Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%,” J. Am. Chem. Soc. 141, 10324–10330 (2019).
[Crossref]

Liao, J. F.

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, H. Y. Chen, and D. B. Kuang, “Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal,” Angew. Chem. (Int. Ed.) 58, 2–8 (2019).

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019).
[Crossref]

Lin, H.

C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
[Crossref]

Lin, J.-T.

J.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, and C.-W. Chiu, “Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%,” J. Am. Chem. Soc. 141, 10324–10330 (2019).
[Crossref]

Lin, K. B.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Lin, L. Y.

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
[Crossref]

Liu, B. D.

P. Yang, G. N. Liu, B. D. Liu, X. D. Liu, Y. B. Lou, J. X. Chen, and Y. X. Zhao, “All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence,” Chem. Commun. 54, 11638–11641 (2018).
[Crossref]

Liu, G. N.

P. Yang, G. N. Liu, B. D. Liu, X. D. Liu, Y. B. Lou, J. X. Chen, and Y. X. Zhao, “All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence,” Chem. Commun. 54, 11638–11641 (2018).
[Crossref]

Liu, J.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Liu, J. X.

P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
[Crossref]

Liu, L. G.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013).
[Crossref]

Liu, X. D.

P. Yang, G. N. Liu, B. D. Liu, X. D. Liu, Y. B. Lou, J. X. Chen, and Y. X. Zhao, “All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence,” Chem. Commun. 54, 11638–11641 (2018).
[Crossref]

Liu, X. Y.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Liu, Y.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Z. Luo, Q. Li, L. Zhang, T. L. Wu, C. Zou, Y. Liu, and Z. Quan, “0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties,” Small 16, 1905226 (2019).
[Crossref]

Liu, Y. C.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Liu, Y. S.

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Lou, Y. B.

P. Yang, G. N. Liu, B. D. Liu, X. D. Liu, Y. B. Lou, J. X. Chen, and Y. X. Zhao, “All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence,” Chem. Commun. 54, 11638–11641 (2018).
[Crossref]

Lu, J. X.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Lu, M.

M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu, and A. L. Rogach, “Metal halide perovskite light-emitting devices: promising technology for next-generation displays,” Adv. Funct. Mater. 29, 1902008 (2019).
[Crossref]

X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
[Crossref]

Lu, Q. C.

T. Li, X. M. Mo, C. Y. Peng, Q. C. Lu, C. J. Qi, X. M. Tao, Y. Ouyang, and Y. L. Zhou, “Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses,” Chem. Commun. 55, 4554–4557 (2019).
[Crossref]

Lu, R. F.

P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
[Crossref]

Lu, Y.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Luo, J. J.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Luo, Z.

Z. Luo, Q. Li, L. Zhang, T. L. Wu, C. Zou, Y. Liu, and Z. Quan, “0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties,” Small 16, 1905226 (2019).
[Crossref]

Luther, J. M.

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
[Crossref]

Ma, B.

C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
[Crossref]

Ma, B. W.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Ma, F. S.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Manna, L.

Q. A. Akkerman, G. Raino, M. V. Kovalenko, and L. Manna, “Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals,” Nat. Mater. 17, 394–405 (2018).
[Crossref]

Mao, X.

R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019).
[Crossref]

P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
[Crossref]

B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
[Crossref]

Marco, N. D.

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Marshall, A. R.

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
[Crossref]

Mathews, N.

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

Meng, F. Q.

G. D. Niu, W. Z. Li, F. Q. Meng, L. D. Wang, H. P. Dong, and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” J. Mater. Chem. A 2, 705–710 (2014).
[Crossref]

Meng, L.

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Meng, L. H.

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Messier, J.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Mhaisalkar, S.

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

Miao, Y. F.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Mo, X. M.

T. Li, X. M. Mo, C. Y. Peng, Q. C. Lu, C. J. Qi, X. M. Tao, Y. Ouyang, and Y. L. Zhou, “Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses,” Chem. Commun. 55, 4554–4557 (2019).
[Crossref]

Morad, V.

B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
[Crossref]

Mott, N. F.

N. F. Mott and A. M. Stoneham, “The lifetime of electrons, holes and excitons before self-trapping,” J. Phys. C 10, 3391–3398 (1977).
[Crossref]

Muhammad, F.

A. F. Wang, Y. Y. Guo, F. Muhammad, and Z. T. Deng, “Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability,” Chem. Mater. 29, 6493–6501 (2017).
[Crossref]

Muhammad, I.

F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
[Crossref]

Muller, M.

A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, “Toxicity of organometal halide perovskite solar cells,” Nat. Mater. 15, 247–251 (2016).
[Crossref]

Nazarenko, O.

B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
[Crossref]

L. Protesescu, S. Yakunin, O. Nazarenko, D. N. Dirin, and M. V. Kovalenko, “Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling,” ACS Appl. Nano Mater. 1, 1300–1308 (2018).
[Crossref]

Nedelcu, G.

B. T. Diroll, G. Nedelcu, M. V. Kovalenko, and R. D. Schaller, “High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals,” Adv. Funct. Mater. 27, 1606750 (2017).
[Crossref]

Nhalil, H.

R. Roccanova, A. Yangui, H. Nhalil, H. L. Shi, M. H. Du, and B. Saparov, “Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0 ≤ x ≤ 5),” ACS Appl. Electron. Mater. 1, 269–274 (2019).
[Crossref]

Niu, G.

Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, and J. Tang, “Rare earth ion-doped CsPbBr3 nanocrystals,” Adv. Opt. Mater. 6, 1700864 (2018).
[Crossref]

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

Niu, G. D.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

G. D. Niu, W. Z. Li, F. Q. Meng, L. D. Wang, H. P. Dong, and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” J. Mater. Chem. A 2, 705–710 (2014).
[Crossref]

Noh, J. H.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13, 897–903 (2014).
[Crossref]

Ohisa, S.

T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
[Crossref]

T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
[Crossref]

Oshchapovskyy, I.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Osowiecki, W. T.

Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, “The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions,” Nano Lett. 18, 3502–3508 (2018).
[Crossref]

Ouyang, Y.

