S. Chen, X. Ling, W. Shu, H. Luo, and S. Wen, “Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect,” Phys. Rev. Appl. 13, 014057 (2020).
[Crossref]
W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, and F. Ye, “Coupling of edge states and topological Bragg solitons,” Phys. Rev. Lett. 123, 254103 (2019).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
L. Shiand and J. C. W. Song, “Shift vector as the geometric origin of beam shifts,” Phys. Rev. B 100, 201405 (2019).
[Crossref]
H. Wang, B. Yang, W. Xu, Y. Fan, Q. Guo, Z. Zhu, and C. T. Chan, “Highly degenerate photonic flat bands arising from complete graph configurations,” Phys. Rev. A 100, 043841 (2019).
[Crossref]
C. Shang, X. Chen, W. Luo, and F. Ye, “Quantum anomalous Hall-quantum spin Hall effect in optical superlattices,” Opt. Lett. 43, 275–278 (2018).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
W. J. M. Kort-Kamp, F. J. Culchac, R. B. Capaz, and F. A. Pinheiro, “Photonic spin Hall effect in bilayer graphene moiré superlattices,” Phys. Rev. B 98, 195431 (2018).
[Crossref]
S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20, 103050 (2018).
[Crossref]
W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6, 511–516 (2018).
[Crossref]
W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, and X. Yin, “Transitional Goos-Hänchen effect due to the topological phase transitions,” Opt. Express 26, 23705–23713 (2018).
[Crossref]
L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95, 013809 (2017).
[Crossref]
W. J. M. Kort-Kamp, “Topological phase transitions in the photonic spin Hall effect,” Phys. Rev. Lett. 119, 147401 (2017).
[Crossref]
X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]
P. Rodriguez-Lopez, W. J. M. Kort-Kamp, D. Dalvit, and L. M. Woods, “Casimir force phase transitions in the graphene family,” Nat. Commun. 8, 14699 (2017).
[Crossref]
M. Liu, L. Cai, S. Chen, Y. Liu, H. Luo, and S. Wen, “Strong spin-orbit interaction of light on the surface of atomically thin crystals,” Phys. Rev. A 95, 063827 (2017).
[Crossref]
W. Wu, S. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A 96, 043814 (2017).
[Crossref]
P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]
W. J. M. Kort-Kamp, N. A. Sinitsyn, and D. A. R. Dalvit, “Quantized beam shifts in graphene,” Phys. Rev. B 93, 081410 (2016).
[Crossref]
W. J. M. Kort-Kamp, B. Amorim, G. Bastos, F. A. Pinheiro, F. S. S. Rosa, N. M. R. Peres, and C. Farina, “Active magneto-optical control of spontaneous emission in graphene,” Phys. Rev. B 92, 205415 (2015).
[Crossref]
K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]
S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Solja, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]
W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref]
S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]
Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, “Topological Imbert-Fedorov shift in Weyl semimetals,” Phys. Rev. Lett. 115, 156602 (2015).
[Crossref]
S. A. Yang, H. Pan, and F. Zhang, “Chirality-dependent Hall effect in Weyl semimetals,” Phys. Rev. Lett. 115, 156603 (2015).
[Crossref]
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]
J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]
A. N. Jordan, J. Martnez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).
[Crossref]
X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
[Crossref]
G. Jayaswal, G. Mistura, and M. Merano, “Observation of the Imbert-Fedorov effect via weak value amplification,” Opt. Lett. 39, 2266–2269 (2014).
[Crossref]
G. Jayaswal, G. Mistura, and M. Merano, “Observing angular deviations in ligh-beam reflection via weak measurements,” Opt. Lett. 39, 6257–6260 (2014).
[Crossref]
X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]
M. Ezawa, “Photoinduced topological phase transition and a single dirac-cone state in silicene,” Phys. Rev. Lett. 110, 026603 (2013).
[Crossref]
X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, and G.-C. Guo, “Phase estimation with weak measurement using a white light source,” Phys. Rev. Lett. 111, 033604 (2013).
[Crossref]
L. Stille, C. J. Tabert, and E. J. Nicol, “Optical signatures of the tunable band gap and valley-spin coupling in silicene,” Phys. Rev. B 86, 195405 (2012).
[Crossref]
N. D. Drummond, V. Zólyomi, and V. I. Fal’ko, “Electrically tunable band gap in silicene,” Phys. Rev. B 85, 075423 (2012).
[Crossref]
M. Ezawa, “Valley-polarized metals and quantum anomalous Hall effect in silicene,” Phys. Rev. Lett. 109, 055502 (2012).
[Crossref]
H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, and K. H. Wu, “Evidence for Dirac fermions in a honeycomb lattice based on silicon,” Phys. Rev. Lett. 109, 056804 (2012).
