Abstract

Solution-processable, single-crystalline perovskite nanowires are ideal candidates for developing low-cost photodetectors, but their detectivities are limited due to a high level of unintentional defects. Through the surface-initiated solution-growth method, we fabricated high-quality, single-crystalline, defects-suppressed MAPbI3 nanowires, which possess atomically smooth side surfaces with a surface roughness of 0.27 nm, corresponding to a carrier lifetime of 112.9 ns. By forming ohmic MAPbI3/Au contacts through the dry contact method, high-performance metal–semiconductor–metal photodetectors have been demonstrated with a record large linear dynamic range of 157 dB along with a record high detectivity of 1.2×1014  Jones at an illumination power density of 5.5  nW/cm2. Such superior photodetector performance metrics are attributed to, first, the defects-suppressed property of the as-grown MAPbI3 nanowires, which leads to a quite low noise current in the dark, and second, the ohmic contact between MAPbI3 and Au interfaces, which gives rise to an improved responsivity compared with the Schottky contact counterpart. The realized high-performance MAPbI3 nanowire photodetector advances the development of low-cost photodetectors and has potential applications in weak-signal photodetection.

© 2020 Chinese Laser Press

1. INTRODUCTION

The emerging organic–inorganic hybrid perovskites, being regarded as one of the most promising semiconductor materials, appear to possess advantages of both inorganic and organic semiconductors [19]. The hybrid components enable the perovskites to exhibit excellent electronic characteristics, such as high carrier mobility, long carrier lifetime, and low trap density, just like inorganic semiconductors [1012]. In addition, hybrid perovskite semiconductors also display such features as adjustable bandgap and low-temperature processing, similar to their organic counterparts [1317]. Ascribed to the unique features of hybridization, perovskites have already shown bright prospects in the fields of solar cells [1827], light-emitting diodes (LEDs) [2831], and lasers [3235]. Along the same lines, research on perovskite photodetectors has also attracted widespread interest [2,3640]. Various perovskites photodetectors including single-crystal, thin-film [4146], and quantum dot [4752] perovskite photodetectors have been successfully demonstrated. The figure of merit that characterizes a photodetector’s ability to detect weak-light irradiation is the specific detectivity (D*). Only high-quality semiconductor crystals can suppress the dark current, resulting in high-D* photodetection performances.

Perovskite photodetectors can be categorized into different groups according to the crystalline properties of the perovskite layer. Generally, single-crystalline perovskite bulk material, wafers, and films are superior to their polycrystalline counterparts in terms of lower carrier recombination loss and longer carrier lifetime because of a reduced density of grain boundaries and defects. Therefore, single-crystalline-based perovskite photodetectors show advantages of lower dark current, promoting the D* as well as the linear dynamic range (LDR), which is crucial for weak-signal photodetection [5358]. Differing from the frequently investigated bulk materials or wafers, low-dimensional perovskite nanostructures such as nanowires and nanoplatelets allow the manipulation of light at the nanoscale via naturally formed boundaries [5962], and they also meet the need for good flexibility [6369]. A series of different solution-processing techniques has been applied for preparing single-crystalline perovskite nanowires, based on which high-performance photodetectors have been demonstrated [63,64,6780]. In 2016, by the blade-coating method, Jie’s group achieved ordered MAPbI3 wires of the micrometer scale and demonstrated photodetectors with a D* of 5×1012  Jones [67]. Later, they demonstrated a type of MAPbI3 nanowire photodetector with MAPbI3 wires grown via the saturated-vapor-assisted solution-growth method, and obtained a D* of 2.6×1013  Jones [76].

Although the state-of-the-art MAPbI3 nanowire photodetectors have achieved tremendous success, most reported MAPbI3 nanowires show obvious morphological imperfections, e.g., rough surface [67,69,81] and irregular facets [64,73,76], associated with unintentional surface defects. It is expected that these surface defects will certainly induce inevitable carrier recombination loss and unfavorable scattering loss, shortening the carrier lifetime as well as deteriorating the dark current. It is apparent that reducing the density of surface defects in the perovskite crystal is a promising route to lower the dark current and promote the specific D* of perovskite photodetectors [1]. With this aim, Tang et al. immersed the solution-grown MAPbI3 nanowires in oleic acid, bringing forward a reduced dark current as well as an increased response under illumination, so that the D* was improved by an order of magnitude (reaching 2×1013  Jones), and the corresponding LDR reached 140 dB, which is the largest reported [73]. It is noticed that Song et al. proposed a so-called surface-initiated solution-growth strategy to produce single-crystalline MAPbI3 nanowires [16,60,82], which could act as high-performance laser cavities with a quality factor as high as 3600, outperforming all the other reported MAPbI3 nanocavities [8386]. The surfaces of their nanowire products displayed an RMS roughness value as low as 4 nm, corresponding to a relatively low density of surface defects. It is expected that this type of MAPbI3 nanowire with fewer surface defects may serve as a promising platform for developing photodetectors with high D*.

In this work, based on the surface-initiated solution-growth strategy, we produced high-quality, single-crystalline MAPbI3 nanowires with a carrier lifetime as long as 112.9 ns, which is around twice that of oleic acid passivated MAPbI3 nanowires (51.1 ns) [73]. The atomic force microscopy (AFM) characterization indicates that the produced nanowires display atomically smooth surfaces with an RMS roughness down to 0.27 nm, an order of magnitude lower than the best result in the literature [60]. Such a smooth morphology of the as-grown MAPbI3 nanowires indicates significantly minimized surface defects, accounting for the obtained long carrier lifetime. Through a dry-contact technique, we realize ohmic contacts between MAPbI3 nanowires and Au electrodes, and further demonstrate high-performance photodetectors that can respond linearly to illumination with the power density varying from 5.5  nW/cm2 to 370  mW/cm2, corresponding to an LDR as large as 157 dB. At the lowest detectable illumination (Plow) of 5.5  nW/cm2, its responsivity (R) is as high as 8.52×103  A/W, and its D* derived from the measured noise current reaches 1.2×1014  Jones. To the best of our knowledge, our photodetector presents both the largest LDR and the highest D* among all MAPbI3 nanowire photodetector devices. Such superior photodetector performance metrics are attributed to, first, the defects-suppressed property of the as-grown MAPbI3 nanowires, which leads to a quite low noise current in the dark, and second, the ohmic contact between MAPbI3 and Au interfaces, which gives rise to an improved R compared with the Schottky contact counterpart. Our work contributes to the development of high-performance, next-generation, low-cost photodetectors.

2. RESULTS AND DISCUSSION

The single-crystalline MAPbI3 nanowires are grown by the optimized surface-initiated solution-growth strategy as shown in Fig. 5 (Appendix A). When the coated transparent lead acetate (PbAc2) solid film is immersed into the methyl ammonium iodide (MAI) solution, the PbAc2 film immediately turns brown, due to the production of a thin layer of polycrystalline MAPbI3 on its surface. This layer serves as a seed layer to initiate the crystal growth; hence, the strategy is referred to as the “surface-initiated solution-growth” strategy. After the reaction is finished, the product of the single-crystalline MAPbI3 nanowires is harvested with an additional process of isopropanol (IPA) wash for removing the residual MAI. Our previous work concluded that the length and amount of the produced nanowires can be well controlled by the precursor concentration and the growth temperature [87]. In this work, we also investigate the influence of environmental humidity on the reaction and find that a humidity of 30%±2% is the optimal condition for obtaining the MAPbI3 nanowire products with the highest density and best crystallinity, as shown in Fig. 6 (Appendix B). Because IPA can take up moisture from air due to its hygroscopic property, we suspect that water molecules can interact with the polycrystalline perovskite surface and localize electrons close to its surface [88], which might act as a driving force for initiating the growth of the MAPbI3 nanowires. With the increase in humidity from 20% to 30%, there would be more water molecules in the IPA solution, resulting in more sites with localized electrons at the polycrystalline perovskite surface, thereby producing more MAPbI3 nanowires. In comparison, at a high level of humidity (e.g., 35%), water molecules interact with each other and form a hydrogen bonded network [88]. Thus the localization of electrons at the polycrystalline perovskite surface cannot be produced efficiently, which means the favorable factor for initiating the growth of MAPbI3 nanowires is weakened. As a result, the density of the MAPbI3 nanowire product decreases at a high humidity of 35%.

Figure 1(a) presents a typical optical image of the as-grown MAPbI3 nanowires accompanied by a few nanoplatelets on a glass substrate. It can be seen that the prepared perovskite nanowires are rich in color because the thicknesses of the nanowires are different, and interference occurs between the beams reflected from the top and bottom surfaces of the nanowires [89]. These nanowires have flat rectangular end facets with dimensions of a few hundred nanometers as indicated by the scanning electron microscopy (SEM) images in Fig. 1(b). The transmission electron microscopy (TEM) analysis of a single MAPbI3 nanowire was carried out as displayed in Fig. 1(c). A high-resolution TEM image of a single MAPbI3 nanowire with the spacing of the lattice fringes measured to be 0.31  nm is shown in Fig. 1(d), and the fringes are indexed as (004) or (220) of the tetragonal MAPbI3 phase [73]. The inset of Fig. 1(d) presents the corresponding selected-area electron diffraction and fast Fourier transform (FFT) patterns. The sharp diffraction spots indicate that the synthesized MAPbI3 nanowire has a tetragonal crystal structure with zone axes of [110] or [001].

 

Fig. 1. (a) Optical image of MAPbI3 nanostructures grown from PbAc2 thin film. (b) Cross-sectional SEM image of a single MAPbI3 nanowire. (c) Low-resolution TEM image of a single MAPbI3 nanowire. (d) High-resolution TEM image of a selected area of a single MAPbI3 nanowire; the inset represents its corresponding FFT pattern. (e) AFM image of a single MAPbI3 nanowire. (f) AFM image of the selected nanowire region with the average surface roughness measured to be 0.27 nm. (g) XRD pattern of as-grown MAPbI3 nanowires with a comparison of the simulated tetragonal phase MAPbI3. (h) Transient PL spectrum of the MAPbI3 nanowire.

Download Full Size | PPT Slide | PDF

The X-ray diffraction (XRD) patterns of the prepared MAPbI3 nanowire are characterized as shown in Fig. 1(g), in good agreement with the corresponding simulated tetragonal-phase MAPbI3 XRD pattern shown in Fig. 7 (Appendix B). Apparently, the pattern shows multiple strong diffraction peaks at [002], [110], [220], [004], etc., which can be assigned to the tetragonal phase with the space group of I4/mcm (a=8.8743 Å and c=12.6708 Å). Additionally, the split of the [220] and [004] peaks due to the ordering of MA+ ions is clearly observed, further confirming that the as-grown MAPbI3 product is of the tetragonal phase. The stronger diffraction peaks from high-index lattice planes (e.g., [130], [224], [134], [404]) further validate the success of the growth of high-quality single-crystalline MAPbI3. Here, it is noted that the IPA wash process is critical for producing a pure MAPbI3 single-crystalline product (see Fig. 8 in Appendix B). To examine the composition uniformity of the as-grown MAPbI3 nanowires, energy-dispersive X-ray spectroscopy (EDS) mapping was performed on the nanowire product, as shown in Fig. 9 (Appendix B). The distribution of elements indicates that Pb and I are homogeneously distributed in the individual MAPbI3 nanowires and the atomic ratio of Pb to I is approximately 1∶3.

An AFM analysis on a single MAPbI3 nanowire on top of the PEDOT:PSS film was also carried out to further characterize the surface morphologies, as shown in Fig. 1(e). Apparently, the MAPbI3 nanowire displays a steep wall, in agreement with the results of the SEM image in Fig. 1(a). Figure 1(f) indicates that the average RMS roughness of the selected nanowire region is measured to be 0.27 nm, reaching the atomically smooth level. For comparison, the AFM image of the PEDOT:PSS surface was also measured, as displayed in Fig. 10 in Appendix B (RMS: 0.16 nm), which is only a bit lower than that of the MAPbI3 nanowire. Compared with the RMS value (4 nm) in a previous report [60], the present nanowire shows a much smoother surface, which should benefit from the systematic control of the reaction procedures. By fitting the transient photoluminescence (PL) spectrum of the MAPbI3 nanowire [see Fig. 1(h)] with a double exponential function, which describes a fast decay resulting from bimolecular recombination and a long decay resulting from recombination of free carriers in the radiative channel whose decay time is called the carrier lifetime, we know that the carrier lifetime of the prepared MAPbI3 nanowires is 112.9 ns. Notably, the carrier lifetime of the present MAPbI3 nanowires without any surface passivation is around twice that with oleic acid treatment (51 ns) [73]. Such an excellent feature of long carrier lifetime is an indicator of the significantly suppressed defects in the as-grown atomically smooth MAPbI3 nanowires, enabling the products to serve as ideal candidate constituents for photodetectors with high D*.

To construct photodetectors, high-quality, single-crystalline, defects-suppressed MAPbI3 nanowires are transferred onto a glass substrate patterned with interdigitated metal electrodes through the dry-contact technique (see Appendix A for more details). To validate the photodetector performances, more than 10 photodetectors were fabricated and then analyzed for the light detection performance. The demonstrated photodetector devices are of the planar metal–semiconductor–metal (MSM) type (see Fig. 11 in Appendix C). Figure 2(a) depicts the logarithmic current–voltage (I-V) characteristics of the MAPbI3 nanowire photodetector in the dark and under 343-nm, 505-nm, and 660-nm light illumination with a power density of 10.19  mW/cm2. One sees that the photo current increases significantly with the increase in applied bias, and is much greater than the dark current. The dark current at 1 V is as low as 1×1010  A; the photo current under 660-nm illumination reaches 1.47×107  A at 1 V, corresponding to a light-to-dark current ratio of 1.47×103. Under 660-nm illumination, as the light intensity increases, the photocurrent increases, as shown by the linear I-V plots in Fig. 2(b).

 

Fig. 2. (a) Logarithmic I-V curves under 325-nm, 505-nm, and 660-nm LED illumination at the power density of 10.19  mW/cm2. (b) I-V curves under 660-nm illumination with different power densities. (c) Double logarithmic I-V plot at the power density of 10.19  mW/cm2, 660 nm. (d) Wavelength-dependent EQE response and the absorption spectrum of the MAPbI3 nanowire photodetector.

Download Full Size | PPT Slide | PDF

To analyze the contact properties, the double-logarithmic I-V curve at a power density of 10.19  mW/cm2 under 660-nm illumination is plotted in Fig. 2(c). It is found that under higher bias, the I-V characteristic rises sharply, and the fitting slopes before and after the turning voltage (VT) are 1 and 2.3, respectively. This trend coincides with the space-charge-limited current with trap filling [90,91]. At low bias, the I-V current follows the ohmic response, indicating ohmic contacts are formed at the MAPbI3/Au interface. After entering the space-charge-limited-current regime, the current I is approximately proportional to V2+n, with n denoting the enhancement factor due to trap filling. Figure 12 (Appendix C) shows the dark and photo I-V characteristic of a photodetector prepared by evaporating the electrodes on top of the as-grown MAPbI3 wires. It reflects that at high bias, a saturation effect of the photocurrent takes place due to the Schottky contact formed between MAPbI3 nanowires and Au electrodes [57,60,87]. Differently, the suppression of photocurrent responses due to the Schottky contact can be fully eliminated in our ohmic contact MSM devices. It means that, compared with the Schottky contact, the ohmic contact between the MAPbI3 and the Au enables maximization of the photocurrent responses. Moreover, it is noticed that during the process of evaporating electrodes, the MAPbI3 nanowires degraded in the high temperature chamber, which also deteriorated the device stability very severely.

Next, we carried out the characterization of the LDR of the prepared MAPbI3 nanowire photodetector. The LDR is defined as 20log(Psat/Plow), where Psat and Plow represent the highest and lowest detectable illumination power densities, respectively. Outside this range, the photocurrent begins to deviate from the linear regime, and thus the light signal cannot be accurately detected. Here, we used a 532-nm laser to characterize the LDR under bias of 1 V. The power-density-dependent photocurrent curve of the demonstrated photodetector is displayed in Fig. 3(a), in which Psat=370  mW/cm2 and Plow=5.5  nW/cm2, corresponding to an LDR of 157 dB. This LDR value exceeds that of the conventional Si-based photodetector (120 dB) [2]. These demonstrated photodetectors that can detect incident light with power density varying over such a wide range are quite promising for application as power meters and imaging sensors. Our device performance is also compared with a few representative results of perovskite nanowire photodetectors from the literature, as compiled in Table 1 (Appendix C). Obviously, the LDR demonstrated in this work is up to 17 dB larger than the LDR (140 dB) of the oleic-acid-passivated MAPbI3 nanowires photodetector [73]. Note that our Plow is two orders of magnitude lower than the previous record for all-inorganic perovskite nanowire photodetectors (104  mW/cm2) [94] and is comparable to that of the best quasi two-dimensional perovskite nanowire photodetectors (106  mW/cm2) [78].