T. Li, X. M. Mo, C. Y. Peng, Q. C. Lu, C. J. Qi, X. M. Tao, Y. Ouyang, and Y. L. Zhou, “Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses,” Chem. Commun. 55, 4554–4557 (2019).
[Crossref]

Pan, F.

M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
[Crossref]

Pan, K.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Pan, W. C.

Q. Li, Y. G. Wang, W. C. Pan, W. G. Yang, B. Zou, J. Tang, and Z. W. Quan, “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem. (Int. Ed.) 56, 15969–15973 (2017).
[Crossref]

Park, B.-W.

B.-W. Park and S. I. Seok, “Intrinsic instability of inorganic-organic hybrid halide perovskite materials,” Adv. Mater. 31, 1805337 (2019).
[Crossref]

Peng, C. Y.

T. Li, X. M. Mo, C. Y. Peng, Q. C. Lu, C. J. Qi, X. M. Tao, Y. Ouyang, and Y. L. Zhou, “Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses,” Chem. Commun. 55, 4554–4557 (2019).
[Crossref]

Peng, Q. M.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Peng, W.

M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
[Crossref]

Prochowicz, D.

D. Prochowicz, M. Saski, P. Yadav, M. Grätzel, and J. Lewinski, “Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication,” Acc. Chem. Res. 52, 3233–3243 (2019).
[Crossref]

Protesescu, L.

L. Protesescu, S. Yakunin, O. Nazarenko, D. N. Dirin, and M. V. Kovalenko, “Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling,” ACS Appl. Nano Mater. 1, 1300–1308 (2018).
[Crossref]

M. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, “Properties and potential optoelectronic applications of lead halide perovskite nanocrystals,” Science 358, 745–750 (2017).
[Crossref]

Pu, Y.-J.

T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
[Crossref]

Pullerits, T.

B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
[Crossref]

Pullerits, T. N.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Qi, C. J.

T. Li, X. M. Mo, C. Y. Peng, Q. C. Lu, C. J. Qi, X. M. Tao, Y. Ouyang, and Y. L. Zhou, “Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses,” Chem. Commun. 55, 4554–4557 (2019).
[Crossref]

Qiu, Y.

G. D. Niu, W. Z. Li, F. Q. Meng, L. D. Wang, H. P. Dong, and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” J. Mater. Chem. A 2, 705–710 (2014).
[Crossref]

Quan, L. N.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Quan, Z.

Z. Luo, Q. Li, L. Zhang, T. L. Wu, C. Zou, Y. Liu, and Z. Quan, “0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties,” Small 16, 1905226 (2019).
[Crossref]

Quan, Z. W.

X. T. Wu, W. D. Song, Q. Li, X. X. Zhao, D. S. He, and Z. W. Quan, “Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam-induced transformations,” Chem. Asian J. 13, 1654–1659 (2018).
[Crossref]

Q. Li, Y. G. Wang, W. C. Pan, W. G. Yang, B. Zou, J. Tang, and Z. W. Quan, “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem. (Int. Ed.) 56, 15969–15973 (2017).
[Crossref]

Raino, G.

Q. A. Akkerman, G. Raino, M. V. Kovalenko, and L. Manna, “Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals,” Nat. Mater. 17, 394–405 (2018).
[Crossref]

Rainò, G.

B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
[Crossref]

Ran, C. X.

C. X. Ran, J. Xi, W. Y. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, and Z. X. Wu, “Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,” ACS Energy Lett. 3, 713–721 (2018).
[Crossref]

Rand, B. P.

Y. F. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

Raptis, Y. S.

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

Ren, Y.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Roccanova, R.

R. Roccanova, A. Yangui, H. Nhalil, H. L. Shi, M. H. Du, and B. Saparov, “Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0 ≤ x ≤ 5),” ACS Appl. Electron. Mater. 1, 269–274 (2019).
[Crossref]

Rogach, A. L.

M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu, and A. L. Rogach, “Metal halide perovskite light-emitting devices: promising technology for next-generation displays,” Adv. Funct. Mater. 29, 1902008 (2019).
[Crossref]

X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
[Crossref]

Ryu, S.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13, 897–903 (2014).
[Crossref]

Saidaminov, M. I.

M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
[Crossref]

Samanta, A.

S. Seth and A. Samanta, “Photoluminescence of zero-dimensional perovskites and perovskite-related materials,” J. Phys. Chem. Lett. 9, 176–183 (2018).
[Crossref]

Sanehira, E. M.

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
[Crossref]

Sang, Y. B.

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

Saparov, B.

R. Roccanova, A. Yangui, H. Nhalil, H. L. Shi, M. H. Du, and B. Saparov, “Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0 ≤ x ≤ 5),” ACS Appl. Electron. Mater. 1, 269–274 (2019).
[Crossref]

Sargent, E. H.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
[Crossref]

Sasase, M.

T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, and H. Hosono, “Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure,” Adv. Mater. 30, 1804547 (2018).
[Crossref]

Saski, M.

D. Prochowicz, M. Saski, P. Yadav, M. Grätzel, and J. Lewinski, “Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication,” Acc. Chem. Res. 52, 3233–3243 (2019).
[Crossref]

Sato, J.

T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
[Crossref]

Sato, S.

T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
[Crossref]

Schaller, R. D.

B. T. Diroll, G. Nedelcu, M. V. Kovalenko, and R. D. Schaller, “High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals,” Adv. Funct. Mater. 27, 1606750 (2017).
[Crossref]

Schanze, K.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Schulz, P.

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
[Crossref]

Seok, S. I.

B.-W. Park and S. I. Seok, “Intrinsic instability of inorganic-organic hybrid halide perovskite materials,” Adv. Mater. 31, 1805337 (2019).
[Crossref]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13, 897–903 (2014).
[Crossref]

Seshadri, R.

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

Seth, S.

S. Seth and A. Samanta, “Photoluminescence of zero-dimensional perovskites and perovskite-related materials,” J. Phys. Chem. Lett. 9, 176–183 (2018).
[Crossref]

Shao, Y. C.

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Sheldon, R. A.

R. A. Sheldon, “Green solvents for sustainable organic synthesis: state of the art,” Green Chem. 7, 267–278 (2005).
[Crossref]

Shi, A. Y.