[Crossref]
M. Ezawa, “Spin-valley optical selection rule and strong circular dichroism in silicene,” Phys. Rev. B 86, 161407 (2012).
[Crossref]
C.-F. Li, X.-Y. Xu, J.-S. Tang, J.-S. Xu, and G.-C. Guo, “Ultrasensitive phase estimation with white light,” Phys. Rev. A 83, 044102 (2011).
[Crossref]
H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]
M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]
N. Brunner and C. Simon, “Measuring small longitudinal phase shifts: weak measurements or standard interferometry?” Phys. Rev. Lett. 105, 010405 (2010).
[Crossref]
O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]
M. C. Chang and M. F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
[Crossref]
H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80, 043810 (2009).
[Crossref]
E. Prodan, “Robustness of the spin-Chern number,” Phys. Rev. B 80, 125327 (2009).
[Crossref]
O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]
D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, “Quantum spin-Hall effect and topologically invariant Chern numbers,” Phys. Rev. Lett. 97, 036808 (2006).
[Crossref]
K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]
C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
[Crossref]
C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]
N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a ‘weak value’,” Phys. Rev. Lett. 66, 1107–1110 (1991).
[Crossref]
I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a ‘weak measurement’ of a spin -1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989).
[Crossref]
Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]
M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London Ser. A 392, 45–57 (1984).
[Crossref]
R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12, 570–586 (1957).
[Crossref]
Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]
Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
W. J. M. Kort-Kamp, B. Amorim, G. Bastos, F. A. Pinheiro, F. S. S. Rosa, N. M. R. Peres, and C. Farina, “Active magneto-optical control of spontaneous emission in graphene,” Phys. Rev. B 92, 205415 (2015).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
W. J. M. Kort-Kamp, B. Amorim, G. Bastos, F. A. Pinheiro, F. S. S. Rosa, N. M. R. Peres, and C. Farina, “Active magneto-optical control of spontaneous emission in graphene,” Phys. Rev. B 92, 205415 (2015).
[Crossref]
W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref]
M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London Ser. A 392, 45–57 (1984).
[Crossref]
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]
K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]
O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]
K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]
K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]
J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]
N. Brunner and C. Simon, “Measuring small longitudinal phase shifts: weak measurements or standard interferometry?” Phys. Rev. Lett. 105, 010405 (2010).
[Crossref]
L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95, 013809 (2017).
[Crossref]
M. Liu, L. Cai, S. Chen, Y. Liu, H. Luo, and S. Wen, “Strong spin-orbit interaction of light on the surface of atomically thin crystals,” Phys. Rev. A 95, 063827 (2017).
[Crossref]
W. J. M. Kort-Kamp, F. J. Culchac, R. B. Capaz, and F. A. Pinheiro, “Photonic spin Hall effect in bilayer graphene moiré superlattices,” Phys. Rev. B 98, 195431 (2018).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
H. Wang, B. Yang, W. Xu, Y. Fan, Q. Guo, Z. Zhu, and C. T. Chan, “Highly degenerate photonic flat bands arising from complete graph configurations,” Phys. Rev. A 100, 043841 (2019).
[Crossref]
M. C. Chang and M. F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, and K. H. Wu, “Evidence for Dirac fermions in a honeycomb lattice based on silicon,” Phys. Rev. Lett. 109, 056804 (2012).
[Crossref]
S. Chen, X. Ling, W. Shu, H. Luo, and S. Wen, “Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect,” Phys. Rev. Appl. 13, 014057 (2020).
[Crossref]
S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20, 103050 (2018).
[Crossref]
W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6, 511–516 (2018).
[Crossref]
W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, and X. Yin, “Transitional Goos-Hänchen effect due to the topological phase transitions,” Opt. Express 26, 23705–23713 (2018).
[Crossref]
M. Liu, L. Cai, S. Chen, Y. Liu, H. Luo, and S. Wen, “Strong spin-orbit interaction of light on the surface of atomically thin crystals,” Phys. Rev. A 95, 063827 (2017).
[Crossref]
W. Wu, S. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A 96, 043814 (2017).
[Crossref]
L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95, 013809 (2017).
[Crossref]
S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]
W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, and F. Ye, “Coupling of edge states and topological Bragg solitons,” Phys. Rev. Lett. 123, 254103 (2019).
[Crossref]
C. Shang, X. Chen, W. Luo, and F. Ye, “Quantum anomalous Hall-quantum spin Hall effect in optical superlattices,” Opt. Lett. 43, 275–278 (2018).