 

Fig. 3. (a) Current versus illumination power density (i.e., LDR measurement) of the prepared photodetector under 532-nm continuous laser illumination. (b) External quantum efficiency (EQE) versus illumination power density. (c) Responsivity (R) versus the illumination power density. (d) Detectivity (D*) versus illumination power density.

Download Full Size | PPT Slide | PDF

From the obtained I-V measurement results, the external quantum efficiency (EQE) and R values of photodetectors under various illumination power densities are derived based on Eqs. (D1) and (D2) in Appendix D and are plotted in Figs. 2(b) and 2(c), respectively. In MSM photodetectors, it is common to see photocurrent amplification or EQE>100% [see Eq. (D3) in Appendix D]. In this case, each photogenerated electron may induce more than one hole sweeping across the device. As observed in Fig. 3(b), at power densities from 5.5  nW/cm2 to 370  mW/cm2, all EQE values are greater than 100%. It is also clear that EQE and R increase with decreasing power density of the incident light, consistent with the results in the literature [9599]. This trend is ascribed to the electron traps existing within the MAPbI3 nanowires [57]. Under bias, most of the electron traps are quickly filled by the injected electrons; thus, only a small fraction of residual electron traps remain unfilled, offering opportunities for the photogenerated electrons to be trapped. With the reduction in illumination power density, due to the limited number of residual electron traps, the number of photogenerated trapped electrons per unit photon increases, and hence, EQE and R rise gradually. Consequently, at the lowest detectable power density of 5.5  nW/cm2, one obtains the highest EQE of 2.0×106% and the highest R of 8.5×103  A/W. Here, the obtained highest R is greater than the results of most of the MAPbI3 nanowire photodetectors reported in the literature, as indicated by Table 1.

Although the previously reported MAPbI3 nanowire photodetector with a record R (12.5×103  A/W) displayed an expected Plow of 104  mW/cm2 and a measured Plow of 102  mW/cm2 [64], our device exhibits a superior ability to detect weak light with four orders of magnitude lower Plow in comparison, due to a significantly reduced surface defect density. In our work, the as-grown single-crystalline MAPbI3 nanowires have atomically smooth surfaces and regular facets, which significantly reduces the number of defects as well as the scattering loss, thereby guaranteeing the ability to distinguish very weak optical signals. In order to further confirm that our photodetectors made of atomically smooth MAPbI3 nanowires are ideal candidates for detecting weak light, the noise currents are measured; hence, the device D* can be calculated. As shown in Fig. 13 (Appendix C), the measured average noise current of the MAPbI3 nanowire photodetector is 7.2×1014  A·Hz1/2, which is very close to the reported noise current of the oleic-acid-passivated MAPbI3 nanowires [73]. This coincides with the agreement of the lowest detectable power densities of our device and the oleic-acid-passivated one. Such a low noise current should have originated from the suppressed surface defects produced by the atomically smooth surface of the MAPbI3 nanowires. One sees that the noise current does not change with frequency. This reflects that the noise of this device is not dominated by the 1/f noise because the MAPbI3 nanowires are of single-crystalline form, which has a near absence of grain boundaries [100102]. For our device, the shot noise (in,s) and thermal noise (in,t) are the two main noise sources and can be derived from the dark current [see Eqs. (D4) and (D5) in Appendix D]. As shown in Fig. 2(g), the shot noise and thermal noise limits are derived to be 1.9×1015  A·Hz1/2 and 4.3×1016  A·Hz1/2, respectively. Taking the square root of these two noise currents, we evaluate the theoretical total noise current limit to be 1.9×1015  A·Hz1/2, which is a bit lower than the measured noise current of 5.7×1014  A·Hz1/2. Thus, there is still some room for improvement in the crystalline quality and morphologies of the MAPbI3 nanowires to reach the theoretical noise limit, which could be achieved by passivating the grain-boundary defect of the perovskite, interface engineering to avoid leakage currents in the detectors, etc. From the measured noise current and R, the D* of the photodetector can be deduced [see Eq. (D7) in Appendix D]. Figure 3(d) shows that the D* increases with decreasing power density of the incident light, and all the D* values under illumination with the power densities from 5.5  nW/cm2 to 370  mW/cm2 are greater than 1010  Jones. At the lowest detectable illumination power density of 5.5  nW/cm2, we obtain the highest D* of 1.2×1014  Jones, outperforming all reported values of MAPbI3 nanowire photodetectors, as shown in Table 1. Because the shot noise of our photodetector is one order greater than its thermal noise, the D* can also be derived considering only the shot noise [see Eq. (D8) in Appendix D], which indicates an estimated D* of 2.3×1014 Jones at the illumination power density of 5.5  nW/cm2, comparable to that deduced from the noise current. Here, the achieved record-high D* is attributed to the simultaneous realization of low noise current and high R, which are guaranteed by the atomically smooth surface of the as-grown MAPbI3 nanowires and the long carrier lifetime, respectively, assuming ohmic contacts are formed at the MAPbI3/Au interfaces.

From the I-V characterizations (see Fig. 14 in Appendix C), the wavelength-dependent EQE spectrum of the demonstrated photodetector is derived, as shown in Fig. 2(d). It can be seen that the EQE values over a broad spectral range from 300 nm to 750 nm are relatively high, in accordance with the device’s broadband absorption characteristic. The rise and fall times of the MAPbI3 nanowire photodetector were evaluated as 350 μs and 670 μs, respectively, corresponding to the 3-dB cutoff frequency of 2.6 kHz; see Figs. 4(a)–4(c). Here, the rise time (Trise) and fall time (Tfall), defined as the time for the photocurrent to rise from 10% to 90% (fall from 90% to 10%) during the on and off cycles of illumination, are measured to be 350 μs and 670 μs, respectively, as shown in Fig. 4(b). The sum of the rise time and fall time, counted as the response time, equals 1020 μs, the same level as those measured values of MAPbI3 nanowire photodetectors in literature [92]. Figure 4(c) shows a 3-dB cutoff frequency of 2.6 kHz, which is also comparable with the performance of other MAPbI3 nanowire photodetectors [64]. Stability tests were taken every five days under 660-nm, 10.19-mW/cm2 illumination. As displayed in Fig. 4(d), in 20 days, the dark current changed negligibly, while the photocurrent decreased to approximately 70% of its original value in the first five days and was maintained afterwards. This reveals good stability of the natural single-crystalline MAPbI3 nanowire photodetectors without any passivation or capsulation processes. Moreover, the stability test results shown in Fig. 4(d) reveal that the present single-crystalline MAPbI3 nanowire photodetector without any passivation or capsulation processes can maintain quite good detection ability after 20 days of storage.

 

Fig. 4. (a) Transient photo response measurement of the fabricated MAPbI3 nanowire photodetector under 660-nm illumination at the power density of 10.19  mW/cm2. (b) Rise/fall time indicated in one cycle. (c) Frequency response of the MAPbI3 nanowire photodetector. (d) Stability test with the photodetector stored in air at a temperature of 20°C and humidity of 10%. The prepared photodetector exhibits stable response when the illumination is turned on and off.

Download Full Size | PPT Slide | PDF

3. CONCLUSION

In conclusion, high-quality single-crystalline MAPbI3 nanowires with atomically smooth faces and regular facets were prepared by the surface-initiated solution-growth strategy and exhibit a carrier lifetime as long as 112.9 ns. Based on the as-grown MAPbI3 nanowires, photodetectors in the MSM configuration were fabricated that exhibit excellent abilities to distinguish photo signals. The space-charge-limited-current I-V characteristic indicates that ohmic contacts are formed between the MAPbI3 nanowire and Au electrodes, yielding a light-to-dark current ratio of 1470 under 660-nm illumination at a power density of 10.19  mW/cm2. The prepared device can linearly sense light with the power density varying from 5.5×106  mW/cm2 to 3.7×102  mW/cm2, corresponding to an LDR up to 157 dB, outperforming all reported MAPbI3 nanowire photodetectors. Due to the long carrier lifetime of the MAPbI3 nanowires, the photo response exhibits strong amplification with the EQE exceeding 100% at all detectable power densities. When the illumination power density diminishes to 5.5×106  mW/cm2, the photocurrent amplification effect is maximized with the external quantum efficiency and R reaching 2.0×106%, and 8.5×103  A/W, respectively. Benefiting from the significantly minimized surface defects of the MAPbI3 nanowires, the measured noise current is extremely low, reaching a level of 1014  A·Hz1/2, and, based on that, the D* under the illumination power density of 5.5×106  mW/cm2 is derived to be 1.2×1014  Jones, outperforming all reported values of MAPbI3 nanowire photodetectors. Distinctly, the achieved record-high D* results from the simultaneous realization of high R and low noise current, produced by the long carrier lifetime and suppressed defects of the as-grown MAPbI3 nanowires, respectively, assuming that the MAPbI3/Au contacts are of the ohmic type rather than the Schottky type. Such an outstanding performance at weak-light detection is superior to that of all reported MAPbI3 nanowire photodetectors. The proposed approach can also be applied to suppress the unintentional defects of other all-inorganic perovskite nanowires or two-dimensional perovskite nanowires, which are expected to have better stabilities than their hybrid three-dimensional perovskite counterparts. Our work contributes to the development of high-performance and low-cost photodetector devices for applications in bio-imaging sensing or long-range light communication for which weak-light signal detection is demanded.

APPENDIX A: EXPERIMENTAL METHODS

A.1. Nanowire Preparation and Device Fabrication

Single crystalline MAPbI3 nanowires were synthesized using the surface initiated solution growth method, as shown in Fig. 5 [16,60,82]. First, the glass substrate was ultrasonically cleaned in deionized water, IPA, and absolute ethanol for 15 min, respectively. Then the dry substrate was treated in a plasma cleaner for 10 min to make it hydrophilic. We prepared a solution of MAI (99.5%, purchased from Xi’an Polymer Light Technology in China) in IPA at a concentration of 40 mg/mL three days in advance, and the MAI solution gradually became yellow in color before usage. In contrast, the PbAc2 (99.99%, purchased from Aladdin) aqueous solution at a concentration of 140 mg/mL was used immediately after being prepared.

 

Fig. 5. Schematic illustration of the surface-initiated solution-growth strategy for preparing the single-crystalline MAPbI3 nanowires. It includes mainly two steps. The first step is to coat a transparent lead acetate (PbAc2) solid film based on the blade coating method, and the second step is to immerse the PbAc2 film into the methyl ammonium iodide (MAI) solution at high concentration.

Download Full Size | PPT Slide | PDF

We placed the hydrophilic glass substrate on a hot plate at 75°C and dropped 40 μL of PbAc2 solution onto it. After that, we dragged the solution of PbAc2 back and forth until the deionized water was completely evaporated. Then, we put the glass substrate coated with the transparent PbAc2 film into an oven at 65°C for 30 min. After the furnace was naturally cooled to room temperature, we put the substrate into the beaker containing the prepared MAI solution, and then placed the beaker in an incubator with a setting temperature. After 70 h of reaction, the growth of the single-crystalline MAPbI3 nanowire product was finished. We took the glass substrate out of the beaker, and then put it in an IPA solution for 1 min to wash away the residual salt. To fabricate the photodetectors, the as-grown MAPbI3 nanowires were first transferred onto a polydimethylsiloxane (PDMS) stamp by peeling off the stamp suddenly after pressing against the glass substrate with nanowires and then transferred onto a glass substrate with a gold interdigitated electrode by peeling off slowly after using the PDMS stamp to press the substrate with the electrode. This transfer method is called the dry contact technique.

A.2. Characterization of Nanowires

The optical images of the prepared MAPbI3 nanowires were characterized using an optical microscope (Nikon, LV-150). The SEM images were collected on Hitachi SU3500, and TEM images were acquired on a transmission electron microscope at an accelerating voltage of 100 kV (JEOL JEM2100). AFM images were taken by the equipment of NT-MDT Ntegra-spectra. The X-ray diffraction (XRD) patterns of the single-crystalline MAPbI3 nanowires were measured by the diffractometer (Hao Yuan Instrument, DX-2700) in the θ-θ geometry to confirm the composition. The absorption spectrum of the MAPbI3 nanowires was measured by an ultraviolet-visible absorption spectrometer (Shimadzu, UV-2600). The photoluminescence spectra at room temperature were recorded by a home-built fluorescence spectrophotometer system [89] using a 343 nm femtosecond laser (Light Conversion, Carbide 5W) as the excitation.

A.3. Optoelectronic Characterizations

The dark and light I-V curves and transient photo responses of MAPbI3 nanowire photodetectors were characterized by placing the samples in a probe station with a shield box (PRCBE, mini) and measured using a semiconductor analyzer (Agilent, B1500). During I-V measurements, LED lamps (Thorlabs) of different wavelengths (343 nm, 505 nm, and 660 nm) were adopted as the light source with the intensities adjusted through tuning the driving voltage. The transient photo responses were acquired with LED lamps, which emit light faster than the response of the measured photodetectors. For the wavelength-dependent photo response measurement, a xenon lamp (ZOLIX GLORIA-X150A) combined with a monochromator (ZOLIX 0mni-λ 3005) was utilized. For the LDR measurement, a 532 nm continuous laser (Changchun New Industries Optoelectronics Tech. Co., Ltd.) with attenuators was used as the light source, which offered much higher power density with respect to LED lamps. The measurement of noise currents was carried out using a spectrum analyzer (Keysight 35670A) and a current amplifier (SRS SR570). The dark and light I-V curves and transient photo responses of MAPbI3 nanowire photodetectors at varied temperatures were characterized by placing the samples in a cryogenic probe station (JD TMS CryoChamber-2).

APPENDIX B: GROWTH AND CHARACTERIZATION OF MAPbI3 NANOWIRES UNDER DIFFERENT HUMIDITY CONDITIONS

We fixed the concentration of PbAc2 solution at 100 mg/mL and studied the growth of MAPbI3 nanowires under four relative humidity conditions. The four kinds of relative humidities are 20%, 25%, 30%, and 35%. Figures 6(a)–6(d) show the optical images of MAPbI3 nanowires growing under the four relative humidities, respectively. We observe that MAPbI3 nanowires have the highest density at the relative humidity of 30% in Fig. 6(c). The corresponding absorption spectrum and PL spectrum are shown in Figs. 6(e) and 6(f), respectively. It can be seen that when the relative humidity is 30% in the process of growth, the perovskite nanowires show the highest absorption intensity and PL intensity, corresponding to the maximum nucleation rate, which is consistent with the results of optical images. Figure 6(g) shows the XRD pattern of the grown nanowires under these humidity conditions. Nanowires have better crystallinity at a relative humidity of 30% with the highest diffraction peak.

 

Fig. 6. (a)–(d) Optical images of MAPbI3 nanowires grown from PbAc2 thin film in relative humidities of 20%, 25%, 30%, and 35%. (e), (f) Corresponding absorption and PL spectra of MAPbI3 nanowires grown in different humidities. (g) XRD pattern of as-grown MAPbI3 nanowires with a comparison of these humidities.

Download Full Size | PPT Slide | PDF

 

Fig. 7. Experimental XRD pattern of as-grown MAPbI3 nanowires with a comparison of the simulated tetragonal phase MAPbI3. The as-grown MAPbI3 nanowires exhibit approximately the same XRD pattern as the simulated one.

Download Full Size | PPT Slide | PDF

 

Fig. 8. (a) Experimental XRD pattern of the MAPbI3 nanowires with a washing time of 20 s. (b) Simulated XRD pattern of MAI. Too short washing time (20 s) could cause a significant amount of MAI residue. The peaks at 19.8° and 29.7° in (a) indicate the existence of MAI in the final product. When the washing time is prolonged to 1 min, the pure single-crystalline MAPbI3 product can be obtained.