Z. Y. Zhu, Q. Q. Yang, L. F. Gao, L. Zhang, A. Y. Shi, C. L. Sun, Q. Wang, and H. L. Zhang, “Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots,” J. Phys. Chem. Lett. 8, 1610–1614 (2017).
[Crossref]

Shi, H. L.

R. Roccanova, A. Yangui, H. Nhalil, H. L. Shi, M. H. Du, and B. Saparov, “Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0 ≤ x ≤ 5),” ACS Appl. Electron. Mater. 1, 269–274 (2019).
[Crossref]

Shi, L. J.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013).
[Crossref]

Shi, X.

C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
[Crossref]

Shu, Y.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Siegrist, T.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Sim, K.

T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, and H. Hosono, “Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure,” Adv. Mater. 30, 1804547 (2018).
[Crossref]

Soci, C.

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

Song, H.

Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, and J. Tang, “Rare earth ion-doped CsPbBr3 nanocrystals,” Adv. Opt. Mater. 6, 1700864 (2018).
[Crossref]

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, “High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots,” ACS Nano 11, 9294–9302 (2017).
[Crossref]

Song, H. S.

F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
[Crossref]

Song, T.-B.

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Song, W. D.

X. T. Wu, W. D. Song, Q. Li, X. X. Zhao, D. S. He, and Z. W. Quan, “Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam-induced transformations,” Chem. Asian J. 13, 1654–1659 (2018).
[Crossref]

Stoneham, A. M.

N. F. Mott and A. M. Stoneham, “The lifetime of electrons, holes and excitons before self-trapping,” J. Phys. C 10, 3391–3398 (1977).
[Crossref]

Stoumpos, C. C.

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

Su, C. Y.

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019).
[Crossref]

Su, X. M.

M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
[Crossref]

Sun, C. L.

Z. Y. Zhu, Q. Q. Yang, L. F. Gao, L. Zhang, A. Y. Shi, C. L. Sun, Q. Wang, and H. L. Zhang, “Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots,” J. Phys. Chem. Lett. 8, 1610–1614 (2017).
[Crossref]

Sun, L.

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

Swabeck, J. K.

Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, “The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions,” Nano Lett. 18, 3502–3508 (2018).
[Crossref]

Tan, Z.

Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, and J. Tang, “Rare earth ion-doped CsPbBr3 nanocrystals,” Adv. Opt. Mater. 6, 1700864 (2018).
[Crossref]

Tan, Z. F.

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Tang, J.

F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
[Crossref]

Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, and J. Tang, “Rare earth ion-doped CsPbBr3 nanocrystals,” Adv. Opt. Mater. 6, 1700864 (2018).
[Crossref]

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

Q. Li, Y. G. Wang, W. C. Pan, W. G. Yang, B. Zou, J. Tang, and Z. W. Quan, “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem. (Int. Ed.) 56, 15969–15973 (2017).
[Crossref]

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, “High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots,” ACS Nano 11, 9294–9302 (2017).
[Crossref]

Tang, J. L.

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

Tang, Y. Y.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Tao, X. M.

T. Li, X. M. Mo, C. Y. Peng, Q. C. Lu, C. J. Qi, X. M. Tao, Y. Ouyang, and Y. L. Zhou, “Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses,” Chem. Commun. 55, 4554–4557 (2019).
[Crossref]

Thapa, S.

S. Thapa, G. C. Adhikari, H. Y. Zhu, A. Grigoriev, and P. F. Zhu, “Zn-alloyed all-inorganic halide perovskite-based white light-emitting diodes with superior color quality,” Sci. Rep. 9, 1 (2019).
[Crossref]

G. C. Adhikari, S. Thapa, H. Zhu, and P. Zhu, “Mg2+-alloyed all-inorganic halide perovskites for white light-emitting diodes by 3D-printing method,” Adv. Opt. Mater. 7, 1900916 (2019).
[Crossref]

Tian, H.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Tian, Y.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Tsai, M.-K.

J.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, and C.-W. Chiu, “Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%,” J. Am. Chem. Soc. 141, 10324–10330 (2019).
[Crossref]

Umar, F.

F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
[Crossref]

van de Burgt, L. J.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Ven, A. V. D.

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

Verma, A.

A. Verma, D. P. Jaihindh, and Y.-P. Fu, “Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping,” Dalton Trans. 48, 8594–8610 (2019).
[Crossref]

Wang, A. F.

A. F. Wang, Y. Y. Guo, F. Muhammad, and Z. T. Deng, “Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability,” Chem. Mater. 29, 6493–6501 (2017).
[Crossref]

Wang, C.

X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
[Crossref]

Wang, J. B.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Wang, J. C.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Wang, J. P.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Wang, L.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Wang, L. D.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

G. D. Niu, W. Z. Li, F. Q. Meng, L. D. Wang, H. P. Dong, and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” J. Mater. Chem. A 2, 705–710 (2014).
[Crossref]

Wang, M. S.

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

Wang, N. N.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Wang, Q.

Z. Y. Zhu, Q. Q. Yang, L. F. Gao, L. Zhang, A. Y. Shi, C. L. Sun, Q. Wang, and H. L. Zhang, “Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots,” J. Phys. Chem. Lett. 8, 1610–1614 (2017).
[Crossref]

Wang, S.

M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu, and A. L. Rogach, “Metal halide perovskite light-emitting devices: promising technology for next-generation displays,” Adv. Funct. Mater. 29, 1902008 (2019).
[Crossref]

X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
[Crossref]

Wang, X. D.

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019).
[Crossref]

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, H. Y. Chen, and D. B. Kuang, “Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal,” Angew. Chem. (Int. Ed.) 58, 2–8 (2019).

Wang, X. M.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Wang, Y.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Wang, Y. G.

Q. Li, Y. G. Wang, W. C. Pan, W. G. Yang, B. Zou, J. Tang, and Z. W. Quan, “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem. (Int. Ed.) 56, 15969–15973 (2017).
[Crossref]

Wçrle, M.

B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
[Crossref]

Wei, D. H.

R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019).
[Crossref]

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

Wei, J. H.