[Crossref]
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, and K. H. Wu, “Evidence for Dirac fermions in a honeycomb lattice based on silicon,” Phys. Rev. Lett. 109, 056804 (2012).
[Crossref]
W. J. M. Kort-Kamp, F. J. Culchac, R. B. Capaz, and F. A. Pinheiro, “Photonic spin Hall effect in bilayer graphene moiré superlattices,” Phys. Rev. B 98, 195431 (2018).
[Crossref]
O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]
P. Rodriguez-Lopez, W. J. M. Kort-Kamp, D. Dalvit, and L. M. Woods, “Casimir force phase transitions in the graphene family,” Nat. Commun. 8, 14699 (2017).
[Crossref]
W. J. M. Kort-Kamp, N. A. Sinitsyn, and D. A. R. Dalvit, “Quantized beam shifts in graphene,” Phys. Rev. B 93, 081410 (2016).
[Crossref]
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, and K. H. Wu, “Evidence for Dirac fermions in a honeycomb lattice based on silicon,” Phys. Rev. Lett. 109, 056804 (2012).
[Crossref]
J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]
N. D. Drummond, V. Zólyomi, and V. I. Fal’ko, “Electrically tunable band gap in silicene,” Phys. Rev. B 85, 075423 (2012).
[Crossref]
I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a ‘weak measurement’ of a spin -1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989).
[Crossref]
P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]
P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]
M. Ezawa, “Photoinduced topological phase transition and a single dirac-cone state in silicene,” Phys. Rev. Lett. 110, 026603 (2013).
[Crossref]
M. Ezawa, “Valley-polarized metals and quantum anomalous Hall effect in silicene,” Phys. Rev. Lett. 109, 055502 (2012).
[Crossref]
M. Ezawa, “Spin-valley optical selection rule and strong circular dichroism in silicene,” Phys. Rev. B 86, 161407 (2012).
[Crossref]
N. D. Drummond, V. Zólyomi, and V. I. Fal’ko, “Electrically tunable band gap in silicene,” Phys. Rev. B 85, 075423 (2012).
[Crossref]
H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]
H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80, 043810 (2009).
[Crossref]
H. Wang, B. Yang, W. Xu, Y. Fan, Q. Guo, Z. Zhu, and C. T. Chan, “Highly degenerate photonic flat bands arising from complete graph configurations,” Phys. Rev. A 100, 043841 (2019).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref]
W. J. M. Kort-Kamp, B. Amorim, G. Bastos, F. A. Pinheiro, F. S. S. Rosa, N. M. R. Peres, and C. Farina, “Active magneto-optical control of spontaneous emission in graphene,” Phys. Rev. B 92, 205415 (2015).
[Crossref]
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, and K. H. Wu, “Evidence for Dirac fermions in a honeycomb lattice based on silicon,” Phys. Rev. Lett. 109, 056804 (2012).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, and G.-C. Guo, “Phase estimation with weak measurement using a white light source,” Phys. Rev. Lett. 111, 033604 (2013).
[Crossref]
C.-F. Li, X.-Y. Xu, J.-S. Tang, J.-S. Xu, and G.-C. Guo, “Ultrasensitive phase estimation with white light,” Phys. Rev. A 83, 044102 (2011).
[Crossref]
H. Wang, B. Yang, W. Xu, Y. Fan, Q. Guo, Z. Zhu, and C. T. Chan, “Highly degenerate photonic flat bands arising from complete graph configurations,” Phys. Rev. A 100, 043841 (2019).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, “Quantum spin-Hall effect and topologically invariant Chern numbers,” Phys. Rev. Lett. 97, 036808 (2006).
[Crossref]
M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, and K. H. Wu, “Evidence for Dirac fermions in a honeycomb lattice based on silicon,” Phys. Rev. Lett. 109, 056804 (2012).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]
A. N. Jordan, J. Martnez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).
[Crossref]
X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]
N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a ‘weak value’,” Phys. Rev. Lett. 66, 1107–1110 (1991).
[Crossref]
S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Solja, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]
P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]
H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]
G. Jayaswal, G. Mistura, and M. Merano, “Observation of the Imbert-Fedorov effect via weak value amplification,” Opt. Lett. 39, 2266–2269 (2014).
[Crossref]
G. Jayaswal, G. Mistura, and M. Merano, “Observing angular deviations in ligh-beam reflection via weak measurements,” Opt. Lett. 39, 6257–6260 (2014).
[Crossref]
Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, “Topological Imbert-Fedorov shift in Weyl semimetals,” Phys. Rev. Lett. 115, 156602 (2015).