Download Full Size | PPT Slide | PDF

 

Fig. 9. Microscopic characterizations of the as-grown MAPbI3 nanowires. (a) SEM image with an area of a single MAPbI3 nanowire framed for the following EDS measurement. (b) EDS elemental mappings of C, Pb, N, and I, and the atomic ratios of different elements. The distribution of elements indicates that Pb and I elements are homogeneously distributed in the individual MAPbI3 nanowire, and the atomic ratio between Pb and I elements is approximately 1∶3.

Download Full Size | PPT Slide | PDF

 

Fig. 10. AFM morphology of the PEDOT:PSS surface. It has an average RMS value of 0.16 nm, only a bit lower than that of the as-grown MAPbI3 nanowires.

Download Full Size | PPT Slide | PDF

APPENDIX C: CHARACTERIZATION OF MAPbI3 NANOWIRE PHOTODETECTORS

 

Fig. 11. (a) Schematic diagram of the fabricated MSM-type MAPbI3 nanowire photodetector. (b) SEM image of a single MAPbI3 nanowire sitting on the fingers of the interdigitated electrode. The planar metal–semiconductor–metal (MSM)-type photodetector with multiple nanowires adhered on top of the metal electrodes is fabricated. The effective photosensitive area is calculated by integrating all the areas of nanowires lying in between neighboring fingers of the electrode. At least 10 devices are fabricated for validating the calculation of the effective photosensitive area (90  μm2).

Download Full Size | PPT Slide | PDF

 

Fig. 12. Dark and photo I-V characteristic of a photodetector prepared by evaporating the electrodes on top of the as-grown MAPbI3 wires.

Download Full Size | PPT Slide | PDF

 

Fig. 13. Measured dark-current noise at various frequencies for the MAPbI3 nanowire photodetector at 1 V bias. The calculated shot noise and thermal noise limits are also included for reference.

Download Full Size | PPT Slide | PDF

 

Fig. 14. (a), (b) Illumination spectrum with power densities of μW/cm2 magnitude from the Xe lamp calibrated by the power meter and the corresponding spectral photocurrent response. The wavelength-dependent photodetection capability of MAPbI3 nanowire photodetectors is studied using the Xe lamp as the light source for I-V characterizations. Illumination spectrum with power densities of μW/cm2 magnitude from the Xe lamp calibrated by the power meter. It is found that our device exhibits a broadband photodetection ability from the wavelength of 300 nm to 800 nm. Here, the photocurrent at 500 nm with a power density of 29.8  μW/cm2 is on the order of 1.15 nA, coincident with the LDR measurements shown in Fig. 2(d).

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Device Performance Comparison of Different Perovskite Nanowire Photodetectors Measured at Room Temperaturea

APPENDIX D: THEORETICAL MODEL

With I-V measurement results, the EQE and R of photodetectors can be derived by the following equations:

EQE=IlIdPinAhνe,
R=IlIdPinA,
where Il is the current under light illumination, Id is the dark current, Pin is the illumination power density, and A is the effective photosensitive area. h is the Planck’s constant, ν is the frequency of light, and e is the electron charge.

In the MSM photodetector made of MAPbI3, the value of gain (G) is equal to EQE, which follows the formula

G=EQE=μpτV0L2=τtp,
where μp is the hole mobility, τ is the carrier lifetime, V0 is the applied voltage, L is the electrode distance, and tp is the transit time of the hole flowing from one electrode to another.

The shot noise (in,s) can be calculated from dark current using the following formula:

in,s=2eidB,
where id is the dark current, e is the elementary charge, and B is the electrical bandwidth.

The thermal noise (in,t) is determined by the following formula:

in,t=4kBTBr,
where kB is the Boltzmann constant, T is the temperature, and r is the resistance of the MAPbI3 nanowire photodetector. The total noise (in,T) can be calculated according to the following expression:
in,T=in,s2+in,t2.
Based on the measurement noise current, the D* of the photodetector is derived by the following equation:
D*=RABin,
where R is the responsivity of the photodetector, B is the electrical bandwidth, and in is the measured dark current noise. The unit of D* is cm·Hz1/2/W (Jones). Considering that the noise current is generated mainly by the shot noise, the D* can be calculated via the following formula:
D*=R2eJd.
As indicated by Eqs. (D4) and (D5), we know that the shot noise is proportional to id1/2 (i.e., inversely proportional to r1/2), while the thermal noise is not only inversely proportional to r1/2 but also proportional to T1/2. As discussed in the main text, at room temperature, the shot noise is one order greater than the thermal noise. Because the proportion of the thermal noise in total noise is further inhibited with the decrease in temperature, it is reasonable to estimate the D* at low operational temperatures considering only the shot noise.

Funding

National Natural Science Foundation of China (61922060, 61775156, 61905173, U1710115, U1810204); Natural Science Foundation of Shanxi Province (201801D221029); Henry Fok Education Foundation Young Teachers Fund; Young Sanjin Scholars Program; Key Research and Development (International Cooperation) Program of Shanxi Province (201803D421044).

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. M. Ahmadi, T. Wu, and B. Hu, “A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics,” Adv. Mater. 29, 1605242 (2017). [CrossRef]  

2. L. Dou, Y. M. Yang, J. B. You, Z. R. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014). [CrossRef]  

3. Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015). [CrossRef]  

4. Y. Zhao and K. Zhu, “Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications,” Chem. Soc. Rev. 45, 655–689 (2016). [CrossRef]  

5. H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018). [CrossRef]  

6. Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018). [CrossRef]  

7. Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018). [CrossRef]  

8. B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26, 22750–22760 (2018). [CrossRef]  

9. W. Tian, H. P. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017). [CrossRef]  

10. M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017). [CrossRef]  

11. G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013). [CrossRef]  

12. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013). [CrossRef]  

13. P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016). [CrossRef]  

14. F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017). [CrossRef]  

15. M. Zhang, M. Lyu, H. Yu, J. H. Yun, Q. Wang, and L. Wang, “Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter,” Chemistry 21, 434–439 (2015). [CrossRef]  

16. H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015). [CrossRef]  

17. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013). [CrossRef]  

18. J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018). [CrossRef]  

19. R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019). [CrossRef]  

20. Y. H. Deng, X. P. Zheng, Y. Bai, Q. Wang, J. J. Zhao, and J. S. Huang, “Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules,” Nat. Energy 3, 560–566 (2018). [CrossRef]  

21. Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells,” Nat. Energy 1, 15001 (2016). [CrossRef]  

22. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017). [CrossRef]  

23. D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018). [CrossRef]  

24. C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016). [CrossRef]  

25. Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015). [CrossRef]  

26. H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015). [CrossRef]  

27. C. W. Liu, Z. L. Qiu, W. L. Meng, J. W. Chen, J. J. Qi, C. Dong, and M. T. Wang, “Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter,” Nano Energy 12, 59–68 (2015). [CrossRef]  

28. X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017). [CrossRef]  

29. K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018). [CrossRef]  

30. M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016). [CrossRef]  

31. A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, and D. Mandal, “Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application,” Nano Energy 49, 380–392 (2018). [CrossRef]  

32. G. H. Li, T. Che, X. Q. Ji, S. D. Liu, Y. Y. Hao, Y. X. Cui, and S. Z. Liu, “Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite,” Adv. Funct. Mater. 29, 1805553 (2019). [CrossRef]  

33. Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016). [CrossRef]  

34. G. Z. Yang, H. B. Lu, F. Chen, T. Zhao, and Z. H. Chen, “Laser molecular beam epitaxy and characterization of perovskite oxide thin films,” J. Cryst. Growth 227-228, 929–935 (2001). [CrossRef]  

35. P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017). [CrossRef]  

36. J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016). [CrossRef]  

37. C. Liu, K. Wang, P. C. Du, E. M. Wang, X. Gong, and A. J. Heeger, “Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters,” Nanoscale 7, 16460–16469 (2015). [CrossRef]  

38. J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019). [CrossRef]  

39. W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016). [CrossRef]  

40. Y. H. Deng, Z. Q. Yang, and R. M. Ma, “Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering,” Nano Converg. 7, 25 (2020). [CrossRef]  

41. Y. Liu, Q. F. Dong, Y. J. Fang, Y. Z. Lin, Y. H. Deng, and J. S. Huang, “Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells,” Adv. Funct. Mater. 29, 1807707 (2019). [CrossRef]  

42. R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017). [CrossRef]  

43. B. R. Sutherland, “Tailoring perovskite thin films to rival single crystals,” Joule 1, 23–25 (2017). [CrossRef]  

44. H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, and C. Y. Su, “In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors,” Adv. Mater. 29, 1602639 (2017). [CrossRef]  

45. Q. Lv, Z. Lian, W. He, J.-L. Sun, Q. Li, and Q. Yan, “A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films,” J. Mater. Chem. C 6, 4464–4470 (2018). [CrossRef]  

46. Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017). [CrossRef]  

47. J. R. Zhang, G. Hodes, Z. W. Jin, and S. Z. Liu, “All-inorganic CsPbX3 perovskite solar cells: progress and prospects,” Angew. Chem. Int. Ed. 58, 15596–15618 (2019). [CrossRef]  

48. L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, and Q. M. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017). [CrossRef]  

49. X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018). [CrossRef]  

50. Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, and T. Y. Zhai, “Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector,” Adv. Funct. Mater. 27, 1703115 (2017). [CrossRef]  

51. R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018). [CrossRef]  

52. J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018). [CrossRef]  

53. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. V. Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14, 2584–2590 (2014). [CrossRef]  

54. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013). [CrossRef]  

55. Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015). [CrossRef]  

56. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015). [CrossRef]  

57. Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015). [CrossRef]  

58. Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015). [CrossRef]  

59. W. M. Tian, C. Y. Zhao, J. Leng, R. R. Cui, and S. Y. Jin, “Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates,” J. Am. Chem. Soc. 137, 12458–12461 (2015). [CrossRef]  

60. R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, and D. Yu, “Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures,” Nano Lett. 16, 7710–7717 (2016). [CrossRef]  

61. S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Adv. Mater. 28, 6804–6834 (2016). [CrossRef]  

62. M. Z. Zhong, L. Huang, H. X. Deng, X. T. Wang, B. Li, Z. M. Wei, and J. B. Li, “Flexible photodetectors based on phase dependent PbI2 single crystals,” J. Mater. Chem. C 4, 6492–6499 (2016). [CrossRef]  

63. P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016). [CrossRef]  

64. W. Deng, L. M. Huang, X. Z. Xu, X. J. Zhang, X. C. Jin, S.-T. Lee, and J. S. Jie, “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement,” Nano Lett. 17, 2482–2489 (2017). [CrossRef]  

65. L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016). [CrossRef]  

66. J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li, and H. B. Zeng, “Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices,” Adv. Mater. 28, 4861–4869 (2016). [CrossRef]  

67. W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016). [CrossRef]  

68. H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015). [CrossRef]  

69. E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, and L. S. Forro, “Nanowires of methylammonium lead iodide (CH3NH3Pbl3) prepared by low temperature solution-mediated crystallization,” Nano Lett. 14, 6761–6766 (2014). [CrossRef]  

70. H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015). [CrossRef]  

71. D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017). [CrossRef]  

72. Q. Hu, H. Wu, J. Sun, D. H. Yan, Y. L. Gao, and J. L. Yang, “Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading,” Nanoscale 8, 5350–5357 (2016). [CrossRef]  

73. L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016). [CrossRef]  

74. X. Qin, Y. F. Yao, H. L. Dong, Y. G. Zhen, L. Jiang, and W. P. Hu, “Perovskite photodetectors based on CH3NH3PbI3 single crystals,” Chem. Asian J. 11, 2675–2679 (2016). [CrossRef]  

75. S. F. Zhuo, J. F. Zhang, Y. M. Shi, Y. Huang, and B. Zhang, “Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors,” Angew. Chem. Int. Ed. 54, 5693–5696 (2015). [CrossRef]  

76. X. Z. Xu, X. J. Zhang, W. Deng, L. M. Huang, W. Wang, J. S. Jie, and X. H. Zhang, “Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability,” ACS Appl. Mater. Interfaces 10, 10287–10295 (2018). [CrossRef]  

77. I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, and R. Nechachea, “High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector,” Nano Energy 51, 324–332 (2018). [CrossRef]  

78. J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018). [CrossRef]  

79. I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, and S. G. Cloutier, “Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires,” Small 15, 1804150 (2018). [CrossRef]  

80. H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018). [CrossRef]  

81. M. J. Ashley, M. N. O’Brien, K. R. Hedderick, J. A. Mason, M. B. Ross, and C. A. Mirkin, “Templated synthesis of uniform perovskite nanowire arrays,” J. Am. Chem. Soc. 138, 10096–10099 (2016). [CrossRef]  

82. Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015). [CrossRef]  

83. Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014). [CrossRef]  

84. Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015). [CrossRef]  

85. J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015). [CrossRef]  

86. X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016). [CrossRef]  

87. R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020). [CrossRef]  

88. J. He, W.-H. Fang, R. Long, and O. V. Prezhdo, “Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: time-domain ab initio analysis,” J. Am. Chem. Soc. 141, 5798–5807 (2019). [CrossRef]  

89. W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018). [CrossRef]  

90. J. A. Geurst, “Theory of space-charge-limited currents in thin semiconductor layers,” Phys. Status Solidi B 15, 107–118 (1966). [CrossRef]  

91. O. Marinov, M. J. Deen, and R. Datars, “Compact modeling of charge carrier mobility in organic thin-film transistors,” Jpn. J. Appl. Phys. 106, 064501 (2009). [CrossRef]  

92. Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, and T. Kim, “Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications,” ACS Nano 12, 8406–8414 (2018). [CrossRef]  

93. D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019). [CrossRef]  

94. G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, and L. Jiang, “Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors,” Adv. Funct. Mater. 29, 1808741 (2019). [CrossRef]  

95. F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012). [CrossRef]  

96. O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 84, 4092–4094 (2004). [CrossRef]  

97. G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1, 531–534 (2007). [CrossRef]  

98. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007). [CrossRef]  

99. Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018). [CrossRef]  

100. Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018). [CrossRef]  