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, H. Y. Chen, and D. B. Kuang, “Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal,” Angew. Chem. (Int. Ed.) 58, 2–8 (2019).

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019).
[Crossref]

Wei, Q.

Q. Wei, X. J. Li, C. Liang, Z. P. Zhang, J. Guo, G. Hong, G. C. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Wei, Y. Q.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Wei, Z. H.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Wheeler, L. M.

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
[Crossref]

Worku, M.

C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
[Crossref]

Wu, T.

P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
[Crossref]

Wu, T. L.

Z. Luo, Q. Li, L. Zhang, T. L. Wu, C. Zou, Y. Liu, and Z. Quan, “0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties,” Small 16, 1905226 (2019).
[Crossref]

Wu, X. G.

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

Wu, X. T.

X. T. Wu, W. D. Song, Q. Li, X. X. Zhao, D. S. He, and Z. W. Quan, “Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam-induced transformations,” Chem. Asian J. 13, 1654–1659 (2018).
[Crossref]

Wu, Z. X.

C. X. Ran, J. Xi, W. Y. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, and Z. X. Wu, “Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,” ACS Energy Lett. 3, 713–721 (2018).
[Crossref]

Wumaier, T.

R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019).
[Crossref]

Xi, J.

C. X. Ran, J. Xi, W. Y. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, and Z. X. Wu, “Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,” ACS Energy Lett. 3, 713–721 (2018).
[Crossref]

Xia, Y.

M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
[Crossref]

Xie, H. Y.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013).
[Crossref]

Xie, L. Q.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Xin, Y.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Xing, G. C.

Q. Wei, X. J. Li, C. Liang, Z. P. Zhang, J. Guo, G. Hong, G. C. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Xing, J.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Xiong, Q. H.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Xu, B.

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Xu, F.

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

Xu, L.

C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
[Crossref]

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Xu, M. M.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Xue, Q. F.

Z. C. Li, Z. M. Chen, Y. C. Yang, Q. F. Xue, H.-L. Yip, and Y. Cao, “Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%,” Nat. Commun. 10, 1027 (2019).
[Crossref]

Yadav, P.

D. Prochowicz, M. Saski, P. Yadav, M. Grätzel, and J. Lewinski, “Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication,” Acc. Chem. Res. 52, 3233–3243 (2019).
[Crossref]

Yakunin, S.

L. Protesescu, S. Yakunin, O. Nazarenko, D. N. Dirin, and M. V. Kovalenko, “Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling,” ACS Appl. Nano Mater. 1, 1300–1308 (2018).
[Crossref]

B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
[Crossref]

Yan, C. Z.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Yan, Y. F.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Yang, B.

B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
[Crossref]

Yang, M.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Yang, P.

P. Yang, G. N. Liu, B. D. Liu, X. D. Liu, Y. B. Lou, J. X. Chen, and Y. X. Zhao, “All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence,” Chem. Commun. 54, 11638–11641 (2018).
[Crossref]

Yang, P. D.

Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, “The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions,” Nano Lett. 18, 3502–3508 (2018).
[Crossref]

Yang, Q. Q.

Z. Y. Zhu, Q. Q. Yang, L. F. Gao, L. Zhang, A. Y. Shi, C. L. Sun, Q. Wang, and H. L. Zhang, “Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots,” J. Phys. Chem. Lett. 8, 1610–1614 (2017).
[Crossref]

Yang, S. Q.

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019).
[Crossref]

B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
[Crossref]

Yang, W. G.

Q. Li, Y. G. Wang, W. C. Pan, W. G. Yang, B. Zou, J. Tang, and Z. W. Quan, “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem. (Int. Ed.) 56, 15969–15973 (2017).
[Crossref]

Yang, W. S.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13, 897–903 (2014).
[Crossref]

Yang, X.

J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, “High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots,” ACS Nano 11, 9294–9302 (2017).
[Crossref]

Yang, X. K.

F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
[Crossref]

Yang, Y.

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019).
[Crossref]

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, “High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots,” ACS Nano 11, 9294–9302 (2017).
[Crossref]

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Yang, Y. C.

Z. C. Li, Z. M. Chen, Y. C. Yang, Q. F. Xue, H.-L. Yip, and Y. Cao, “Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%,” Nat. Commun. 10, 1027 (2019).
[Crossref]

Yang, Y. M.

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Yang, Z. L.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Yangui, A.

R. Roccanova, A. Yangui, H. Nhalil, H. L. Shi, M. H. Du, and B. Saparov, “Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0 ≤ x ≤ 5),” ACS Appl. Electron. Mater. 1, 269–274 (2019).
[Crossref]

Yao, L.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Yin, J.

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

Yip, H.-L.

Z. C. Li, Z. M. Chen, Y. C. Yang, Q. F. Xue, H.-L. Yip, and Y. Cao, “Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%,” Nat. Commun. 10, 1027 (2019).
[Crossref]

You, J. B.

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Yu, G.

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

Yu, W. W.

M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu, and A. L. Rogach, “Metal halide perovskite light-emitting devices: promising technology for next-generation displays,” Adv. Funct. Mater. 29, 1902008 (2019).
[Crossref]

X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
[Crossref]

Yuan, F.

C. X. Ran, J. Xi, W. Y. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, and Z. X. Wu, “Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,” ACS Energy Lett. 3, 713–721 (2018).
[Crossref]

Yuan, M.

M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
[Crossref]

Yuan, Y. B.

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Yuan, Z.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Zeng, K.

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Zhai, T. Y.

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Zhang, C.

M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
[Crossref]

Zhang, C. F.

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Zhang, D.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Zhang, D. L.

M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
[Crossref]

Zhang, F. Y.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Zhang, H. L.

Z. Y. Zhu, Q. Q. Yang, L. F. Gao, L. Zhang, A. Y. Shi, C. L. Sun, Q. Wang, and H. L. Zhang, “Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots,” J. Phys. Chem. Lett. 8, 1610–1614 (2017).
[Crossref]

Zhang, J.

F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
[Crossref]

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, “High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots,” ACS Nano 11, 9294–9302 (2017).
[Crossref]

Zhang, J. B.

M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
[Crossref]

Zhang, J. W.

P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
[Crossref]

Zhang, L.