[Crossref]
Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, “Topological Imbert-Fedorov shift in Weyl semimetals,” Phys. Rev. Lett. 115, 156602 (2015).
[Crossref]
S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Solja, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]
J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]
A. N. Jordan, J. Martnez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).
[Crossref]
M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]
C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]
C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
[Crossref]
W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, and F. Ye, “Coupling of edge states and topological Bragg solitons,” Phys. Rev. Lett. 123, 254103 (2019).
[Crossref]
X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, and G.-C. Guo, “Phase estimation with weak measurement using a white light source,” Phys. Rev. Lett. 111, 033604 (2013).
[Crossref]
W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, and F. Ye, “Coupling of edge states and topological Bragg solitons,” Phys. Rev. Lett. 123, 254103 (2019).
[Crossref]
W. J. M. Kort-Kamp, F. J. Culchac, R. B. Capaz, and F. A. Pinheiro, “Photonic spin Hall effect in bilayer graphene moiré superlattices,” Phys. Rev. B 98, 195431 (2018).
[Crossref]
W. J. M. Kort-Kamp, “Topological phase transitions in the photonic spin Hall effect,” Phys. Rev. Lett. 119, 147401 (2017).
[Crossref]
P. Rodriguez-Lopez, W. J. M. Kort-Kamp, D. Dalvit, and L. M. Woods, “Casimir force phase transitions in the graphene family,” Nat. Commun. 8, 14699 (2017).
[Crossref]
W. J. M. Kort-Kamp, N. A. Sinitsyn, and D. A. R. Dalvit, “Quantized beam shifts in graphene,” Phys. Rev. B 93, 081410 (2016).
[Crossref]
W. J. M. Kort-Kamp, B. Amorim, G. Bastos, F. A. Pinheiro, F. S. S. Rosa, N. M. R. Peres, and C. Farina, “Active magneto-optical control of spontaneous emission in graphene,” Phys. Rev. B 92, 205415 (2015).
[Crossref]
P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]
H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]
H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]
R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12, 570–586 (1957).
[Crossref]
O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]
P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]
O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]
W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref]
X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, and G.-C. Guo, “Phase estimation with weak measurement using a white light source,” Phys. Rev. Lett. 111, 033604 (2013).
[Crossref]
C.-F. Li, X.-Y. Xu, J.-S. Tang, J.-S. Xu, and G.-C. Guo, “Ultrasensitive phase estimation with white light,” Phys. Rev. A 83, 044102 (2011).
[Crossref]
W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref]
X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
[Crossref]
S. Chen, X. Ling, W. Shu, H. Luo, and S. Wen, “Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect,” Phys. Rev. Appl. 13, 014057 (2020).
[Crossref]
W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6, 511–516 (2018).
[Crossref]
W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, and X. Yin, “Transitional Goos-Hänchen effect due to the topological phase transitions,” Opt. Express 26, 23705–23713 (2018).
[Crossref]
X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, and K. H. Wu, “Evidence for Dirac fermions in a honeycomb lattice based on silicon,” Phys. Rev. Lett. 109, 056804 (2012).
[Crossref]
W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, “Topological Imbert-Fedorov shift in Weyl semimetals,” Phys. Rev. Lett. 115, 156602 (2015).
[Crossref]
M. Liu, L. Cai, S. Chen, Y. Liu, H. Luo, and S. Wen, “Strong spin-orbit interaction of light on the surface of atomically thin crystals,” Phys. Rev. A 95, 063827 (2017).
[Crossref]
L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95, 013809 (2017).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95, 013809 (2017).
[Crossref]
X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]
M. Liu, L. Cai, S. Chen, Y. Liu, H. Luo, and S. Wen, “Strong spin-orbit interaction of light on the surface of atomically thin crystals,” Phys. Rev. A 95, 063827 (2017).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Solja, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]
S. Chen, X. Ling, W. Shu, H. Luo, and S. Wen, “Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect,” Phys. Rev. Appl. 13, 014057 (2020).
[Crossref]
W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6, 511–516 (2018).
[Crossref]
S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20, 103050 (2018).
[Crossref]
W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, and X. Yin, “Transitional Goos-Hänchen effect due to the topological phase transitions,” Opt. Express 26, 23705–23713 (2018).
[Crossref]
M. Liu, L. Cai, S. Chen, Y. Liu, H. Luo, and S. Wen, “Strong spin-orbit interaction of light on the surface of atomically thin crystals,” Phys. Rev. A 95, 063827 (2017).
[Crossref]
W. Wu, S. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A 96, 043814 (2017).
[Crossref]
L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95, 013809 (2017).
[Crossref]
X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]
S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]
X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
[Crossref]
H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]
H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80, 043810 (2009).