101. W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017). [CrossRef]  

102. Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. Ahmadi, T. Wu, and B. Hu, “A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics,” Adv. Mater. 29, 1605242 (2017).
    [Crossref]
  2. L. Dou, Y. M. Yang, J. B. You, Z. R. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
    [Crossref]
  3. Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015).
    [Crossref]
  4. Y. Zhao and K. Zhu, “Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications,” Chem. Soc. Rev. 45, 655–689 (2016).
    [Crossref]
  5. H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018).
    [Crossref]
  6. Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
    [Crossref]
  7. Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
    [Crossref]
  8. B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26, 22750–22760 (2018).
    [Crossref]
  9. W. Tian, H. P. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017).
    [Crossref]
  10. M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
    [Crossref]
  11. G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
    [Crossref]
  12. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
    [Crossref]
  13. P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016).
    [Crossref]
  14. F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
    [Crossref]
  15. M. Zhang, M. Lyu, H. Yu, J. H. Yun, Q. Wang, and L. Wang, “Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter,” Chemistry 21, 434–439 (2015).
    [Crossref]
  16. H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
    [Crossref]
  17. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).
    [Crossref]
  18. J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018).
    [Crossref]
  19. R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
    [Crossref]
  20. Y. H. Deng, X. P. Zheng, Y. Bai, Q. Wang, J. J. Zhao, and J. S. Huang, “Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules,” Nat. Energy 3, 560–566 (2018).
    [Crossref]
  21. Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells,” Nat. Energy 1, 15001 (2016).
    [Crossref]
  22. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
    [Crossref]
  23. D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
    [Crossref]
  24. C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016).
    [Crossref]
  25. Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
    [Crossref]
  26. H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015).
    [Crossref]
  27. C. W. Liu, Z. L. Qiu, W. L. Meng, J. W. Chen, J. J. Qi, C. Dong, and M. T. Wang, “Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter,” Nano Energy 12, 59–68 (2015).
    [Crossref]
  28. X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017).
    [Crossref]
  29. K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
    [Crossref]
  30. M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
    [Crossref]
  31. A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, and D. Mandal, “Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application,” Nano Energy 49, 380–392 (2018).
    [Crossref]
  32. G. H. Li, T. Che, X. Q. Ji, S. D. Liu, Y. Y. Hao, Y. X. Cui, and S. Z. Liu, “Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite,” Adv. Funct. Mater. 29, 1805553 (2019).
    [Crossref]
  33. Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
    [Crossref]
  34. G. Z. Yang, H. B. Lu, F. Chen, T. Zhao, and Z. H. Chen, “Laser molecular beam epitaxy and characterization of perovskite oxide thin films,” J. Cryst. Growth 227-228, 929–935 (2001).
    [Crossref]
  35. P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
    [Crossref]
  36. J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
    [Crossref]
  37. C. Liu, K. Wang, P. C. Du, E. M. Wang, X. Gong, and A. J. Heeger, “Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters,” Nanoscale 7, 16460–16469 (2015).
    [Crossref]
  38. J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
    [Crossref]
  39. W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
    [Crossref]
  40. Y. H. Deng, Z. Q. Yang, and R. M. Ma, “Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering,” Nano Converg. 7, 25 (2020).
    [Crossref]
  41. Y. Liu, Q. F. Dong, Y. J. Fang, Y. Z. Lin, Y. H. Deng, and J. S. Huang, “Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells,” Adv. Funct. Mater. 29, 1807707 (2019).
    [Crossref]
  42. R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
    [Crossref]
  43. B. R. Sutherland, “Tailoring perovskite thin films to rival single crystals,” Joule 1, 23–25 (2017).
    [Crossref]
  44. H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, and C. Y. Su, “In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors,” Adv. Mater. 29, 1602639 (2017).
    [Crossref]
  45. Q. Lv, Z. Lian, W. He, J.-L. Sun, Q. Li, and Q. Yan, “A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films,” J. Mater. Chem. C 6, 4464–4470 (2018).
    [Crossref]
  46. Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
    [Crossref]
  47. J. R. Zhang, G. Hodes, Z. W. Jin, and S. Z. Liu, “All-inorganic CsPbX3 perovskite solar cells: progress and prospects,” Angew. Chem. Int. Ed. 58, 15596–15618 (2019).
    [Crossref]
  48. L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, and Q. M. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
    [Crossref]
  49. X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018).
    [Crossref]
  50. Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, and T. Y. Zhai, “Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector,” Adv. Funct. Mater. 27, 1703115 (2017).
    [Crossref]
  51. R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018).
    [Crossref]
  52. J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
    [Crossref]
  53. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. V. Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14, 2584–2590 (2014).
    [Crossref]
  54. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
    [Crossref]
  55. Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
    [Crossref]
  56. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
    [Crossref]
  57. Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
    [Crossref]
  58. Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
    [Crossref]
  59. W. M. Tian, C. Y. Zhao, J. Leng, R. R. Cui, and S. Y. Jin, “Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates,” J. Am. Chem. Soc. 137, 12458–12461 (2015).
    [Crossref]
  60. R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, and D. Yu, “Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures,” Nano Lett. 16, 7710–7717 (2016).
    [Crossref]
  61. S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Adv. Mater. 28, 6804–6834 (2016).
    [Crossref]
  62. M. Z. Zhong, L. Huang, H. X. Deng, X. T. Wang, B. Li, Z. M. Wei, and J. B. Li, “Flexible photodetectors based on phase dependent PbI2 single crystals,” J. Mater. Chem. C 4, 6492–6499 (2016).
    [Crossref]
  63. P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
    [Crossref]
  64. W. Deng, L. M. Huang, X. Z. Xu, X. J. Zhang, X. C. Jin, S.-T. Lee, and J. S. Jie, “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement,” Nano Lett. 17, 2482–2489 (2017).
    [Crossref]
  65. L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
    [Crossref]
  66. J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li, and H. B. Zeng, “Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices,” Adv. Mater. 28, 4861–4869 (2016).
    [Crossref]
  67. W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
    [Crossref]
  68. H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
    [Crossref]
  69. E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, and L. S. Forro, “Nanowires of methylammonium lead iodide (CH3NH3Pbl3) prepared by low temperature solution-mediated crystallization,” Nano Lett. 14, 6761–6766 (2014).
    [Crossref]
  70. H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
    [Crossref]
  71. D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
    [Crossref]
  72. Q. Hu, H. Wu, J. Sun, D. H. Yan, Y. L. Gao, and J. L. Yang, “Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading,” Nanoscale 8, 5350–5357 (2016).
    [Crossref]
  73. L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
    [Crossref]
  74. X. Qin, Y. F. Yao, H. L. Dong, Y. G. Zhen, L. Jiang, and W. P. Hu, “Perovskite photodetectors based on CH3NH3PbI3 single crystals,” Chem. Asian J. 11, 2675–2679 (2016).
    [Crossref]
  75. S. F. Zhuo, J. F. Zhang, Y. M. Shi, Y. Huang, and B. Zhang, “Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors,” Angew. Chem. Int. Ed. 54, 5693–5696 (2015).
    [Crossref]
  76. X. Z. Xu, X. J. Zhang, W. Deng, L. M. Huang, W. Wang, J. S. Jie, and X. H. Zhang, “Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability,” ACS Appl. Mater. Interfaces 10, 10287–10295 (2018).
    [Crossref]
  77. I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, and R. Nechachea, “High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector,” Nano Energy 51, 324–332 (2018).
    [Crossref]
  78. J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
    [Crossref]
  79. I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, and S. G. Cloutier, “Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires,” Small 15, 1804150 (2018).
    [Crossref]
  80. H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018).
    [Crossref]
  81. M. J. Ashley, M. N. O’Brien, K. R. Hedderick, J. A. Mason, M. B. Ross, and C. A. Mirkin, “Templated synthesis of uniform perovskite nanowire arrays,” J. Am. Chem. Soc. 138, 10096–10099 (2016).
    [Crossref]
  82. Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015).
    [Crossref]
  83. Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
    [Crossref]
  84. Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
    [Crossref]
  85. J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
    [Crossref]
  86. X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
    [Crossref]
  87. R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
    [Crossref]
  88. J. He, W.-H. Fang, R. Long, and O. V. Prezhdo, “Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: time-domain ab initio analysis,” J. Am. Chem. Soc. 141, 5798–5807 (2019).
    [Crossref]
  89. W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018).
    [Crossref]
  90. J. A. Geurst, “Theory of space-charge-limited currents in thin semiconductor layers,” Phys. Status Solidi B 15, 107–118 (1966).
    [Crossref]
  91. O. Marinov, M. J. Deen, and R. Datars, “Compact modeling of charge carrier mobility in organic thin-film transistors,” Jpn. J. Appl. Phys. 106, 064501 (2009).
    [Crossref]
  92. Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, and T. Kim, “Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications,” ACS Nano 12, 8406–8414 (2018).
    [Crossref]
  93. D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
    [Crossref]
  94. G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, and L. Jiang, “Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors,” Adv. Funct. Mater. 29, 1808741 (2019).
    [Crossref]
  95. F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
    [Crossref]
  96. O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 84, 4092–4094 (2004).
    [Crossref]
  97. G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1, 531–534 (2007).
    [Crossref]
  98. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
    [Crossref]
  99. Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
    [Crossref]
  100. Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
    [Crossref]
  101. W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
    [Crossref]
  102. Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
    [Crossref]

2020 (2)

Y. H. Deng, Z. Q. Yang, and R. M. Ma, “Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering,” Nano Converg. 7, 25 (2020).
[Crossref]

R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
[Crossref]

2019 (8)

J. He, W.-H. Fang, R. Long, and O. V. Prezhdo, “Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: time-domain ab initio analysis,” J. Am. Chem. Soc. 141, 5798–5807 (2019).
[Crossref]

D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
[Crossref]

G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, and L. Jiang, “Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors,” Adv. Funct. Mater. 29, 1808741 (2019).
[Crossref]

Y. Liu, Q. F. Dong, Y. J. Fang, Y. Z. Lin, Y. H. Deng, and J. S. Huang, “Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells,” Adv. Funct. Mater. 29, 1807707 (2019).
[Crossref]

J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
[Crossref]

J. R. Zhang, G. Hodes, Z. W. Jin, and S. Z. Liu, “All-inorganic CsPbX3 perovskite solar cells: progress and prospects,” Angew. Chem. Int. Ed. 58, 15596–15618 (2019).
[Crossref]

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

G. H. Li, T. Che, X. Q. Ji, S. D. Liu, Y. Y. Hao, Y. X. Cui, and S. Z. Liu, “Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite,” Adv. Funct. Mater. 29, 1805553 (2019).
[Crossref]

2018 (22)

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Y. H. Deng, X. P. Zheng, Y. Bai, Q. Wang, J. J. Zhao, and J. S. Huang, “Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules,” Nat. Energy 3, 560–566 (2018).
[Crossref]

J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018).
[Crossref]

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018).
[Crossref]

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26, 22750–22760 (2018).
[Crossref]

X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018).
[Crossref]

R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018).
[Crossref]

J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
[Crossref]

Q. Lv, Z. Lian, W. He, J.-L. Sun, Q. Li, and Q. Yan, “A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films,” J. Mater. Chem. C 6, 4464–4470 (2018).
[Crossref]

Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
[Crossref]

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, and T. Kim, “Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications,” ACS Nano 12, 8406–8414 (2018).
[Crossref]

W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018).
[Crossref]

A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, and D. Mandal, “Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application,” Nano Energy 49, 380–392 (2018).
[Crossref]

X. Z. Xu, X. J. Zhang, W. Deng, L. M. Huang, W. Wang, J. S. Jie, and X. H. Zhang, “Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability,” ACS Appl. Mater. Interfaces 10, 10287–10295 (2018).
[Crossref]

I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, and R. Nechachea, “High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector,” Nano Energy 51, 324–332 (2018).
[Crossref]

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, and S. G. Cloutier, “Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires,” Small 15, 1804150 (2018).
[Crossref]

H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018).
[Crossref]

2017 (16)

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

B. R. Sutherland, “Tailoring perovskite thin films to rival single crystals,” Joule 1, 23–25 (2017).
[Crossref]

H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, and C. Y. Su, “In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors,” Adv. Mater. 29, 1602639 (2017).
[Crossref]

Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, and T. Y. Zhai, “Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector,” Adv. Funct. Mater. 27, 1703115 (2017).
[Crossref]

L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, and Q. M. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

W. Deng, L. M. Huang, X. Z. Xu, X. J. Zhang, X. C. Jin, S.-T. Lee, and J. S. Jie, “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement,” Nano Lett. 17, 2482–2489 (2017).
[Crossref]

D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
[Crossref]

W. Tian, H. P. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017).
[Crossref]

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

M. Ahmadi, T. Wu, and B. Hu, “A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics,” Adv. Mater. 29, 1605242 (2017).
[Crossref]

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

2016 (20)

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016).
[Crossref]

P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016).
[Crossref]

Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells,” Nat. Energy 1, 15001 (2016).
[Crossref]

Y. Zhao and K. Zhu, “Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications,” Chem. Soc. Rev. 45, 655–689 (2016).
[Crossref]

Q. Hu, H. Wu, J. Sun, D. H. Yan, Y. L. Gao, and J. L. Yang, “Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading,” Nanoscale 8, 5350–5357 (2016).
[Crossref]

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

X. Qin, Y. F. Yao, H. L. Dong, Y. G. Zhen, L. Jiang, and W. P. Hu, “Perovskite photodetectors based on CH3NH3PbI3 single crystals,” Chem. Asian J. 11, 2675–2679 (2016).
[Crossref]

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li, and H. B. Zeng, “Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices,” Adv. Mater. 28, 4861–4869 (2016).
[Crossref]

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, and D. Yu, “Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures,” Nano Lett. 16, 7710–7717 (2016).
[Crossref]

S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Adv. Mater. 28, 6804–6834 (2016).
[Crossref]

M. Z. Zhong, L. Huang, H. X. Deng, X. T. Wang, B. Li, Z. M. Wei, and J. B. Li, “Flexible photodetectors based on phase dependent PbI2 single crystals,” J. Mater. Chem. C 4, 6492–6499 (2016).
[Crossref]

P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
[Crossref]

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

M. J. Ashley, M. N. O’Brien, K. R. Hedderick, J. A. Mason, M. B. Ross, and C. A. Mirkin, “Templated synthesis of uniform perovskite nanowire arrays,” J. Am. Chem. Soc. 138, 10096–10099 (2016).
[Crossref]

2015 (19)

Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015).
[Crossref]

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

W. M. Tian, C. Y. Zhao, J. Leng, R. R. Cui, and S. Y. Jin, “Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates,” J. Am. Chem. Soc. 137, 12458–12461 (2015).
[Crossref]

H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
[Crossref]

S. F. Zhuo, J. F. Zhang, Y. M. Shi, Y. Huang, and B. Zhang, “Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors,” Angew. Chem. Int. Ed. 54, 5693–5696 (2015).
[Crossref]

Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015).
[Crossref]

M. Zhang, M. Lyu, H. Yu, J. H. Yun, Q. Wang, and L. Wang, “Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter,” Chemistry 21, 434–439 (2015).
[Crossref]

H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015).
[Crossref]

C. W. Liu, Z. L. Qiu, W. L. Meng, J. W. Chen, J. J. Qi, C. Dong, and M. T. Wang, “Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter,” Nano Energy 12, 59–68 (2015).
[Crossref]

C. Liu, K. Wang, P. C. Du, E. M. Wang, X. Gong, and A. J. Heeger, “Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters,” Nanoscale 7, 16460–16469 (2015).
[Crossref]

2014 (4)

L. Dou, Y. M. Yang, J. B. You, Z. R. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, and L. S. Forro, “Nanowires of methylammonium lead iodide (CH3NH3Pbl3) prepared by low temperature solution-mediated crystallization,” Nano Lett. 14, 6761–6766 (2014).
[Crossref]

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. V. Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14, 2584–2590 (2014).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

2013 (4)

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).
[Crossref]

G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

2012 (1)

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

2009 (1)

O. Marinov, M. J. Deen, and R. Datars, “Compact modeling of charge carrier mobility in organic thin-film transistors,” Jpn. J. Appl. Phys. 106, 064501 (2009).
[Crossref]

2007 (2)

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1, 531–534 (2007).
[Crossref]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

2004 (1)

O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 84, 4092–4094 (2004).
[Crossref]

2001 (1)

G. Z. Yang, H. B. Lu, F. Chen, T. Zhao, and Z. H. Chen, “Laser molecular beam epitaxy and characterization of perovskite oxide thin films,” J. Cryst. Growth 227-228, 929–935 (2001).
[Crossref]

1966 (1)

J. A. Geurst, “Theory of space-charge-limited currents in thin semiconductor layers,” Phys. Status Solidi B 15, 107–118 (1966).
[Crossref]

Adinolfi, V.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Ahmadi, M.

M. Ahmadi, T. Wu, and B. Hu, “A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics,” Adv. Mater. 29, 1605242 (2017).
[Crossref]

Alam, M. M.

A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, and D. Mandal, “Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application,” Nano Energy 49, 380–392 (2018).
[Crossref]

Alarousu, E.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Alcocer, M. J. P.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Amassian, A.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Aplin, D. P.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Ashley, M. J.

M. J. Ashley, M. N. O’Brien, K. R. Hedderick, J. A. Mason, M. B. Ross, and C. A. Mirkin, “Templated synthesis of uniform perovskite nanowire arrays,” J. Am. Chem. Soc. 138, 10096–10099 (2016).
[Crossref]

Asuo, I. M.

I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, and S. G. Cloutier, “Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires,” Small 15, 1804150 (2018).
[Crossref]

I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, and R. Nechachea, “High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector,” Nano Energy 51, 324–332 (2018).
[Crossref]

Bahir, G.

O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 84, 4092–4094 (2004).
[Crossref]

Bai, Y.

Y. H. Deng, X. P. Zheng, Y. Bai, Q. Wang, J. J. Zhao, and J. S. Huang, “Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules,” Nat. Energy 3, 560–566 (2018).
[Crossref]

Bakr, O. M.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Bao, Q.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Bao, Q. L.

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Bao, X. Y.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Beauregard, E. M.

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Bera, A.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Bi, D. Q.

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

Bi, Y.

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Bian, D.

X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017).
[Crossref]

Boix, P. P.

S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Adv. Mater. 28, 6804–6834 (2016).
[Crossref]

Bouzidi, S.

I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, and S. G. Cloutier, “Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires,” Small 15, 1804150 (2018).
[Crossref]

Brenes, R.

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

Brivio, F.

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. V. Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14, 2584–2590 (2014).
[Crossref]

Bu, L. L.

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

Buin, A.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Bulovic, V.

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

Burlakov, V. M.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Burschka, J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Butler, K. T.