Z. Luo, Q. Li, L. Zhang, T. L. Wu, C. Zou, Y. Liu, and Z. Quan, “0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties,” Small 16, 1905226 (2019).
[Crossref]

Z. Y. Zhu, Q. Q. Yang, L. F. Gao, L. Zhang, A. Y. Shi, C. L. Sun, Q. Wang, and H. L. Zhang, “Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots,” J. Phys. Chem. Lett. 8, 1610–1614 (2017).
[Crossref]

Zhang, L. J.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Zhang, M. J.

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

Zhang, R. L.

R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019).
[Crossref]

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

Zhang, T.

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013).
[Crossref]

Zhang, X.

X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
[Crossref]

X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
[Crossref]

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

Zhang, Y.

M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu, and A. L. Rogach, “Metal halide perovskite light-emitting devices: promising technology for next-generation displays,” Adv. Funct. Mater. 29, 1902008 (2019).
[Crossref]

X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
[Crossref]

Zhang, Z. P.

Q. Wei, X. J. Li, C. Liang, Z. P. Zhang, J. Guo, G. Hong, G. C. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

Zhao, B. D.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Zhao, C. Y.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Zhao, W. J.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Zhao, W. Y.

R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019).
[Crossref]

Zhao, X. X.

X. T. Wu, W. D. Song, Q. Li, X. X. Zhao, D. S. He, and Z. W. Quan, “Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam-induced transformations,” Chem. Asian J. 13, 1654–1659 (2018).
[Crossref]

Zhao, Y.

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

Zhao, Y. X.

P. Yang, G. N. Liu, B. D. Liu, X. D. Liu, Y. B. Lou, J. X. Chen, and Y. X. Zhao, “All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence,” Chem. Commun. 54, 11638–11641 (2018).
[Crossref]

Zheng, D. Y.

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

Zheng, K. B.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
[Crossref]

Zhong, H. Z.

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

S. Chang, Z. L. Bai, and H. Z. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6, 1800380 (2018).
[Crossref]

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013).
[Crossref]

Zhong, J. S.

D. Q. Chen, J. N. Li, X. Chen, J. K. Chen, and J. S. Zhong, “Grinding synthesis of APbX3 (A = Ma, Fa, Cs; X = Cl, Br, I) perovskite nanocrystals,” ACS Appl. Mater Interfaces 11, 10059–10067 (2019).
[Crossref]

Zhong, Y. Q.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Zhou, C.

C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
[Crossref]

Zhou, C. K.

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Zhou, H. P.

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Zhou, L.

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019).
[Crossref]

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, H. Y. Chen, and D. B. Kuang, “Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal,” Angew. Chem. (Int. Ed.) 58, 2–8 (2019).

Zhou, Q. H.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Zhou, Y. L.

T. Li, X. M. Mo, C. Y. Peng, Q. C. Lu, C. J. Qi, X. M. Tao, Y. Ouyang, and Y. L. Zhou, “Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses,” Chem. Commun. 55, 4554–4557 (2019).
[Crossref]

Zhu, H.

G. C. Adhikari, S. Thapa, H. Zhu, and P. Zhu, “Mg2+-alloyed all-inorganic halide perovskites for white light-emitting diodes by 3D-printing method,” Adv. Opt. Mater. 7, 1900916 (2019).
[Crossref]

Zhu, H. M.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Zhu, H. Y.

S. Thapa, G. C. Adhikari, H. Y. Zhu, A. Grigoriev, and P. F. Zhu, “Zn-alloyed all-inorganic halide perovskite-based white light-emitting diodes with superior color quality,” Sci. Rep. 9, 1 (2019).
[Crossref]

Zhu, P.

G. C. Adhikari, S. Thapa, H. Zhu, and P. Zhu, “Mg2+-alloyed all-inorganic halide perovskites for white light-emitting diodes by 3D-printing method,” Adv. Opt. Mater. 7, 1900916 (2019).
[Crossref]

Zhu, P. F.

S. Thapa, G. C. Adhikari, H. Y. Zhu, A. Grigoriev, and P. F. Zhu, “Zn-alloyed all-inorganic halide perovskite-based white light-emitting diodes with superior color quality,” Sci. Rep. 9, 1 (2019).
[Crossref]

Zhu, Z. Y.

Z. Y. Zhu, Q. Q. Yang, L. F. Gao, L. Zhang, A. Y. Shi, C. L. Sun, Q. Wang, and H. L. Zhang, “Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots,” J. Phys. Chem. Lett. 8, 1610–1614 (2017).
[Crossref]

Zou, B.

Q. Li, Y. G. Wang, W. C. Pan, W. G. Yang, B. Zou, J. Tang, and Z. W. Quan, “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem. (Int. Ed.) 56, 15969–15973 (2017).
[Crossref]

Zou, B. S.

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013).
[Crossref]

Zou, C.

Z. Luo, Q. Li, L. Zhang, T. L. Wu, C. Zou, Y. Liu, and Z. Quan, “0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties,” Small 16, 1905226 (2019).
[Crossref]

Zou, W.

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

Zou, X. S.

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

Zuo, X. B.

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

Acc. Chem. Res. (1)

D. Prochowicz, M. Saski, P. Yadav, M. Grätzel, and J. Lewinski, “Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication,” Acc. Chem. Res. 52, 3233–3243 (2019).
[Crossref]

ACS Appl. Electron. Mater. (1)

R. Roccanova, A. Yangui, H. Nhalil, H. L. Shi, M. H. Du, and B. Saparov, “Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0 ≤ x ≤ 5),” ACS Appl. Electron. Mater. 1, 269–274 (2019).
[Crossref]

ACS Appl. Mater Interfaces (2)

D. Q. Chen, J. N. Li, X. Chen, J. K. Chen, and J. S. Zhong, “Grinding synthesis of APbX3 (A = Ma, Fa, Cs; X = Cl, Br, I) perovskite nanocrystals,” ACS Appl. Mater Interfaces 11, 10059–10067 (2019).
[Crossref]