[Crossref]
J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]
A. N. Jordan, J. Martnez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).
[Crossref]
C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
[Crossref]
C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, and K. H. Wu, “Evidence for Dirac fermions in a honeycomb lattice based on silicon,” Phys. Rev. Lett. 109, 056804 (2012).
[Crossref]
H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]
G. Jayaswal, G. Mistura, and M. Merano, “Observation of the Imbert-Fedorov effect via weak value amplification,” Opt. Lett. 39, 2266–2269 (2014).
[Crossref]
G. Jayaswal, G. Mistura, and M. Merano, “Observing angular deviations in ligh-beam reflection via weak measurements,” Opt. Lett. 39, 6257–6260 (2014).
[Crossref]
S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20, 103050 (2018).
[Crossref]
W. Wu, S. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A 96, 043814 (2017).
[Crossref]
S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]
J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]
G. Jayaswal, G. Mistura, and M. Merano, “Observing angular deviations in ligh-beam reflection via weak measurements,” Opt. Lett. 39, 6257–6260 (2014).
[Crossref]
G. Jayaswal, G. Mistura, and M. Merano, “Observation of the Imbert-Fedorov effect via weak value amplification,” Opt. Lett. 39, 2266–2269 (2014).
[Crossref]
P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]
H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]
L. Stille, C. J. Tabert, and E. J. Nicol, “Optical signatures of the tunable band gap and valley-spin coupling in silicene,” Phys. Rev. B 86, 195405 (2012).
[Crossref]
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]
K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]
O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
S. A. Yang, H. Pan, and F. Zhang, “Chirality-dependent Hall effect in Weyl semimetals,” Phys. Rev. Lett. 115, 156603 (2015).
[Crossref]
W. J. M. Kort-Kamp, B. Amorim, G. Bastos, F. A. Pinheiro, F. S. S. Rosa, N. M. R. Peres, and C. Farina, “Active magneto-optical control of spontaneous emission in graphene,” Phys. Rev. B 92, 205415 (2015).
[Crossref]
W. J. M. Kort-Kamp, F. J. Culchac, R. B. Capaz, and F. A. Pinheiro, “Photonic spin Hall effect in bilayer graphene moiré superlattices,” Phys. Rev. B 98, 195431 (2018).
[Crossref]
W. J. M. Kort-Kamp, B. Amorim, G. Bastos, F. A. Pinheiro, F. S. S. Rosa, N. M. R. Peres, and C. Farina, “Active magneto-optical control of spontaneous emission in graphene,” Phys. Rev. B 92, 205415 (2015).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
E. Prodan, “Robustness of the spin-Chern number,” Phys. Rev. B 80, 125327 (2009).
[Crossref]
X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]
N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a ‘weak value’,” Phys. Rev. Lett. 66, 1107–1110 (1991).
[Crossref]
P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]
O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]
P. Rodriguez-Lopez, W. J. M. Kort-Kamp, D. Dalvit, and L. M. Woods, “Casimir force phase transitions in the graphene family,” Nat. Commun. 8, 14699 (2017).
[Crossref]
W. J. M. Kort-Kamp, B. Amorim, G. Bastos, F. A. Pinheiro, F. S. S. Rosa, N. M. R. Peres, and C. Farina, “Active magneto-optical control of spontaneous emission in graphene,” Phys. Rev. B 92, 205415 (2015).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, “Quantum spin-Hall effect and topologically invariant Chern numbers,” Phys. Rev. Lett. 97, 036808 (2006).
[Crossref]
D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, “Quantum spin-Hall effect and topologically invariant Chern numbers,” Phys. Rev. Lett. 97, 036808 (2006).
[Crossref]
L. Shiand and J. C. W. Song, “Shift vector as the geometric origin of beam shifts,” Phys. Rev. B 100, 201405 (2019).
[Crossref]
S. Chen, X. Ling, W. Shu, H. Luo, and S. Wen, “Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect,” Phys. Rev. Appl. 13, 014057 (2020).
[Crossref]
S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20, 103050 (2018).
[Crossref]
W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6, 511–516 (2018).
[Crossref]
W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, and X. Yin, “Transitional Goos-Hänchen effect due to the topological phase transitions,” Opt. Express 26, 23705–23713 (2018).
[Crossref]
L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95, 013809 (2017).
[Crossref]
H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]
H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80, 043810 (2009).
[Crossref]
N. Brunner and C. Simon, “Measuring small longitudinal phase shifts: weak measurements or standard interferometry?” Phys. Rev. Lett. 105, 010405 (2010).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
W. J. M. Kort-Kamp, N. A. Sinitsyn, and D. A. R. Dalvit, “Quantized beam shifts in graphene,” Phys. Rev. B 93, 081410 (2016).