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. V. Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14, 2584–2590 (2014).
[Crossref]

Cai, F. S.

D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
[Crossref]

Cai, L.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Cao, C. H.

C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016).
[Crossref]

Cao, L.

Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

Chang, W.-H.

L. Dou, Y. M. Yang, J. B. You, Z. R. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Che, T.

G. H. Li, T. Che, X. Q. Ji, S. D. Liu, Y. Y. Hao, Y. X. Cui, and S. Z. Liu, “Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite,” Adv. Funct. Mater. 29, 1805553 (2019).
[Crossref]

W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018).
[Crossref]

Chen, B. X.

H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, and C. Y. Su, “In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors,” Adv. Mater. 29, 1602639 (2017).
[Crossref]

Chen, C.

X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018).
[Crossref]

H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018).
[Crossref]

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

Chen, C. C.

Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015).
[Crossref]

Chen, F.

G. Z. Yang, H. B. Lu, F. Chen, T. Zhao, and Z. H. Chen, “Laser molecular beam epitaxy and characterization of perovskite oxide thin films,” J. Cryst. Growth 227-228, 929–935 (2001).
[Crossref]

Chen, G. S.

G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, and L. Jiang, “Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors,” Adv. Funct. Mater. 29, 1808741 (2019).
[Crossref]

Chen, H. Z.

Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
[Crossref]

Chen, J. W.

C. W. Liu, Z. L. Qiu, W. L. Meng, J. W. Chen, J. J. Qi, C. Dong, and M. T. Wang, “Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter,” Nano Energy 12, 59–68 (2015).
[Crossref]

Chen, K.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Chen, L. L.

J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018).
[Crossref]

Chen, M.

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

Chen, Q.

J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
[Crossref]

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015).
[Crossref]

Chen, R. J.

P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016).
[Crossref]

Chen, S.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Chen, S. M.

X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017).
[Crossref]

Chen, X.

X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018).
[Crossref]

Chen, Y.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Chen, Z. H.

G. Z. Yang, H. B. Lu, F. Chen, T. Zhao, and Z. H. Chen, “Laser molecular beam epitaxy and characterization of perovskite oxide thin films,” J. Cryst. Growth 227-228, 929–935 (2001).
[Crossref]

Cheng, B. W.

L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, and Q. M. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Cheng, Y. B.

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
[Crossref]

Cho, N.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Clifford, J.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1, 531–534 (2007).
[Crossref]

Cloutier, S. G.

I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, and S. G. Cloutier, “Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires,” Small 15, 1804150 (2018).
[Crossref]

I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, and R. Nechachea, “High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector,” Nano Energy 51, 324–332 (2018).
[Crossref]

Comin, R.

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Cong, C.

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

Cong, C. X.

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

Cui, D.

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

Cui, R. R.

W. M. Tian, C. Y. Zhao, J. Leng, R. R. Cui, and S. Y. Jin, “Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates,” J. Am. Chem. Soc. 137, 12458–12461 (2015).
[Crossref]

Cui, Y. X.

R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
[Crossref]

G. H. Li, T. Che, X. Q. Ji, S. D. Liu, Y. Y. Hao, Y. X. Cui, and S. Z. Liu, “Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite,” Adv. Funct. Mater. 29, 1805553 (2019).
[Crossref]

J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
[Crossref]

W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018).
[Crossref]

Dai, H. T.

X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017).
[Crossref]

Das, S.

A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, and D. Mandal, “Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application,” Nano Energy 49, 380–392 (2018).
[Crossref]

Datars, R.

O. Marinov, M. J. Deen, and R. Datars, “Compact modeling of charge carrier mobility in organic thin-film transistors,” Jpn. J. Appl. Phys. 106, 064501 (2009).
[Crossref]

Dayeh, S. A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

de Arquer, F. P. G.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

De Marco, N.

Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015).
[Crossref]

Deen, M. J.

O. Marinov, M. J. Deen, and R. Datars, “Compact modeling of charge carrier mobility in organic thin-film transistors,” Jpn. J. Appl. Phys. 106, 064501 (2009).
[Crossref]

Deng, H.

D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
[Crossref]

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
[Crossref]

Deng, H. X.

M. Z. Zhong, L. Huang, H. X. Deng, X. T. Wang, B. Li, Z. M. Wei, and J. B. Li, “Flexible photodetectors based on phase dependent PbI2 single crystals,” J. Mater. Chem. C 4, 6492–6499 (2016).
[Crossref]

Deng, L. P.

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Deng, W.

X. Z. Xu, X. J. Zhang, W. Deng, L. M. Huang, W. Wang, J. S. Jie, and X. H. Zhang, “Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability,” ACS Appl. Mater. Interfaces 10, 10287–10295 (2018).
[Crossref]

W. Deng, L. M. Huang, X. Z. Xu, X. J. Zhang, X. C. Jin, S.-T. Lee, and J. S. Jie, “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement,” Nano Lett. 17, 2482–2489 (2017).
[Crossref]

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Deng, Y.

P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
[Crossref]

Deng, Y. H.

Y. H. Deng, Z. Q. Yang, and R. M. Ma, “Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering,” Nano Converg. 7, 25 (2020).
[Crossref]

Y. Liu, Q. F. Dong, Y. J. Fang, Y. Z. Lin, Y. H. Deng, and J. S. Huang, “Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells,” Adv. Funct. Mater. 29, 1807707 (2019).
[Crossref]

Y. H. Deng, X. P. Zheng, Y. Bai, Q. Wang, J. J. Zhao, and J. S. Huang, “Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules,” Nat. Energy 3, 560–566 (2018).
[Crossref]

Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
[Crossref]

Deng, Z. Z.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Ding, Q.

H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Dong, B. Q.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Dong, C.

C. W. Liu, Z. L. Qiu, W. L. Meng, J. W. Chen, J. J. Qi, C. Dong, and M. T. Wang, “Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter,” Nano Energy 12, 59–68 (2015).
[Crossref]

Dong, D. D.

D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
[Crossref]

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
[Crossref]

Dong, H. L.

X. Qin, Y. F. Yao, H. L. Dong, Y. G. Zhen, L. Jiang, and W. P. Hu, “Perovskite photodetectors based on CH3NH3PbI3 single crystals,” Chem. Asian J. 11, 2675–2679 (2016).
[Crossref]

Dong, Q. F.

Y. Liu, Q. F. Dong, Y. J. Fang, Y. Z. Lin, Y. H. Deng, and J. S. Huang, “Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells,” Adv. Funct. Mater. 29, 1807707 (2019).
[Crossref]

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Dong, Y. H.

J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li, and H. B. Zeng, “Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices,” Adv. Mater. 28, 4861–4869 (2016).
[Crossref]

Dou, L.

L. Dou, Y. M. Yang, J. B. You, Z. R. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Dowben, P. A.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Du, J.

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

Du, P. C.

C. Liu, K. Wang, P. C. Du, E. M. Wang, X. Gong, and A. J. Heeger, “Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters,” Nanoscale 7, 16460–16469 (2015).
[Crossref]

Duan, Y.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Eames, C.

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

Eperon, G. E.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Fan, D.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Fan, D. Y.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Fan, H. B.

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

Fan, M. M.

J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
[Crossref]

Fan, T. J.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Fan, Z. Y.

D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
[Crossref]

Fang, N. X.

Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
[Crossref]

Fang, W.-H.

J. He, W.-H. Fang, R. Long, and O. V. Prezhdo, “Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: time-domain ab initio analysis,” J. Am. Chem. Soc. 141, 5798–5807 (2019).
[Crossref]

Fang, Y. J.

Y. Liu, Q. F. Dong, Y. J. Fang, Y. Z. Lin, Y. H. Deng, and J. S. Huang, “Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells,” Adv. Funct. Mater. 29, 1807707 (2019).
[Crossref]

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

Feng, J. G.

G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, and L. Jiang, “Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors,” Adv. Funct. Mater. 29, 1808741 (2019).
[Crossref]

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Feng, J. S.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Forro, L. S.

E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, and L. S. Forro, “Nanowires of methylammonium lead iodide (CH3NH3Pbl3) prepared by low temperature solution-mediated crystallization,” Nano Lett. 14, 6761–6766 (2014).
[Crossref]

Fortier, F.-X.

I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, and R. Nechachea, “High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector,” Nano Energy 51, 324–332 (2018).
[Crossref]

Fourmont, P.

I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, and S. G. Cloutier, “Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires,” Small 15, 1804150 (2018).
[Crossref]

Friend, R. H.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

Frost, J. M.

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. V. Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14, 2584–2590 (2014).
[Crossref]

Fu, H.

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Fu, H. B.

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Fu, Q.

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

Fu, Q. D.

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

Fu, W.

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

Fu, Y. P.

R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, and D. Yu, “Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures,” Nano Lett. 16, 7710–7717 (2016).
[Crossref]

H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015).
[Crossref]

Gaal, R.

E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, and L. S. Forro, “Nanowires of methylammonium lead iodide (CH3NH3Pbl3) prepared by low temperature solution-mediated crystallization,” Nano Lett. 14, 6761–6766 (2014).
[Crossref]

Gachet, D.

E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, and L. S. Forro, “Nanowires of methylammonium lead iodide (CH3NH3Pbl3) prepared by low temperature solution-mediated crystallization,” Nano Lett. 14, 6761–6766 (2014).
[Crossref]

Gan, L.

Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, and T. Y. Zhai, “Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector,” Adv. Funct. Mater. 27, 1703115 (2017).
[Crossref]

Gao, H. F.

G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, and L. Jiang, “Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors,” Adv. Funct. Mater. 29, 1808741 (2019).
[Crossref]

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Gao, J.

J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
[Crossref]

Gao, L.

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

Gao, P.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Gao, R.

R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
[Crossref]

Gao, Y. L.

H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018).
[Crossref]

C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016).
[Crossref]

Q. Hu, H. Wu, J. Sun, D. H. Yan, Y. L. Gao, and J. L. Yang, “Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading,” Nanoscale 8, 5350–5357 (2016).
[Crossref]

Garnett, E. C.

D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
[Crossref]

Ge, C.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

Ge, Y.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Ge, Y. Q.

Gedamu, D.

I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, and S. G. Cloutier, “Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires,” Small 15, 1804150 (2018).
[Crossref]

Gedamua, D.

I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, and R. Nechachea, “High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector,” Nano Energy 51, 324–332 (2018).
[Crossref]

Gerlein, L. F.

I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, and R. Nechachea, “High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector,” Nano Energy 51, 324–332 (2018).
[Crossref]

Geurst, J. A.

J. A. Geurst, “Theory of space-charge-limited currents in thin semiconductor layers,” Phys. Status Solidi B 15, 107–118 (1966).
[Crossref]

Ghorai, U. K.

A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, and D. Mandal, “Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application,” Nano Energy 49, 380–392 (2018).
[Crossref]

Gong, C.

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Gong, Q. H.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Gong, X.

C. Liu, K. Wang, P. C. Du, E. M. Wang, X. Gong, and A. J. Heeger, “Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters,” Nanoscale 7, 16460–16469 (2015).
[Crossref]

Gong, X. W.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Gong, Y. J.

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Gong, Z. Z.

H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Gonzalez, E.

R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, and D. Yu, “Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures,” Nano Lett. 16, 7710–7717 (2016).
[Crossref]

Goriely, A.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Gou, J.

R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018).
[Crossref]

Grancini, G.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Grätzel, M.

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Grice, C. R.

H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018).
[Crossref]

Gu, L. L.

D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
[Crossref]

Gu, S.

P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
[Crossref]

Gu, Y.

J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
[Crossref]

Guo, B.

Guo, D.

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

Guo, F. W.

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Guo, J. S.

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

Guo, Z. N.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Gustafsson, M. V.

H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Ha, D.

Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, and T. Kim, “Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications,” ACS Nano 12, 8406–8414 (2018).
[Crossref]

Ha, S. T.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

Hamers, R. J.

Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015).
[Crossref]

Han, F.

J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018).
[Crossref]

Han, Y.

R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
[Crossref]

Hao, Y. Y.

R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
[Crossref]

J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
[Crossref]

G. H. Li, T. Che, X. Q. Ji, S. D. Liu, Y. Y. Hao, Y. X. Cui, and S. Z. Liu, “Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite,” Adv. Funct. Mater. 29, 1805553 (2019).
[Crossref]

W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018).
[Crossref]

He, H.

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

He, J.

J. He, W.-H. Fang, R. Long, and O. V. Prezhdo, “Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: time-domain ab initio analysis,” J. Am. Chem. Soc. 141, 5798–5807 (2019).
[Crossref]

H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018).
[Crossref]

He, J. H.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

He, W.

Q. Lv, Z. Lian, W. He, J.-L. Sun, Q. Li, and Q. Yan, “A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films,” J. Mater. Chem. C 6, 4464–4470 (2018).
[Crossref]

He, Y.

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

He, Z. Q.

H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015).
[Crossref]

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

Hedderick, K. R.

M. J. Ashley, M. N. O’Brien, K. R. Hedderick, J. A. Mason, M. B. Ross, and C. A. Mirkin, “Templated synthesis of uniform perovskite nanowire arrays,” J. Am. Chem. Soc. 138, 10096–10099 (2016).
[Crossref]

Heeger, A. J.

C. Liu, K. Wang, P. C. Du, E. M. Wang, X. Gong, and A. J. Heeger, “Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters,” Nanoscale 7, 16460–16469 (2015).
[Crossref]

Hendon, C. H.

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. V. Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14, 2584–2590 (2014).
[Crossref]

Heo, J. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).
[Crossref]

Herz, L. M.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Ho, K. T.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Hodes, G.

J. R. Zhang, G. Hodes, Z. W. Jin, and S. Z. Liu, “All-inorganic CsPbX3 perovskite solar cells: progress and prospects,” Angew. Chem. Int. Ed. 58, 15596–15618 (2019).
[Crossref]

Hong, Z. R.

Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015).
[Crossref]

L. Dou, Y. M. Yang, J. B. You, Z. R. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Hoogland, S.

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Horváth, E.

E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, and L. S. Forro, “Nanowires of methylammonium lead iodide (CH3NH3Pbl3) prepared by low temperature solution-mediated crystallization,” Nano Lett. 14, 6761–6766 (2014).
[Crossref]

Hou, Y. S.

R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, and D. Yu, “Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures,” Nano Lett. 16, 7710–7717 (2016).
[Crossref]

Hu, B.

M. Ahmadi, T. Wu, and B. Hu, “A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics,” Adv. Mater. 29, 1605242 (2017).
[Crossref]

Hu, C.

D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
[Crossref]

Hu, H. C.

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

Hu, K.

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Hu, M. X.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Hu, Q.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Q. Hu, H. Wu, J. Sun, D. H. Yan, Y. L. Gao, and J. L. Yang, “Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading,” Nanoscale 8, 5350–5357 (2016).
[Crossref]

Hu, W. P.

X. Qin, Y. F. Yao, H. L. Dong, Y. G. Zhen, L. Jiang, and W. P. Hu, “Perovskite photodetectors based on CH3NH3PbI3 single crystals,” Chem. Asian J. 11, 2675–2679 (2016).
[Crossref]

Hu, Z. Y.

P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016).
[Crossref]

Huang, H.

Huang, J. S.

Y. Liu, Q. F. Dong, Y. J. Fang, Y. Z. Lin, Y. H. Deng, and J. S. Huang, “Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells,” Adv. Funct. Mater. 29, 1807707 (2019).
[Crossref]

Y. H. Deng, X. P. Zheng, Y. Bai, Q. Wang, J. J. Zhao, and J. S. Huang, “Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules,” Nat. Energy 3, 560–566 (2018).
[Crossref]

Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells,” Nat. Energy 1, 15001 (2016).
[Crossref]

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Huang, L.

M. Z. Zhong, L. Huang, H. X. Deng, X. T. Wang, B. Li, Z. M. Wei, and J. B. Li, “Flexible photodetectors based on phase dependent PbI2 single crystals,” J. Mater. Chem. C 4, 6492–6499 (2016).
[Crossref]

Huang, L. M.

X. Z. Xu, X. J. Zhang, W. Deng, L. M. Huang, W. Wang, J. S. Jie, and X. H. Zhang, “Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability,” ACS Appl. Mater. Interfaces 10, 10287–10295 (2018).
[Crossref]

W. Deng, L. M. Huang, X. Z. Xu, X. J. Zhang, X. C. Jin, S.-T. Lee, and J. S. Jie, “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement,” Nano Lett. 17, 2482–2489 (2017).
[Crossref]

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Huang, T. Y.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Huang, W. C.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Huang, X. K.