R. An, F. Y. Zhang, X. S. Zou, Y. Y. Tang, M. L. Liang, I. Oshchapovskyy, Y. C. Liu, A. Honarfar, Y. Q. Zhong, C. S. Li, H. F. Geng, J. S. Chen, S. E. Canton, T. N. Pullerits, and K. B. Zheng, “Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots,” ACS Appl. Mater Interfaces 10, 39222–39227 (2018).
[Crossref]

ACS Appl. Nano Mater. (1)

L. Protesescu, S. Yakunin, O. Nazarenko, D. N. Dirin, and M. V. Kovalenko, “Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling,” ACS Appl. Nano Mater. 1, 1300–1308 (2018).
[Crossref]

ACS Energy Lett. (2)

C. X. Ran, J. Xi, W. Y. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, and Z. X. Wu, “Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,” ACS Energy Lett. 3, 713–721 (2018).
[Crossref]

X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, and A. L. Rogach, “Bright orange electroluminescence from lead-free two-dimensional perovskites,” ACS Energy Lett. 4, 242–248 (2019).
[Crossref]

ACS Nano (2)

D. B. Han, M. Imran, M. J. Zhang, S. Chang, X. G. Wu, X. Zhang, J. L. Tang, M. S. Wang, S. Ali, X. G. Li, G. Yu, J. B. Han, B. S. Zou, and H. Z. Zhong, “Efficient light-emitting diodes based on in situ fabricated FaPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process,” ACS Nano 12, 8808–8816 (2018).
[Crossref]

J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, “High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots,” ACS Nano 11, 9294–9302 (2017).
[Crossref]

Adv. Funct. Mater. (3)

B. T. Diroll, G. Nedelcu, M. V. Kovalenko, and R. D. Schaller, “High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals,” Adv. Funct. Mater. 27, 1606750 (2017).
[Crossref]

M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu, and A. L. Rogach, “Metal halide perovskite light-emitting devices: promising technology for next-generation displays,” Adv. Funct. Mater. 29, 1902008 (2019).
[Crossref]

M. Y. Leng, Y. Yang, K. Zeng, Z. W. Chen, Z. F. Tan, S. R. Li, J. H. Li, B. Xu, D. B. Li, M. P. Hautzinger, Y. P. Fu, T. Y. Zhai, L. Xu, G. D. Niu, S. Jin, and J. Tang, “All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability,” Adv. Funct. Mater. 28, 1704446 (2017).
[Crossref]

Adv. Mater. (2)

B.-W. Park and S. I. Seok, “Intrinsic instability of inorganic-organic hybrid halide perovskite materials,” Adv. Mater. 31, 1805337 (2019).
[Crossref]

T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, and H. Hosono, “Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure,” Adv. Mater. 30, 1804547 (2018).
[Crossref]

Adv. Opt. Mater. (5)

F. Umar, J. Zhang, Z. X. Jin, I. Muhammad, X. K. Yang, H. Deng, K. Jahangeer, Q. S. Hu, H. S. Song, and J. Tang, “Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method,” Adv. Opt. Mater. 7, 1801368 (2019).
[Crossref]

G. C. Adhikari, S. Thapa, H. Zhu, and P. Zhu, “Mg2+-alloyed all-inorganic halide perovskites for white light-emitting diodes by 3D-printing method,” Adv. Opt. Mater. 7, 1900916 (2019).
[Crossref]

Q. Hu, Z. Li, Z. Tan, H. Song, C. Ge, G. Niu, J. Han, and J. Tang, “Rare earth ion-doped CsPbBr3 nanocrystals,” Adv. Opt. Mater. 6, 1700864 (2018).
[Crossref]

Q. Wei, X. J. Li, C. Liang, Z. P. Zhang, J. Guo, G. Hong, G. C. Xing, and W. Huang, “Recent progress in metal halide perovskite micro- and nanolasers,” Adv. Opt. Mater. 7, 1900080 (2019).
[Crossref]

S. Chang, Z. L. Bai, and H. Z. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6, 1800380 (2018).
[Crossref]

Angew. Chem. (2)

B. M. Benin, D. N. Dirin, V. Morad, M. Wçrle, S. Yakunin, G. Rainò, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, “Highly emissive self-trapped excitons in fully inorganic zero dimensional tin halides,” Angew. Chem. 130, 11499–11503 (2018).
[Crossref]

R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han, “Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultrabroadband emission,” Angew. Chem. 131, 2751–2755 (2019).
[Crossref]

Angew. Chem. (Int. Ed.) (5)

P. F. Cheng, L. Sun, L. Feng, S. Q. Yang, Y. Yang, D. Y. Zheng, Y. Zhao, Y. B. Sang, R. L. Zhang, D. H. Wei, W. Q. Deng, and K. L. Han, “Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals,” Angew. Chem. (Int. Ed.) 131, 16233–16237 (2019).
[Crossref]

B. Yang, J. S. Chen, F. Hong, X. Mao, K. B. Zheng, S. Q. Yang, Y. J. Li, T. Pullerits, W. Q. Deng, and K. L. Han, “Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals,” Angew. Chem. (Int. Ed.) 56, 12471–12475 (2017).
[Crossref]

Q. Li, Y. G. Wang, W. C. Pan, W. G. Yang, B. Zou, J. Tang, and Z. W. Quan, “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem. (Int. Ed.) 56, 15969–15973 (2017).
[Crossref]

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, W. G. Li, H. Y. Chen, D. B. Kuang, and C. Y. Su, “A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection,” Angew. Chem. (Int. Ed.) 58, 5277–5281 (2019).
[Crossref]

L. Zhou, J. F. Liao, Z. G. Huang, J. H. Wei, X. D. Wang, H. Y. Chen, and D. B. Kuang, “Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal,” Angew. Chem. (Int. Ed.) 58, 2–8 (2019).