[Crossref]
S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Solja, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]
K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]
S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Solja, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]
L. Shiand and J. C. W. Song, “Shift vector as the geometric origin of beam shifts,” Phys. Rev. B 100, 201405 (2019).
[Crossref]
I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a ‘weak measurement’ of a spin -1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989).
[Crossref]
L. Stille, C. J. Tabert, and E. J. Nicol, “Optical signatures of the tunable band gap and valley-spin coupling in silicene,” Phys. Rev. B 86, 195405 (2012).
[Crossref]
P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]
N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a ‘weak value’,” Phys. Rev. Lett. 66, 1107–1110 (1991).
[Crossref]
I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a ‘weak measurement’ of a spin -1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989).
[Crossref]
X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, and G.-C. Guo, “Phase estimation with weak measurement using a white light source,” Phys. Rev. Lett. 111, 033604 (2013).
[Crossref]
Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, “Topological Imbert-Fedorov shift in Weyl semimetals,” Phys. Rev. Lett. 115, 156602 (2015).
[Crossref]
L. Stille, C. J. Tabert, and E. J. Nicol, “Optical signatures of the tunable band gap and valley-spin coupling in silicene,” Phys. Rev. B 86, 195405 (2012).
[Crossref]
C.-F. Li, X.-Y. Xu, J.-S. Tang, J.-S. Xu, and G.-C. Guo, “Ultrasensitive phase estimation with white light,” Phys. Rev. A 83, 044102 (2011).
[Crossref]
H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80, 043810 (2009).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, and G.-C. Guo, “Phase estimation with weak measurement using a white light source,” Phys. Rev. Lett. 111, 033604 (2013).
[Crossref]
Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]
H. Wang, B. Yang, W. Xu, Y. Fan, Q. Guo, Z. Zhu, and C. T. Chan, “Highly degenerate photonic flat bands arising from complete graph configurations,” Phys. Rev. A 100, 043841 (2019).
[Crossref]
X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]
S. Chen, X. Ling, W. Shu, H. Luo, and S. Wen, “Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect,” Phys. Rev. Appl. 13, 014057 (2020).
[Crossref]
S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20, 103050 (2018).
[Crossref]
W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6, 511–516 (2018).
[Crossref]
W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, and X. Yin, “Transitional Goos-Hänchen effect due to the topological phase transitions,” Opt. Express 26, 23705–23713 (2018).
[Crossref]
W. Wu, S. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A 96, 043814 (2017).
[Crossref]
M. Liu, L. Cai, S. Chen, Y. Liu, H. Luo, and S. Wen, “Strong spin-orbit interaction of light on the surface of atomically thin crystals,” Phys. Rev. A 95, 063827 (2017).
[Crossref]
L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95, 013809 (2017).
[Crossref]
X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]
S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]
X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
[Crossref]
H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]
H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80, 043810 (2009).
[Crossref]
D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, “Quantum spin-Hall effect and topologically invariant Chern numbers,” Phys. Rev. Lett. 97, 036808 (2006).
[Crossref]
P. Rodriguez-Lopez, W. J. M. Kort-Kamp, D. Dalvit, and L. M. Woods, “Casimir force phase transitions in the graphene family,” Nat. Commun. 8, 14699 (2017).
[Crossref]
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, and K. H. Wu, “Evidence for Dirac fermions in a honeycomb lattice based on silicon,” Phys. Rev. Lett. 109, 056804 (2012).
[Crossref]
W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6, 511–516 (2018).
[Crossref]
S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20, 103050 (2018).
[Crossref]
W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, and X. Yin, “Transitional Goos-Hänchen effect due to the topological phase transitions,” Opt. Express 26, 23705–23713 (2018).
[Crossref]
W. Wu, S. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A 96, 043814 (2017).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, “Topological Imbert-Fedorov shift in Weyl semimetals,” Phys. Rev. Lett. 115, 156602 (2015).
[Crossref]
C.-F. Li, X.-Y. Xu, J.-S. Tang, J.-S. Xu, and G.-C. Guo, “Ultrasensitive phase estimation with white light,” Phys. Rev. A 83, 044102 (2011).
[Crossref]
H. Wang, B. Yang, W. Xu, Y. Fan, Q. Guo, Z. Zhu, and C. T. Chan, “Highly degenerate photonic flat bands arising from complete graph configurations,” Phys. Rev. A 100, 043841 (2019).
[Crossref]
X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, and G.-C. Guo, “Phase estimation with weak measurement using a white light source,” Phys. Rev. Lett. 111, 033604 (2013).