P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016).
[Crossref]

Huang, Y.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

S. F. Zhuo, J. F. Zhang, Y. M. Shi, Y. Huang, and B. Zhang, “Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors,” Angew. Chem. Int. Ed. 54, 5693–5696 (2015).
[Crossref]

Humphry-Baker, R.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Hutter, E. M.

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

Im, S. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).
[Crossref]

Islam, M. S.

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

Javey, A.

D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
[Crossref]

Jeon, N. J.

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

Ji, T.

R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
[Crossref]

J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
[Crossref]

W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018).
[Crossref]

Ji, X. Q.

G. H. Li, T. Che, X. Q. Ji, S. D. Liu, Y. Y. Hao, Y. X. Cui, and S. Z. Liu, “Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite,” Adv. Funct. Mater. 29, 1805553 (2019).
[Crossref]

W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018).
[Crossref]

Jia, B.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Jia, C. Y.

J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018).
[Crossref]

Jiang, L.

G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, and L. Jiang, “Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors,” Adv. Funct. Mater. 29, 1808741 (2019).
[Crossref]

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

X. Qin, Y. F. Yao, H. L. Dong, Y. G. Zhen, L. Jiang, and W. P. Hu, “Perovskite photodetectors based on CH3NH3PbI3 single crystals,” Chem. Asian J. 11, 2675–2679 (2016).
[Crossref]

Jiang, X. W.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Jiang, X. Y.

G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, and L. Jiang, “Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors,” Adv. Funct. Mater. 29, 1808741 (2019).
[Crossref]

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Jiang, Y. D.

R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018).
[Crossref]

Jie, J. S.

X. Z. Xu, X. J. Zhang, W. Deng, L. M. Huang, W. Wang, J. S. Jie, and X. H. Zhang, “Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability,” ACS Appl. Mater. Interfaces 10, 10287–10295 (2018).
[Crossref]

W. Deng, L. M. Huang, X. Z. Xu, X. J. Zhang, X. C. Jin, S.-T. Lee, and J. S. Jie, “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement,” Nano Lett. 17, 2482–2489 (2017).
[Crossref]

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Jin, C.

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

Jin, C. H.

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

Jin, S.

R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, and D. Yu, “Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures,” Nano Lett. 16, 7710–7717 (2016).
[Crossref]

H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015).
[Crossref]

Jin, S. Y.

W. M. Tian, C. Y. Zhao, J. Leng, R. R. Cui, and S. Y. Jin, “Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates,” J. Am. Chem. Soc. 137, 12458–12461 (2015).
[Crossref]

Jin, X.

R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018).
[Crossref]

Jin, X. C.

W. Deng, L. M. Huang, X. Z. Xu, X. J. Zhang, X. C. Jin, S.-T. Lee, and J. S. Jie, “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement,” Nano Lett. 17, 2482–2489 (2017).
[Crossref]

Jin, Z. W.

J. R. Zhang, G. Hodes, Z. W. Jin, and S. Z. Liu, “All-inorganic CsPbX3 perovskite solar cells: progress and prospects,” Angew. Chem. Int. Ed. 58, 15596–15618 (2019).
[Crossref]

Jing, X. P.

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

Jung, E. H.

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

Ka, I.

I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, and R. Nechachea, “High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector,” Nano Energy 51, 324–332 (2018).
[Crossref]

I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, and S. G. Cloutier, “Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires,” Small 15, 1804150 (2018).
[Crossref]

Kam, M.

D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
[Crossref]

Kamarás, K.

E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, and L. S. Forro, “Nanowires of methylammonium lead iodide (CH3NH3Pbl3) prepared by low temperature solution-mediated crystallization,” Nano Lett. 14, 6761–6766 (2014).
[Crossref]

Kang, C. F.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Kanjanaboos, P.

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Katsiev, K.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Katz, O.

O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 84, 4092–4094 (2004).
[Crossref]

Ke, X. X.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Khurgin, J.

Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
[Crossref]

Kim, D. H.

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Kim, E. K.

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

Kim, T.

Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, and T. Kim, “Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications,” ACS Nano 12, 8406–8414 (2018).
[Crossref]

Kim, Y. C.

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

Kirman, J.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Kong, W. M.

W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018).
[Crossref]

Konstantatos, G.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1, 531–534 (2007).
[Crossref]

Kuang, D. B.

H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, and C. Y. Su, “In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors,” Adv. Mater. 29, 1602639 (2017).
[Crossref]

Lam, Y. M.

G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Lee, D. U.

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

Lee, J.-W.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Lee, S.-T.

W. Deng, L. M. Huang, X. Z. Xu, X. J. Zhang, X. C. Jin, S.-T. Lee, and J. S. Jie, “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement,” Nano Lett. 17, 2482–2489 (2017).
[Crossref]

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Leijtens, T.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Leng, J.

W. M. Tian, C. Y. Zhao, J. Leng, R. R. Cui, and S. Y. Jin, “Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates,” J. Am. Chem. Soc. 137, 12458–12461 (2015).
[Crossref]

Levina, L.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1, 531–534 (2007).
[Crossref]

Li, B.

M. Z. Zhong, L. Huang, H. X. Deng, X. T. Wang, B. Li, Z. M. Wei, and J. B. Li, “Flexible photodetectors based on phase dependent PbI2 single crystals,” J. Mater. Chem. C 4, 6492–6499 (2016).
[Crossref]

H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
[Crossref]

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

Li, C. B.

L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, and Q. M. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Li, D.

X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018).
[Crossref]

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015).
[Crossref]

Li, G.

W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018).
[Crossref]

L. Dou, Y. M. Yang, J. B. You, Z. R. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Li, G. B.

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

Li, G. H.

R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
[Crossref]

J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
[Crossref]

G. H. Li, T. Che, X. Q. Ji, S. D. Liu, Y. Y. Hao, Y. X. Cui, and S. Z. Liu, “Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite,” Adv. Funct. Mater. 29, 1805553 (2019).
[Crossref]

W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018).
[Crossref]

Li, H. Q.

Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, and T. Y. Zhai, “Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector,” Adv. Funct. Mater. 27, 1703115 (2017).
[Crossref]

Li, H. Y.

R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018).
[Crossref]

Li, J. B.

M. Z. Zhong, L. Huang, H. X. Deng, X. T. Wang, B. Li, Z. M. Wei, and J. B. Li, “Flexible photodetectors based on phase dependent PbI2 single crystals,” J. Mater. Chem. C 4, 6492–6499 (2016).
[Crossref]

Li, J. H.

J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li, and H. B. Zeng, “Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices,” Adv. Mater. 28, 4861–4869 (2016).
[Crossref]

Li, J. Q.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Li, J. W.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Li, L.

W. Tian, H. P. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Li, M.

S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Adv. Mater. 28, 6804–6834 (2016).
[Crossref]

Li, P.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Li, Q.

Q. Lv, Z. Lian, W. He, J.-L. Sun, Q. Li, and Q. Yan, “A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films,” J. Mater. Chem. C 6, 4464–4470 (2018).
[Crossref]

Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
[Crossref]

Li, Q. H.

R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018).
[Crossref]

Li, Q. X.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Li, S.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Li, W. G.

H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, and C. Y. Su, “In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors,” Adv. Mater. 29, 1602639 (2017).
[Crossref]

Li, W. Q.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Li, X. G.

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

Li, X. M.

J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li, and H. B. Zeng, “Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices,” Adv. Mater. 28, 4861–4869 (2016).
[Crossref]

Li, Z. J.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Lian, Z.

Q. Lv, Z. Lian, W. He, J.-L. Sun, Q. Li, and Q. Yan, “A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films,” J. Mater. Chem. C 6, 4464–4470 (2018).
[Crossref]

Lian, Z. P.

Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
[Crossref]

Liang, C. J.

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015).
[Crossref]

Liang, J. J.

H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015).
[Crossref]

Liang, Q. B.

J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
[Crossref]

W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018).
[Crossref]

Liang, Z.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Liao, Q.

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Lien, D.-H.

D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
[Crossref]

Lim, S. S.

G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Lin, H.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Lin, K. B.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Lin, Y. J.

D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
[Crossref]

Lin, Y. Z.

Y. Liu, Q. F. Dong, Y. J. Fang, Y. Z. Lin, Y. H. Deng, and J. S. Huang, “Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells,” Adv. Funct. Mater. 29, 1807707 (2019).
[Crossref]

Liu, C.

C. Liu, K. Wang, P. C. Du, E. M. Wang, X. Gong, and A. J. Heeger, “Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters,” Nanoscale 7, 16460–16469 (2015).
[Crossref]

Liu, C. B.

C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016).
[Crossref]

Liu, C. W.

C. W. Liu, Z. L. Qiu, W. L. Meng, J. W. Chen, J. J. Qi, C. Dong, and M. T. Wang, “Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter,” Nano Energy 12, 59–68 (2015).
[Crossref]

Liu, F. C.

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

Liu, H.

H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015).
[Crossref]

Liu, H. L.

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

Liu, H. Y.

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

Liu, J.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Liu, J. Y.

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Liu, L. L.

Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
[Crossref]

Liu, Q.

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

Liu, R. H.

H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018).
[Crossref]

Liu, S.

X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017).
[Crossref]

Liu, S. D.

G. H. Li, T. Che, X. Q. Ji, S. D. Liu, Y. Y. Hao, Y. X. Cui, and S. Z. Liu, “Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite,” Adv. Funct. Mater. 29, 1805553 (2019).
[Crossref]

Liu, S. Z.

G. H. Li, T. Che, X. Q. Ji, S. D. Liu, Y. Y. Hao, Y. X. Cui, and S. Z. Liu, “Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite,” Adv. Funct. Mater. 29, 1805553 (2019).
[Crossref]

J. R. Zhang, G. Hodes, Z. W. Jin, and S. Z. Liu, “All-inorganic CsPbX3 perovskite solar cells: progress and prospects,” Angew. Chem. Int. Ed. 58, 15596–15618 (2019).
[Crossref]

Liu, S. Z. F.

J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
[Crossref]

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

Liu, T. H.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Liu, X.

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

Liu, X. C.

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

Liu, X. F.

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Liu, X. J.

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

Liu, X. Y.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Liu, Y.

Y. Liu, Q. F. Dong, Y. J. Fang, Y. Z. Lin, Y. H. Deng, and J. S. Huang, “Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells,” Adv. Funct. Mater. 29, 1807707 (2019).
[Crossref]

Liu, Y. C.

J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
[Crossref]

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

Liu, Z.

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

Lo, Y. H.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Long, R.

J. He, W.-H. Fang, R. Long, and O. V. Prezhdo, “Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: time-domain ab initio analysis,” J. Am. Chem. Soc. 141, 5798–5807 (2019).
[Crossref]

Losovyj, Y.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Lu, H. B.

G. Z. Yang, H. B. Lu, F. Chen, T. Zhao, and Z. H. Chen, “Laser molecular beam epitaxy and characterization of perovskite oxide thin films,” J. Cryst. Growth 227-228, 929–935 (2001).
[Crossref]

Lu, J. X.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Lu, Y.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Lu, Y. R.

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Lu, Z. D.

P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
[Crossref]

Lu, Z. H.

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Luo, D. Y.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Luo, J. J.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Luo, J. S.

J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018).
[Crossref]

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

Lv, Q.

Q. Lv, Z. Lian, W. He, J.-L. Sun, Q. Li, and Q. Yan, “A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films,” J. Mater. Chem. C 6, 4464–4470 (2018).
[Crossref]

Lv, Q. R.

Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
[Crossref]

Lyu, M.

M. Zhang, M. Lyu, H. Yu, J. H. Yun, Q. Wang, and L. Wang, “Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter,” Chemistry 21, 434–439 (2015).
[Crossref]

Ma, C.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Ma, D.

Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015).
[Crossref]

Ma, R.

Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
[Crossref]

Ma, R. M.

Y. H. Deng, Z. Q. Yang, and R. M. Ma, “Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering,” Nano Converg. 7, 25 (2020).
[Crossref]

Malik, H. A.

J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018).
[Crossref]

Mandal, D.

A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, and D. Mandal, “Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application,” Nano Energy 49, 380–392 (2018).
[Crossref]

Mandal, T. N.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).
[Crossref]

Marinov, O.

O. Marinov, M. J. Deen, and R. Datars, “Compact modeling of charge carrier mobility in organic thin-film transistors,” Jpn. J. Appl. Phys. 106, 064501 (2009).
[Crossref]

Mason, J. A.

M. J. Ashley, M. N. O’Brien, K. R. Hedderick, J. A. Mason, M. B. Ross, and C. A. Mirkin, “Templated synthesis of uniform perovskite nanowire arrays,” J. Am. Chem. Soc. 138, 10096–10099 (2016).
[Crossref]

Mathews, N.

S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Adv. Mater. 28, 6804–6834 (2016).
[Crossref]

G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Menelaou, C.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Meng, F.

H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015).
[Crossref]

Meng, L.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Meng, L. N.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Meng, W. L.

C. W. Liu, Z. L. Qiu, W. L. Meng, J. W. Chen, J. J. Qi, C. Dong, and M. T. Wang, “Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter,” Nano Energy 12, 59–68 (2015).
[Crossref]

Mhaisalkar, S.

G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Mhaisalkar, S. G.

S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Adv. Mater. 28, 6804–6834 (2016).
[Crossref]

Middya, T. R.

A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, and D. Mandal, “Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application,” Nano Energy 49, 380–392 (2018).
[Crossref]

Mirkin, C. A.

M. J. Ashley, M. N. O’Brien, K. R. Hedderick, J. A. Mason, M. B. Ross, and C. A. Mirkin, “Templated synthesis of uniform perovskite nanowire arrays,” J. Am. Chem. Soc. 138, 10096–10099 (2016).
[Crossref]

Mohammed, O. F.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Moon, S.-J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Mu, H.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Mulligan, P.

Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

Munir, R.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Murali, B.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Nazeeruddin, M. K.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Nechache, R.

I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, and S. G. Cloutier, “Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires,” Small 15, 1804150 (2018).
[Crossref]

Nechachea, R.

I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, and R. Nechachea, “High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector,” Nano Energy 51, 324–332 (2018).
[Crossref]

Nie, R.

Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, and T. Kim, “Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications,” ACS Nano 12, 8406–8414 (2018).
[Crossref]

Niroui, F.

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

Niu, G. D.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

Niu, L.

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

Noel, N. K.

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

Noh, J. H.

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).
[Crossref]

O’Brien, M. N.

M. J. Ashley, M. N. O’Brien, K. R. Hedderick, J. A. Mason, M. B. Ross, and C. A. Mirkin, “Templated synthesis of uniform perovskite nanowire arrays,” J. Am. Chem. Soc. 138, 10096–10099 (2016).
[Crossref]

Osherov, A.

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

Pan, A.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Pan, G.

X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018).
[Crossref]

Pan, J.

Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, and T. Kim, “Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications,” ACS Nano 12, 8406–8414 (2018).
[Crossref]

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Pan, Q.

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

Pan, R.

R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018).
[Crossref]

Pan, S. L.

Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
[Crossref]

Pan, W. C.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Pang, S. P.

C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016).
[Crossref]

Park, B.-W.

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

Park, J.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Park, J. G.

Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, and T. Kim, “Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications,” ACS Nano 12, 8406–8414 (2018).
[Crossref]

Pathak, S. K.

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

Pellet, N.

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Peng, W.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Peng, X. Y.

R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, and D. Yu, “Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures,” Nano Lett. 16, 7710–7717 (2016).
[Crossref]

Petrozza, A.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Pi, Y. Y.

G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, and L. Jiang, “Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors,” Adv. Funct. Mater. 29, 1808741 (2019).
[Crossref]

Pignolet, A.

I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, and S. G. Cloutier, “Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires,” Small 15, 1804150 (2018).
[Crossref]

I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, and R. Nechachea, “High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector,” Nano Energy 51, 324–332 (2018).
[Crossref]

Poddar, S.

D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
[Crossref]

Prezhdo, O. V.

J. He, W.-H. Fang, R. Long, and O. V. Prezhdo, “Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: time-domain ab initio analysis,” J. Am. Chem. Soc. 141, 5798–5807 (2019).
[Crossref]

Qi, J. J.