Chem. Asian J. (1)

X. T. Wu, W. D. Song, Q. Li, X. X. Zhao, D. S. He, and Z. W. Quan, “Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam-induced transformations,” Chem. Asian J. 13, 1654–1659 (2018).
[Crossref]

Chem. Commun. (2)

T. Li, X. M. Mo, C. Y. Peng, Q. C. Lu, C. J. Qi, X. M. Tao, Y. Ouyang, and Y. L. Zhou, “Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses,” Chem. Commun. 55, 4554–4557 (2019).
[Crossref]

P. Yang, G. N. Liu, B. D. Liu, X. D. Liu, Y. B. Lou, J. X. Chen, and Y. X. Zhao, “All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence,” Chem. Commun. 54, 11638–11641 (2018).
[Crossref]

Chem. Int. (1)

F. Gomollón-Bel, “Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable,” Chem. Int. 41, 12–17 (2019).
[Crossref]

Chem. Mater. (2)

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase- and composition-dependent plasmonic properties,” Chem. Mater. 25, 4828–4834 (2013).
[Crossref]

A. F. Wang, Y. Y. Guo, F. Muhammad, and Z. T. Deng, “Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability,” Chem. Mater. 29, 6493–6501 (2017).
[Crossref]

Dalton Trans. (1)

A. Verma, D. P. Jaihindh, and Y.-P. Fu, “Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping,” Dalton Trans. 48, 8594–8610 (2019).
[Crossref]

Green Chem. (1)

R. A. Sheldon, “Green solvents for sustainable organic synthesis: state of the art,” Green Chem. 7, 267–278 (2005).
[Crossref]

Inorg. Chem. (1)

D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, and N. Mathews, “Lead-free Ma2CuClxBr4-x hybrid perovskites,” Inorg. Chem. 55, 1044–1052 (2016).
[Crossref]

J. Am. Chem. Soc. (2)

D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. V. D. Ven, M. G. Kanatzidis, and R. Seshadri, “Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3,” J. Am. Chem. Soc. 138, 11820–11832 (2016).
[Crossref]

J.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, and C.-W. Chiu, “Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%,” J. Am. Chem. Soc. 141, 10324–10330 (2019).
[Crossref]

J. Mater. Chem. A (1)

G. D. Niu, W. Z. Li, F. Q. Meng, L. D. Wang, H. P. Dong, and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” J. Mater. Chem. A 2, 705–710 (2014).
[Crossref]

J. Mater. Chem. C (1)

M. Y. Gao, C. Zhang, L. Y. Lian, J. W. Guo, Y. Xia, F. Pan, X. M. Su, J. B. Zhang, H. L. Li, and D. L. Zhang, “Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature,” J. Mater. Chem. C 7, 3688–3695 (2019).
[Crossref]

J. Phys. C (1)

N. F. Mott and A. M. Stoneham, “The lifetime of electrons, holes and excitons before self-trapping,” J. Phys. C 10, 3391–3398 (1977).
[Crossref]

J. Phys. Chem. C (1)

E. P. Booker, J. T. Griffiths, L. Eyre, C. Ducati, N. C. Greenham, and N. J. L. K. Davis, “Synthesis, characterization, and morphological control of Cs2CuCl4 nanocrystals,” J. Phys. Chem. C 123, 16951–16956 (2019).
[Crossref]

J. Phys. Chem. Lett. (4)

P. F. Cheng, T. Wu, J. W. Zhang, Y. J. Li, J. X. Liu, L. Jiang, X. Mao, R. F. Lu, W. Q. Deng, and K. L. Han, “(C6H5C2H4NH3)2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications,” J. Phys. Chem. Lett. 8, 4402–4406 (2017).
[Crossref]

Z. Y. Zhu, Q. Q. Yang, L. F. Gao, L. Zhang, A. Y. Shi, C. L. Sun, Q. Wang, and H. L. Zhang, “Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots,” J. Phys. Chem. Lett. 8, 1610–1614 (2017).
[Crossref]

S. Seth and A. Samanta, “Photoluminescence of zero-dimensional perovskites and perovskite-related materials,” J. Phys. Chem. Lett. 9, 176–183 (2018).
[Crossref]

L. Wang, L. H. Meng, L. Chen, S. Huang, X. G. Wu, G. Dai, L. G. Deng, J. B. Han, B. S. Zou, C. F. Zhang, and H. Z. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

J. Solid State Chem. (1)

S. Hull and P. Berastegui, “Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides–II: ordered phases within the (AgX)x-(MX)1-x and (CuX)x-(MX)1-x (M=K, Rb and Cs; X=Cl, Br and I) systems,” J. Solid State Chem. 177, 3156–3173 (2004).
[Crossref]

Mater. Sci. Eng. R (1)

C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, and B. Ma, “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. R 137, 38–65 (2019).
[Crossref]

Nano Lett. (2)

M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, and J. Tang, “Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission,” Nano Lett. 18, 6076–6083 (2018).
[Crossref]

Y. Bekenstein, J. C. Dahl, J. M. Huang, W. T. Osowiecki, J. K. Swabeck, E. M. Chan, P. D. Yang, and A. P. Alivisatos, “The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions,” Nano Lett. 18, 3502–3508 (2018).
[Crossref]

Nat. Commun. (3)

M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, “Planar-integrated single-crystalline perovskite photodetectors,” Nat. Commun. 6, 8724 (2015).
[Crossref]

Z. C. Li, Z. M. Chen, Y. C. Yang, Q. F. Xue, H.-L. Yip, and Y. Cao, “Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%,” Nat. Commun. 10, 1027 (2019).
[Crossref]

Z. Yuan, C. K. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, K. Schanze, R. Clark, T. Siegrist, and B. W. Ma, “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).
[Crossref]

Nat. Mater. (3)

Q. A. Akkerman, G. Raino, M. V. Kovalenko, and L. Manna, “Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals,” Nat. Mater. 17, 394–405 (2018).
[Crossref]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13, 897–903 (2014).
[Crossref]

A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, “Toxicity of organometal halide perovskite solar cells,” Nat. Mater. 15, 247–251 (2016).
[Crossref]

Nat. Nanotechnol. (1)

J. B. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11, 75–81 (2016).
[Crossref]

Nat. Photonics (4)

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Y. Liu, J. Y. Cui, K. Du, H. Tian, Z. F. He, Q. H. Zhou, Z. L. Yang, Y. Z. Deng, D. Chen, X. B. Zuo, Y. Ren, L. Wang, H. M. Zhu, B. D. Zhao, D. W. Di, J. P. Wang, R. H. Friend, and Y. Z. Jin, “Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures,” Nat. Photonics 13, 760–767 (2019).
[Crossref]