[Crossref]
C.-F. Li, X.-Y. Xu, J.-S. Tang, J.-S. Xu, and G.-C. Guo, “Ultrasensitive phase estimation with white light,” Phys. Rev. A 83, 044102 (2011).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Solja, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]
H. Wang, B. Yang, W. Xu, Y. Fan, Q. Guo, Z. Zhu, and C. T. Chan, “Highly degenerate photonic flat bands arising from complete graph configurations,” Phys. Rev. A 100, 043841 (2019).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref]
M. C. Chang and M. F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
[Crossref]
S. A. Yang, H. Pan, and F. Zhang, “Chirality-dependent Hall effect in Weyl semimetals,” Phys. Rev. Lett. 115, 156603 (2015).
[Crossref]
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, and K. H. Wu, “Evidence for Dirac fermions in a honeycomb lattice based on silicon,” Phys. Rev. Lett. 109, 056804 (2012).
[Crossref]
W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, and F. Ye, “Coupling of edge states and topological Bragg solitons,” Phys. Rev. Lett. 123, 254103 (2019).
[Crossref]
C. Shang, X. Chen, W. Luo, and F. Ye, “Quantum anomalous Hall-quantum spin Hall effect in optical superlattices,” Opt. Lett. 43, 275–278 (2018).
[Crossref]
X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]
W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, and X. Yin, “Transitional Goos-Hänchen effect due to the topological phase transitions,” Opt. Express 26, 23705–23713 (2018).
[Crossref]
X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]
P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]
S. A. Yang, H. Pan, and F. Zhang, “Chirality-dependent Hall effect in Weyl semimetals,” Phys. Rev. Lett. 115, 156603 (2015).
[Crossref]
W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6, 511–516 (2018).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref]
W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, and F. Ye, “Coupling of edge states and topological Bragg solitons,” Phys. Rev. Lett. 123, 254103 (2019).
[Crossref]
W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6, 511–516 (2018).
[Crossref]
S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20, 103050 (2018).
[Crossref]
W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, and X. Yin, “Transitional Goos-Hänchen effect due to the topological phase transitions,” Opt. Express 26, 23705–23713 (2018).
[Crossref]
W. Wu, S. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A 96, 043814 (2017).
[Crossref]
X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]
X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]
S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]
X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
[Crossref]
H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]
H. Wang, B. Yang, W. Xu, Y. Fan, Q. Guo, Z. Zhu, and C. T. Chan, “Highly degenerate photonic flat bands arising from complete graph configurations,” Phys. Rev. A 100, 043841 (2019).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
N. D. Drummond, V. Zólyomi, and V. I. Fal’ko, “Electrically tunable band gap in silicene,” Phys. Rev. B 85, 075423 (2012).
[Crossref]
H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80, 043810 (2009).
[Crossref]
X. Zhou, X. Li, H. Luo, and S. Wen, “Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect,” Appl. Phys. Lett. 104, 051130 (2014).
[Crossref]
R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12, 570–586 (1957).
[Crossref]
P. Rodriguez-Lopez, W. J. M. Kort-Kamp, D. Dalvit, and L. M. Woods, “Casimir force phase transitions in the graphene family,” Nat. Commun. 8, 14699 (2017).
[Crossref]
P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref]
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]
S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20, 103050 (2018).
[Crossref]
W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, and X. Yin, “Transitional Goos-Hänchen effect due to the topological phase transitions,” Opt. Express 26, 23705–23713 (2018).
[Crossref]
G. Jayaswal, G. Mistura, and M. Merano, “Observation of the Imbert-Fedorov effect via weak value amplification,” Opt. Lett. 39, 2266–2269 (2014).
[Crossref]
G. Jayaswal, G. Mistura, and M. Merano, “Observing angular deviations in ligh-beam reflection via weak measurements,” Opt. Lett. 39, 6257–6260 (2014).
[Crossref]
C. Shang, X. Chen, W. Luo, and F. Ye, “Quantum anomalous Hall-quantum spin Hall effect in optical superlattices,” Opt. Lett. 43, 275–278 (2018).
[Crossref]
W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6, 511–516 (2018).
[Crossref]
H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80, 043810 (2009).
[Crossref]
L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95, 013809 (2017).
[Crossref]
H. Wang, B. Yang, W. Xu, Y. Fan, Q. Guo, Z. Zhu, and C. T. Chan, “Highly degenerate photonic flat bands arising from complete graph configurations,” Phys. Rev. A 100, 043841 (2019).