C. W. Liu, Z. L. Qiu, W. L. Meng, J. W. Chen, J. J. Qi, C. Dong, and M. T. Wang, “Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter,” Nano Energy 12, 59–68 (2015).
[Crossref]

Qiao, K. K.

D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
[Crossref]

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
[Crossref]

Qin, X.

X. Qin, Y. F. Yao, H. L. Dong, Y. G. Zhen, L. Jiang, and W. P. Hu, “Perovskite photodetectors based on CH3NH3PbI3 single crystals,” Chem. Asian J. 11, 2675–2679 (2016).
[Crossref]

Qiu, J.

Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

Qiu, Z. L.

C. W. Liu, Z. L. Qiu, W. L. Meng, J. W. Chen, J. J. Qi, C. Dong, and M. T. Wang, “Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter,” Nano Energy 12, 59–68 (2015).
[Crossref]

Qu, J. L.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Quan, L. N.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Rao, H. S.

H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, and C. Y. Su, “In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors,” Adv. Mater. 29, 1602639 (2017).
[Crossref]

Ren, X. D.

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

Ross, M. B.

M. J. Ashley, M. N. O’Brien, K. R. Hedderick, J. A. Mason, M. B. Ross, and C. A. Mirkin, “Templated synthesis of uniform perovskite nanowire arrays,” J. Am. Chem. Soc. 138, 10096–10099 (2016).
[Crossref]

Rothenberger, A.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Rowley, M. B.

Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015).
[Crossref]

Sabatini, R.

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Sadhanala, A.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Sadhukhan, P.

A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, and D. Mandal, “Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application,” Nano Energy 49, 380–392 (2018).
[Crossref]

Salzman, J.

O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 84, 4092–4094 (2004).
[Crossref]

Sargent, E. H.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1, 531–534 (2007).
[Crossref]

Savenije, T. J.

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

Schilfgaarde, M. V.

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. V. Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14, 2584–2590 (2014).
[Crossref]

Seo, J.

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

Seok, S. I.

Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, and T. Kim, “Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications,” ACS Nano 12, 8406–8414 (2018).
[Crossref]

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).
[Crossref]

Shang, Q. X.

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Shao, Y. C.

Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells,” Nat. Energy 1, 15001 (2016).
[Crossref]

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

Shearer, M. J.

Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015).
[Crossref]

Shen, C.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Shen, X. P.

P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
[Crossref]

Shi, D.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Shi, J.

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

Shi, Y. M.

S. F. Zhuo, J. F. Zhang, Y. M. Shi, Y. Huang, and B. Zhang, “Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors,” Angew. Chem. Int. Ed. 54, 5693–5696 (2015).
[Crossref]

Shin, S. S.

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

Shivananju, B. N.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Shivanna, R.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Sinatra, L.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Smilgies, D.-M.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Snaith, H. J.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Soci, C.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Song, H.

X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018).
[Crossref]

Song, H. B.

D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
[Crossref]

Song, H. S.

D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
[Crossref]

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
[Crossref]

Song, J. C.

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Song, J. Z.

J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
[Crossref]

J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li, and H. B. Zeng, “Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices,” Adv. Mater. 28, 4861–4869 (2016).
[Crossref]

Song, T.-B.

Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015).
[Crossref]

Song, Y.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Song, Y. L.

R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018).
[Crossref]

Song, Z. N.

H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018).
[Crossref]

Spina, M.

E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, and L. S. Forro, “Nanowires of methylammonium lead iodide (CH3NH3Pbl3) prepared by low temperature solution-mediated crystallization,” Nano Lett. 14, 6761–6766 (2014).
[Crossref]

Stranks, S. D.

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Su, C. Y.

H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, and C. Y. Su, “In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors,” Adv. Mater. 29, 1602639 (2017).
[Crossref]

Su, R.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Sui, M. L.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Sultana, A.

A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, and D. Mandal, “Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application,” Nano Energy 49, 380–392 (2018).
[Crossref]

Sum, T. C.

S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Adv. Mater. 28, 6804–6834 (2016).
[Crossref]

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Sun, B. Q.

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

Sun, J.

H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018).
[Crossref]

C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016).
[Crossref]

Q. Hu, H. Wu, J. Sun, D. H. Yan, Y. L. Gao, and J. L. Yang, “Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading,” Nanoscale 8, 5350–5357 (2016).
[Crossref]

Sun, J. K.

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

Sun, J. L.

Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
[Crossref]

Sun, J.-L.

Q. Lv, Z. Lian, W. He, J.-L. Sun, Q. Li, and Q. Yan, “A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films,” J. Mater. Chem. C 6, 4464–4470 (2018).
[Crossref]

Sun, M. J.

H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015).
[Crossref]

Sun, P. Y.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Sun, S. Y.

G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Sun, X. W.

X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017).
[Crossref]

Sutherland, B. R.

B. R. Sutherland, “Tailoring perovskite thin films to rival single crystals,” Joule 1, 23–25 (2017).
[Crossref]

Szekrényes, Z.

E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, and L. S. Forro, “Nanowires of methylammonium lead iodide (CH3NH3Pbl3) prepared by low temperature solution-mediated crystallization,” Nano Lett. 14, 6761–6766 (2014).
[Crossref]

Tan, S.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Tan, Y. L.

P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
[Crossref]

Tan, Y. S.

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

Tang, D.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Tang, J.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
[Crossref]

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
[Crossref]

Thokchom, A. K.

Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, and T. Kim, “Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications,” ACS Nano 12, 8406–8414 (2018).
[Crossref]

Thompson, B. J.

Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015).
[Crossref]

Tian, B. N.

R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
[Crossref]

Tian, D.

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

Tian, W.

W. Tian, H. P. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017).
[Crossref]

Tian, W. M.

W. M. Tian, C. Y. Zhao, J. Leng, R. R. Cui, and S. Y. Jin, “Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates,” J. Am. Chem. Soc. 137, 12458–12461 (2015).
[Crossref]

Tian, Y.

R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
[Crossref]

Tong, S. C.

H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018).
[Crossref]

Trindade, G. F.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Trinh, M. T.

H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Tu, Y. G.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Veldhuis, S. A.

S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Adv. Mater. 28, 6804–6834 (2016).
[Crossref]

Voznyy, O.

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Walsh, A.

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. V. Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14, 2584–2590 (2014).
[Crossref]

Walters, G.

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Wan, Z. Q.

J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018).
[Crossref]

Wang, B.

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Wang, C. H.

H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018).
[Crossref]

Wang, D.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Wang, D. H.

Wang, E. M.

C. Liu, K. Wang, P. C. Du, E. M. Wang, X. Gong, and A. J. Heeger, “Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters,” Nanoscale 7, 16460–16469 (2015).
[Crossref]

Wang, H.

X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018).
[Crossref]

H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018).
[Crossref]

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

Wang, H. E.

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

Wang, J.

R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018).
[Crossref]

Wang, J. C.

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Wang, K.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017).
[Crossref]

C. Liu, K. Wang, P. C. Du, E. M. Wang, X. Gong, and A. J. Heeger, “Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters,” Nanoscale 7, 16460–16469 (2015).
[Crossref]

Wang, L.

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

M. Zhang, M. Lyu, H. Yu, J. H. Yun, Q. Wang, and L. Wang, “Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter,” Chemistry 21, 434–439 (2015).
[Crossref]

Wang, L. D.

Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
[Crossref]

Wang, L. M.

P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016).
[Crossref]

Wang, M. T.

C. W. Liu, Z. L. Qiu, W. L. Meng, J. W. Chen, J. J. Qi, C. Dong, and M. T. Wang, “Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter,” Nano Energy 12, 59–68 (2015).
[Crossref]

Wang, P.

P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016).
[Crossref]

Wang, Q.

Y. H. Deng, X. P. Zheng, Y. Bai, Q. Wang, J. J. Zhao, and J. S. Huang, “Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules,” Nat. Energy 3, 560–566 (2018).
[Crossref]

R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, and D. Yu, “Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures,” Nano Lett. 16, 7710–7717 (2016).
[Crossref]

M. Zhang, M. Lyu, H. Yu, J. H. Yun, Q. Wang, and L. Wang, “Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter,” Chemistry 21, 434–439 (2015).
[Crossref]

Wang, Q. M.

L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, and Q. M. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Wang, R.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Wang, S.

Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
[Crossref]

Wang, S. H.

Wang, S. L.

J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
[Crossref]

Wang, S. R.

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

Wang, W.

X. Z. Xu, X. J. Zhang, W. Deng, L. M. Huang, W. Wang, J. S. Jie, and X. H. Zhang, “Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability,” ACS Appl. Mater. Interfaces 10, 10287–10295 (2018).
[Crossref]

Wang, W. G.

X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017).
[Crossref]

Wang, X.

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Wang, X. T.

M. Z. Zhong, L. Huang, H. X. Deng, X. T. Wang, B. Li, Z. M. Wei, and J. B. Li, “Flexible photodetectors based on phase dependent PbI2 single crystals,” J. Mater. Chem. C 4, 6492–6499 (2016).
[Crossref]

Wang, X. Y.

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Wang, Y.

Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
[Crossref]

Wang, Y. G.

Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, and T. Y. Zhai, “Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector,” Adv. Funct. Mater. 27, 1703115 (2017).
[Crossref]

Wang, Y. S.

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Wang, Z.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Wang, Z. L.

P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
[Crossref]

Wang, Z. P.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Wang, Z. Q.

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

Wang, Z. X.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26, 22750–22760 (2018).
[Crossref]

Wang, Z. Y.

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Wang, Z.-K.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Watts, J. F.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Weber, B.

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Wei, Q. B.

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

Wei, Z. H.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Wei, Z. M.

M. Z. Zhong, L. Huang, H. X. Deng, X. T. Wang, B. Li, Z. M. Wei, and J. B. Li, “Flexible photodetectors based on phase dependent PbI2 single crystals,” J. Mater. Chem. C 4, 6492–6499 (2016).
[Crossref]

Wen, W.

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Wright, J. C.

Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015).
[Crossref]

Wu, C.

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

Wu, C. Y.

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

Wu, H.

Q. Hu, H. Wu, J. Sun, D. H. Yan, Y. L. Gao, and J. L. Yang, “Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading,” Nanoscale 8, 5350–5357 (2016).
[Crossref]

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016).
[Crossref]

Wu, H. D.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Wu, J.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Wu, L. Z.

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

Wu, P.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Wu, R. S.

C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016).
[Crossref]

Wu, T.

M. Ahmadi, T. Wu, and B. Hu, “A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics,” Adv. Mater. 29, 1605242 (2017).
[Crossref]

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Wu, X. X.

H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Wu, Y. C.

R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
[Crossref]

G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, and L. Jiang, “Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors,” Adv. Funct. Mater. 29, 1808741 (2019).
[Crossref]

J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
[Crossref]

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Wu, Y. S.

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Wu, Z. M.

R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018).
[Crossref]

Wu, Z. X.

Xi, Y. Y.

R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
[Crossref]

Xia, H. Y.

H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018).
[Crossref]

Xia, J. X.

J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018).
[Crossref]

Xiang, B.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Xiang, Y. J.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Xiao, F. W.

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Xiao, M.

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Xiao, R.

R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, and D. Yu, “Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures,” Nano Lett. 16, 7710–7717 (2016).
[Crossref]

Xiao, W. K.

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

Xiao, Y.

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

Xiao, Z. G.

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Xie, L. Q.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Xie, Q. G.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Xie, Z. J.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Xing, C. Y.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Xing, G. C.

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Xing, J.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Xiong, Q.

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

Xiong, Q. H.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Xu, B.

X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017).
[Crossref]

Xu, H.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Xu, J.

P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016).
[Crossref]

Xu, L. M.

J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
[Crossref]

J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li, and H. B. Zeng, “Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices,” Adv. Mater. 28, 4861–4869 (2016).
[Crossref]

Xu, N.

P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
[Crossref]

Xu, S.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Xu, W.

X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018).
[Crossref]

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Xu, X. B.

J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
[Crossref]

Xu, X. Z.

X. Z. Xu, X. J. Zhang, W. Deng, L. M. Huang, W. Wang, J. S. Jie, and X. H. Zhang, “Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability,” ACS Appl. Mater. Interfaces 10, 10287–10295 (2018).
[Crossref]

W. Deng, L. M. Huang, X. Z. Xu, X. J. Zhang, X. C. Jin, S.-T. Lee, and J. S. Jie, “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement,” Nano Lett. 17, 2482–2489 (2017).
[Crossref]

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Xu, Y.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Xu, Y. Q.

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Xu, Z.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Xu, Z. J.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Xu, Z.-Q.

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Xue, J.

J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
[Crossref]

J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li, and H. B. Zeng, “Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices,” Adv. Mater. 28, 4861–4869 (2016).
[Crossref]

Xue, J. J.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Xue, Y. Z.

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Yan, C. Z.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Yan, D. H.

Q. Hu, H. Wu, J. Sun, D. H. Yan, Y. L. Gao, and J. L. Yang, “Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading,” Nanoscale 8, 5350–5357 (2016).
[Crossref]

Yan, Q.

Q. Lv, Z. Lian, W. He, J.-L. Sun, Q. Li, and Q. Yan, “A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films,” J. Mater. Chem. C 6, 4464–4470 (2018).
[Crossref]

Yan, Q. F.

Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
[Crossref]

Yan, Y. F.

H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018).
[Crossref]

Yang, B.

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Yang, D.

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
[Crossref]

Yang, F.

L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, and Q. M. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Yang, G. Z.

G. Z. Yang, H. B. Lu, F. Chen, T. Zhao, and Z. H. Chen, “Laser molecular beam epitaxy and characterization of perovskite oxide thin films,” J. Cryst. Growth 227-228, 929–935 (2001).
[Crossref]

Yang, H.

J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018).
[Crossref]

Yang, J. L.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018).
[Crossref]

C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016).
[Crossref]

Q. Hu, H. Wu, J. Sun, D. H. Yan, Y. L. Gao, and J. L. Yang, “Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading,” Nanoscale 8, 5350–5357 (2016).
[Crossref]

Yang, S.

Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
[Crossref]

Yang, T.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Yang, W. Q.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Yang, W. S.

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

Yang, X. K.

D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
[Crossref]

H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
[Crossref]

Yang, X. Y.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Yang, Y.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015).
[Crossref]

Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015).
[Crossref]

L. Dou, Y. M. Yang, J. B. You, Z. R. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Yang, Y. M.

L. Dou, Y. M. Yang, J. B. You, Z. R. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Yang, Z.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

Yang, Z. G.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Yang, Z. P.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Yang, Z. Q.

Y. H. Deng, Z. Q. Yang, and R. M. Ma, “Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering,” Nano Converg. 7, 25 (2020).
[Crossref]

Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
[Crossref]

Yantara, N.

S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Adv. Mater. 28, 6804–6834 (2016).
[Crossref]

Yao, J.

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Yao, Y. F.

X. Qin, Y. F. Yao, H. L. Dong, Y. G. Zhen, L. Jiang, and W. P. Hu, “Perovskite photodetectors based on CH3NH3PbI3 single crystals,” Chem. Asian J. 11, 2675–2679 (2016).
[Crossref]

Yao, Z.

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Ye, F. J.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Ye, H. C.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Yi, C. Y.

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

Yin, L. X.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Yin, W. J.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

You, J. B.

L. Dou, Y. M. Yang, J. B. You, Z. R. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Yu, D.

R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, and D. Yu, “Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures,” Nano Lett. 16, 7710–7717 (2016).
[Crossref]

Yu, F. Y.

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

Yu, H.

M. Zhang, M. Lyu, H. Yu, J. H. Yun, Q. Wang, and L. Wang, “Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter,” Chemistry 21, 434–439 (2015).
[Crossref]

Yu, K.

L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, and Q. M. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Yu, T.

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

Yu, W. W.

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Yuan, M.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Yuan, M. J.

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Yuan, S. J.

H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
[Crossref]

Yuan, Y. B.

Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells,” Nat. Energy 1, 15001 (2016).
[Crossref]

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Yuan, Y. H.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Yuan, Y. W.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Yun, J. H.

M. Zhang, M. Lyu, H. Yu, J. H. Yun, Q. Wang, and L. Wang, “Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter,” Chemistry 21, 434–439 (2015).
[Crossref]

Zakeeruddin, S. M.

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

Zeng, H.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Zeng, H. B.