T. Chiba, S. Ohisa, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, and J. Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices,” Nat. Photonics 12, 681–687 (2018).
[Crossref]

Y. F. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

Nature (3)

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent,” Nature 562, 245–248 (2018).
[Crossref]

Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, and W. Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature 562, 249–253 (2018).
[Crossref]

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L. Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y. Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, and J. Tang, “Efficient and stable emission of warm-white light from lead-free halide double perovskites,” Nature 563, 541–545 (2018).
[Crossref]

Sci. Adv. (2)

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv. 3, eaao4204 (2017).
[Crossref]

Sci. Rep. (1)

S. Thapa, G. C. Adhikari, H. Y. Zhu, A. Grigoriev, and P. F. Zhu, “Zn-alloyed all-inorganic halide perovskite-based white light-emitting diodes with superior color quality,” Sci. Rep. 9, 1 (2019).
[Crossref]

Science (1)

M. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, “Properties and potential optoelectronic applications of lead halide perovskite nanocrystals,” Science 358, 745–750 (2017).
[Crossref]

Small (1)

Z. Luo, Q. Li, L. Zhang, T. L. Wu, C. Zou, Y. Liu, and Z. Quan, “0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties,” Small 16, 1905226 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic illustration of synthetic process of Cs 3 Cu 2 I 5 perovskite powder by using a planetary ball mill. (b) SEM image of Cs 3 Cu 2 I 5 perovskite powder with inset showing size distribution. (c) TEM image of Cs 3 Cu 2 I 5 perovskite. (d) HRTEM image of Cs 3 Cu 2 I 5 perovskite along with an inset of SAED pattern of Cs 3 Cu 2 I 5 perovskite crystal. (e) EDX spectrum and elemental content analysis of obtained Cs 3 Cu 2 I 5 perovskite. (f) SEM image and EDX elemental mapping (g) Cs, (h) Cu, and (i) I of the selected Cs 3 Cu 2 I 5 perovskite powder.
Fig. 2.
Fig. 2. (a) XRD pattern of obtained Cs 3 Cu 2 I 5 powder, compared with the orthorhombic bulk Cs 3 Cu 2 I 5 at the bottom (JCPDS No. 45-0077). (b) TGA curve of Cs 3 Cu 2 I 5 powder. (c) XPS survey spectrum and HRXPS spectra of (d) Cs 3d, (e) Cu 2p, and (f) I 3d in Cs 3 Cu 2 I 5 powder.
Fig. 3.
Fig. 3. (a) PL spectra of Cs 3 Cu 2 I 5 powder under different excitation wavelengths from 260 to 340 nm. (b) PLE spectra measured at different PL peaks ranging from 400 to 480 nm. (c) UV-Vis diffuse reflectance spectrum of the Cs 3 Cu 2 I 5 powder; the inset shows the Tauc plot used for the bandgap estimation. (d) Time-resolved PL decay curve of Cs 3 Cu 2 I 5 powder excited by the laser of 300 nm. (e) Crystal structure of Cs 3 Cu 2 I 5 , as viewed down the a axis (green, purple, and blue balls indicate Cs, I, and Cu atoms, respectively). (f) DOS plots of the Cs 3 Cu 2 I 5 powder. (g) Calculated electronic band structure of Cs 3 Cu 2 I 5 ; the Fermi energy is set to E = 0 and denoted with an orange dash line. (h) Configuration coordinate diagram for the excited-state reorganization; the violet and blue arrows represent transition and radiation processes, respectively, and the black arrow represents intersystem crossing.
Fig. 4.
Fig. 4. (a) Integrated PL intensity as a function of temperatures from 25°C to 300°C. Variation of PL intensity of Cs 3 Cu 2 I 5 (b) at 100°C and (c) under a xenon lamp irradiation over time. (d) XRD patterns of Cs 3 Cu 2 I 5 exposed to air for three months. (e) PL intensity of Cs 3 Cu 2 I 5 exposed to air for three months.
Fig. 5.
Fig. 5. (a) SEM image of Cs 3 Cu 2 Cl 5 perovskite powder. (b) HRTEM image of Cs 3 Cu 2 Cl 5 perovskite along with an inset of SAED pattern of Cs 3 Cu 2 Cl 5 perovskite crystal. (c) EDX elemental mappings of Cs 3 Cu 2 Cl 5 powder; the scale bar is 10 μm. (d) XRD pattern of Cs 3 Cu 2 Cl 5 powder with standard JCPDS cards ( Cs 3 Cu 2 Cl 5 , 24-0247 and CsCl, 05-0607). (e) XPS survey spectrum of Cs 3 Cu 2 Cl 5 powder. HRXPS analysis of Cs 3 Cu 2 Cl 5 powder: (f) Cs 3d spectrum, (g) Cl 2p spectrum, and (h) Cu 2p spectrum. (i) TGA curve of Cs 3 Cu 2 Cl 5 powder.
Fig. 6.
Fig. 6. (a) Normalized UV-Vis absorption (purple dash line) and PL (green solid line) spectra of the as-obtained Cs 3 Cu 2 Cl 5 powder; inset: green emission image under UV-254 nm lamp. (b) Normalized PLE spectra measured over different PL peaks ranging from 470 to 550 nm. (c) Time-resolved PL decay curve of the Cs 3 Cu 2 Cl 5 powder detected at 510 nm with excitation of 300 nm. (d) Crystal structure of Cs 3 Cu 2 Cl 5 , as viewed down the a axis (green, brown, and blue balls indicate Cs, Cl, and Cu atoms, respectively). (e) DFT electronic band structure of Cs 3 Cu 2 Cl 5 with a direct bandgap (2.45 eV). (f) XRD patterns of Cs 3 Cu 2 Cl 5 exposed to air for two months.
Fig. 7.
Fig. 7. (a) Photograph of the as-fabricated pc-LED based on dual phosphors of blue emissive Cs 3 Cu 2 I 5 and green emissive Cs 3 Cu 2 Cl 5 . (b) Photograph of the pc-LED device operated at a forward bias current of 20 mA. (c) EL spectrum and (d) CIE chromaticity diagram of the LED device.

Metrics