[Crossref]
M. Liu, L. Cai, S. Chen, Y. Liu, H. Luo, and S. Wen, “Strong spin-orbit interaction of light on the surface of atomically thin crystals,” Phys. Rev. A 95, 063827 (2017).
[Crossref]
W. Wu, S. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A 96, 043814 (2017).
[Crossref]
C.-F. Li, X.-Y. Xu, J.-S. Tang, J.-S. Xu, and G.-C. Guo, “Ultrasensitive phase estimation with white light,” Phys. Rev. A 83, 044102 (2011).
[Crossref]
H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]
S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]
S. Chen, X. Ling, W. Shu, H. Luo, and S. Wen, “Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect,” Phys. Rev. Appl. 13, 014057 (2020).
[Crossref]
M. C. Chang and M. F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
[Crossref]
W. J. M. Kort-Kamp, F. J. Culchac, R. B. Capaz, and F. A. Pinheiro, “Photonic spin Hall effect in bilayer graphene moiré superlattices,” Phys. Rev. B 98, 195431 (2018).
[Crossref]
N. D. Drummond, V. Zólyomi, and V. I. Fal’ko, “Electrically tunable band gap in silicene,” Phys. Rev. B 85, 075423 (2012).
[Crossref]
M. Ezawa, “Spin-valley optical selection rule and strong circular dichroism in silicene,” Phys. Rev. B 86, 161407 (2012).
[Crossref]
W. J. M. Kort-Kamp, B. Amorim, G. Bastos, F. A. Pinheiro, F. S. S. Rosa, N. M. R. Peres, and C. Farina, “Active magneto-optical control of spontaneous emission in graphene,” Phys. Rev. B 92, 205415 (2015).
[Crossref]
W. J. M. Kort-Kamp, N. A. Sinitsyn, and D. A. R. Dalvit, “Quantized beam shifts in graphene,” Phys. Rev. B 93, 081410 (2016).
[Crossref]
E. Prodan, “Robustness of the spin-Chern number,” Phys. Rev. B 80, 125327 (2009).
[Crossref]
L. Stille, C. J. Tabert, and E. J. Nicol, “Optical signatures of the tunable band gap and valley-spin coupling in silicene,” Phys. Rev. B 86, 195405 (2012).
[Crossref]
L. Shiand and J. C. W. Song, “Shift vector as the geometric origin of beam shifts,” Phys. Rev. B 100, 201405 (2019).
[Crossref]
I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a ‘weak measurement’ of a spin -1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989).
[Crossref]
N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a ‘weak value’,” Phys. Rev. Lett. 66, 1107–1110 (1991).
[Crossref]
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, and K. H. Wu, “Evidence for Dirac fermions in a honeycomb lattice based on silicon,” Phys. Rev. Lett. 109, 056804 (2012).
[Crossref]
X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, and G.-C. Guo, “Phase estimation with weak measurement using a white light source,” Phys. Rev. Lett. 111, 033604 (2013).
[Crossref]
M. Ezawa, “Photoinduced topological phase transition and a single dirac-cone state in silicene,” Phys. Rev. Lett. 110, 026603 (2013).
[Crossref]
Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, “Topological Imbert-Fedorov shift in Weyl semimetals,” Phys. Rev. Lett. 115, 156602 (2015).
[Crossref]
S. A. Yang, H. Pan, and F. Zhang, “Chirality-dependent Hall effect in Weyl semimetals,” Phys. Rev. Lett. 115, 156603 (2015).
[Crossref]
K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]
D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, “Quantum spin-Hall effect and topologically invariant Chern numbers,” Phys. Rev. Lett. 97, 036808 (2006).
[Crossref]
W. J. M. Kort-Kamp, “Topological phase transitions in the photonic spin Hall effect,” Phys. Rev. Lett. 119, 147401 (2017).
[Crossref]
N. Brunner and C. Simon, “Measuring small longitudinal phase shifts: weak measurements or standard interferometry?” Phys. Rev. Lett. 105, 010405 (2010).
[Crossref]
C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
[Crossref]
C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]
W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, and F. Ye, “Coupling of edge states and topological Bragg solitons,” Phys. Rev. Lett. 123, 254103 (2019).
[Crossref]
W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref]
M. Ezawa, “Valley-polarized metals and quantum anomalous Hall effect in silicene,” Phys. Rev. Lett. 109, 055502 (2012).
[Crossref]
S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Solja, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]
Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]
O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010).
[Crossref]
A. N. Jordan, J. Martnez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).
[Crossref]
M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London Ser. A 392, 45–57 (1984).
[Crossref]
X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]
M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]
J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]
H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]
B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359, 1013–1016 (2018).
[Crossref]
O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]
X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]
K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]