J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
[Crossref]

J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li, and H. B. Zeng, “Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices,” Adv. Mater. 28, 4861–4869 (2016).
[Crossref]

Zeng, K.

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

Zeng, Q.

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

Zeng, Q. S.

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

Zeng, Z. B.

P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016).
[Crossref]

Zhai, T. Y.

Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, and T. Y. Zhai, “Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector,” Adv. Funct. Mater. 27, 1703115 (2017).
[Crossref]

Zhang, A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Zhang, B.

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

S. F. Zhuo, J. F. Zhang, Y. M. Shi, Y. Huang, and B. Zhang, “Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors,” Angew. Chem. Int. Ed. 54, 5693–5696 (2015).
[Crossref]

Zhang, C. F.

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Zhang, C. J.

H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018).
[Crossref]

C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016).
[Crossref]

Zhang, D.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Zhang, D. Q.

D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
[Crossref]

Zhang, F.

B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26, 22750–22760 (2018).
[Crossref]

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

Zhang, F. J.

H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015).
[Crossref]

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

Zhang, H.

B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26, 22750–22760 (2018).
[Crossref]

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Zhang, H. M.

H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015).
[Crossref]

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

Zhang, J.

H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018).
[Crossref]

H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018).
[Crossref]

D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
[Crossref]

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016).
[Crossref]

Zhang, J. B.

Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, and T. Y. Zhai, “Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector,” Adv. Funct. Mater. 27, 1703115 (2017).
[Crossref]

Zhang, J. F.

S. F. Zhuo, J. F. Zhang, Y. M. Shi, Y. Huang, and B. Zhang, “Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors,” Angew. Chem. Int. Ed. 54, 5693–5696 (2015).
[Crossref]

Zhang, J. R.

J. R. Zhang, G. Hodes, Z. W. Jin, and S. Z. Liu, “All-inorganic CsPbX3 perovskite solar cells: progress and prospects,” Angew. Chem. Int. Ed. 58, 15596–15618 (2019).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

Zhang, L. J.

Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
[Crossref]

Zhang, M.

M. Zhang, M. Lyu, H. Yu, J. H. Yun, Q. Wang, and L. Wang, “Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter,” Chemistry 21, 434–439 (2015).
[Crossref]

Zhang, Q.

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

Zhang, Q. P.

D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
[Crossref]

Zhang, W.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Zhang, W. G.

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

Zhang, X.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
[Crossref]

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

Zhang, X. H.

X. Z. Xu, X. J. Zhang, W. Deng, L. M. Huang, W. Wang, J. S. Jie, and X. H. Zhang, “Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability,” ACS Appl. Mater. Interfaces 10, 10287–10295 (2018).
[Crossref]

Zhang, X. J.

X. Z. Xu, X. J. Zhang, W. Deng, L. M. Huang, W. Wang, J. S. Jie, and X. H. Zhang, “Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability,” ACS Appl. Mater. Interfaces 10, 10287–10295 (2018).
[Crossref]

W. Deng, L. M. Huang, X. Z. Xu, X. J. Zhang, X. C. Jin, S.-T. Lee, and J. S. Jie, “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement,” Nano Lett. 17, 2482–2489 (2017).
[Crossref]

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Zhang, X. L.

X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017).
[Crossref]

Zhang, X. W.

Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
[Crossref]

Zhang, X. Y.

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Zhang, Y.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Zhang, Y. F.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Zhang, Y. P.

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Zhang, Y. X.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Zhao, C. M.

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

Zhao, C. Y.

W. M. Tian, C. Y. Zhao, J. Leng, R. R. Cui, and S. Y. Jin, “Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates,” J. Am. Chem. Soc. 137, 12458–12461 (2015).
[Crossref]

Zhao, G. T.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Zhao, H. X.

Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015).
[Crossref]

Zhao, J. J.

Y. H. Deng, X. P. Zheng, Y. Bai, Q. Wang, J. J. Zhao, and J. S. Huang, “Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules,” Nat. Energy 3, 560–566 (2018).
[Crossref]

Zhao, J. L.

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

Zhao, K.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Zhao, L. C.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Zhao, T.

G. Z. Yang, H. B. Lu, F. Chen, T. Zhao, and Z. H. Chen, “Laser molecular beam epitaxy and characterization of perovskite oxide thin films,” J. Cryst. Growth 227-228, 929–935 (2001).
[Crossref]

Zhao, W. J.

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

Zhao, Y.

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Y. Zhao and K. Zhu, “Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications,” Chem. Soc. Rev. 45, 655–689 (2016).
[Crossref]

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015).
[Crossref]

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

Zhao, Y. J.

G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, and L. Jiang, “Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors,” Adv. Funct. Mater. 29, 1808741 (2019).
[Crossref]

Zhao, Z. P.

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Zhao, Z. X.

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

Zhen, Y. G.

X. Qin, Y. F. Yao, H. L. Dong, Y. G. Zhen, L. Jiang, and W. P. Hu, “Perovskite photodetectors based on CH3NH3PbI3 single crystals,” Chem. Asian J. 11, 2675–2679 (2016).
[Crossref]

Zheng, C. X.

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Zheng, J.

L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, and Q. M. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Zheng, X. P.

Y. H. Deng, X. P. Zheng, Y. Bai, Q. Wang, J. J. Zhao, and J. S. Huang, “Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules,” Nat. Energy 3, 560–566 (2018).
[Crossref]

Zheng, Z.

Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, and T. Y. Zhai, “Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector,” Adv. Funct. Mater. 27, 1703115 (2017).
[Crossref]

Zhong, M. Z.

M. Z. Zhong, L. Huang, H. X. Deng, X. T. Wang, B. Li, Z. M. Wei, and J. B. Li, “Flexible photodetectors based on phase dependent PbI2 single crystals,” J. Mater. Chem. C 4, 6492–6499 (2016).
[Crossref]

Zhong, Q. X.

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

Zhou, D.

X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018).
[Crossref]

Zhou, H.

H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018).
[Crossref]

Zhou, H. P.

W. Tian, H. P. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017).
[Crossref]

Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015).
[Crossref]

Zhou, J. D.

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

Zhou, L.

L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, and Q. M. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Zhou, Q.

Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, and T. Kim, “Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications,” ACS Nano 12, 8406–8414 (2018).
[Crossref]

Zhou, X.

Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, and T. Y. Zhai, “Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector,” Adv. Funct. Mater. 27, 1703115 (2017).
[Crossref]

Zhou, Y.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Zhu, H. M.

H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Zhu, H. W.

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

Zhu, J.

X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018).
[Crossref]

P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
[Crossref]

Zhu, K.

Y. Zhao and K. Zhu, “Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications,” Chem. Soc. Rev. 45, 655–689 (2016).
[Crossref]

Zhu, L. J.

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Zhu, P. C.

P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
[Crossref]

Zhu, R.

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

Zhu, X. H.

J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018).
[Crossref]

Zhu, X.-Y.

H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Zhu, Y. F.

H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018).
[Crossref]

Zhu, Y. J.

P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016).
[Crossref]

Zhu, Z.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Zhu, Z. F.

J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
[Crossref]

Zhuang, S. D.

P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
[Crossref]

Zhuge, F. W.

Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, and T. Y. Zhai, “Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector,” Adv. Funct. Mater. 27, 1703115 (2017).
[Crossref]

Zhuo, S. F.

S. F. Zhuo, J. F. Zhang, Y. M. Shi, Y. Huang, and B. Zhang, “Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors,” Angew. Chem. Int. Ed. 54, 5693–5696 (2015).
[Crossref]

Zou, Y.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Zou, Y. S.

J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
[Crossref]

Zou, Y. T.

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

Zuo, P.

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Zuo, Y. H.

L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, and Q. M. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (2)

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

X. Z. Xu, X. J. Zhang, W. Deng, L. M. Huang, W. Wang, J. S. Jie, and X. H. Zhang, “Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability,” ACS Appl. Mater. Interfaces 10, 10287–10295 (2018).
[Crossref]

ACS Nano (2)

J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z.-Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang, and Q. L. Bao, “Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application,” ACS Nano 10, 3536–3542 (2016).
[Crossref]

Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok, and T. Kim, “Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications,” ACS Nano 12, 8406–8414 (2018).
[Crossref]

Adv. Funct. Mater. (7)

G. S. Chen, J. G. Feng, H. F. Gao, Y. J. Zhao, Y. Y. Pi, X. Y. Jiang, Y. C. Wu, and L. Jiang, “Stable alpha-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors,” Adv. Funct. Mater. 29, 1808741 (2019).
[Crossref]

G. H. Li, T. Che, X. Q. Ji, S. D. Liu, Y. Y. Hao, Y. X. Cui, and S. Z. Liu, “Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite,” Adv. Funct. Mater. 29, 1805553 (2019).
[Crossref]

Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).
[Crossref]

M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, and Q. Zhang, “Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire,” Adv. Funct. Mater. 27, 1701121 (2017).
[Crossref]

L. Niu, Q. S. Zeng, J. Shi, C. X. Cong, C. Y. Wu, F. C. Liu, J. D. Zhou, W. Fu, Q. D. Fu, C. H. Jin, T. Yu, X. F. Liu, and Z. Liu, “Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal,” Adv. Funct. Mater. 26, 5263–5270 (2016).
[Crossref]

Y. Liu, Q. F. Dong, Y. J. Fang, Y. Z. Lin, Y. H. Deng, and J. S. Huang, “Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells,” Adv. Funct. Mater. 29, 1807707 (2019).
[Crossref]

Z. Zheng, F. W. Zhuge, Y. G. Wang, J. B. Zhang, L. Gan, X. Zhou, H. Q. Li, and T. Y. Zhai, “Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector,” Adv. Funct. Mater. 27, 1703115 (2017).
[Crossref]

Adv. Mater. (9)

H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, and C. Y. Su, “In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors,” Adv. Mater. 29, 1602639 (2017).
[Crossref]

Y. C. Liu, Z. Yang, D. Cui, X. D. Ren, J. K. Sun, X. J. Liu, J. R. Zhang, Q. B. Wei, H. B. Fan, F. Y. Yu, X. Zhang, C. M. Zhao, and S. Z. F. Liu, “Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization,” Adv. Mater. 27, 5176–5183 (2015).
[Crossref]

J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li, and H. B. Zeng, “Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices,” Adv. Mater. 28, 4861–4869 (2016).
[Crossref]

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S.-T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Adv. Mater. 28, 6804–6834 (2016).
[Crossref]

M. Ahmadi, T. Wu, and B. Hu, “A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics,” Adv. Mater. 29, 1605242 (2017).
[Crossref]

W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, and O. M. Bakr, “Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells,” Adv. Mater. 28, 3383–3390 (2016).
[Crossref]

Z. Q. Yang, Y. H. Deng, X. W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, “High-performance single-crystalline perovskite thin-film photodetector,” Adv. Mater. 30, 1704333 (2018).
[Crossref]

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Adv. Opt. Mater. (1)

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Adv. Sci. (1)

X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, “Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing,” Adv. Sci. 3, 1600137 (2016).
[Crossref]

Angew. Chem. Int. Ed. (2)

S. F. Zhuo, J. F. Zhang, Y. M. Shi, Y. Huang, and B. Zhang, “Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors,” Angew. Chem. Int. Ed. 54, 5693–5696 (2015).
[Crossref]

J. R. Zhang, G. Hodes, Z. W. Jin, and S. Z. Liu, “All-inorganic CsPbX3 perovskite solar cells: progress and prospects,” Angew. Chem. Int. Ed. 58, 15596–15618 (2019).
[Crossref]

Appl. Phys. Lett. (2)

H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao, and J. L. Yang, “Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction,” Appl. Phys. Lett. 112, 233301 (2018).
[Crossref]

O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 84, 4092–4094 (2004).
[Crossref]

Chem. Asian J. (1)

X. Qin, Y. F. Yao, H. L. Dong, Y. G. Zhen, L. Jiang, and W. P. Hu, “Perovskite photodetectors based on CH3NH3PbI3 single crystals,” Chem. Asian J. 11, 2675–2679 (2016).
[Crossref]

Chem. Mater. (1)

C. H. Cao, C. J. Zhang, J. L. Yang, J. Sun, S. P. Pang, H. Wu, R. S. Wu, Y. L. Gao, and C. B. Liu, “Iodine and chlorine element evolution in CH3NH3PbI3-xClx thin films for highly efficient planar heterojunction perovskite solar cells,” Chem. Mater. 28, 2742–2749 (2016).
[Crossref]

Chem. Soc. Rev. (1)

Y. Zhao and K. Zhu, “Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications,” Chem. Soc. Rev. 45, 655–689 (2016).
[Crossref]

Chemistry (1)

M. Zhang, M. Lyu, H. Yu, J. H. Yun, Q. Wang, and L. Wang, “Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter,” Chemistry 21, 434–439 (2015).
[Crossref]

Dalton Trans. (1)

L. Zhou, K. Yu, F. Yang, J. Zheng, Y. H. Zuo, C. B. Li, B. W. Cheng, and Q. M. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Energy Environ. Sci. (2)

Y. Zhao, C. J. Liang, H. M. Zhang, D. Li, D. Tian, G. B. Li, X. P. Jing, W. G. Zhang, W. K. Xiao, Q. Liu, F. J. Zhang, and Z. Q. He, “Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites,” Energy Environ. Sci. 8, 1256–1260 (2015).
[Crossref]

J. S. Luo, J. X. Xia, H. Yang, L. L. Chen, Z. Q. Wan, F. Han, H. A. Malik, X. H. Zhu, and C. Y. Jia, “Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid,” Energy Environ. Sci. 11, 2035–2045 (2018).
[Crossref]

J. Am. Chem. Soc. (5)

Y. Q. Xu, Q. Chen, C. F. Zhang, R. Wang, H. Wu, X. Y. Zhang, G. C. Xing, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

W. M. Tian, C. Y. Zhao, J. Leng, R. R. Cui, and S. Y. Jin, “Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates,” J. Am. Chem. Soc. 137, 12458–12461 (2015).
[Crossref]

M. J. Ashley, M. N. O’Brien, K. R. Hedderick, J. A. Mason, M. B. Ross, and C. A. Mirkin, “Templated synthesis of uniform perovskite nanowire arrays,” J. Am. Chem. Soc. 138, 10096–10099 (2016).
[Crossref]

Y. P. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” J. Am. Chem. Soc. 137, 5810–5818 (2015).
[Crossref]

J. He, W.-H. Fang, R. Long, and O. V. Prezhdo, “Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: time-domain ab initio analysis,” J. Am. Chem. Soc. 141, 5798–5807 (2019).
[Crossref]

J. Cryst. Growth (1)

G. Z. Yang, H. B. Lu, F. Chen, T. Zhao, and Z. H. Chen, “Laser molecular beam epitaxy and characterization of perovskite oxide thin films,” J. Cryst. Growth 227-228, 929–935 (2001).
[Crossref]

J. Mater. Chem. C (4)

P. Wang, J. Zhang, Z. B. Zeng, R. J. Chen, X. K. Huang, L. M. Wang, J. Xu, Z. Y. Hu, and Y. J. Zhu, “Copper iodide as a potential low-cost dopant for spiro-MeOTAD in perovskite solar cells,” J. Mater. Chem. C 4, 9003–9008 (2016).
[Crossref]

J. Gao, Q. B. Liang, G. H. Li, T. Ji, Y. C. Liu, M. M. Fan, Y. Y. Hao, S. Z. F. Liu, Y. C. Wu, and Y. X. Cui, “Single-crystalline lead halide perovskite wafers for high performance photodetectors,” J. Mater. Chem. C 7, 8357–8363 (2019).
[Crossref]

Q. Lv, Z. Lian, W. He, J.-L. Sun, Q. Li, and Q. Yan, “A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films,” J. Mater. Chem. C 6, 4464–4470 (2018).
[Crossref]

M. Z. Zhong, L. Huang, H. X. Deng, X. T. Wang, B. Li, Z. M. Wei, and J. B. Li, “Flexible photodetectors based on phase dependent PbI2 single crystals,” J. Mater. Chem. C 4, 6492–6499 (2016).
[Crossref]

Joule (3)

R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, and S. D. Stranks, “Metal halide perovskite polycrystalline films exhibiting properties of single crystals,” Joule 1, 155–167 (2017).
[Crossref]

B. R. Sutherland, “Tailoring perovskite thin films to rival single crystals,” Joule 1, 23–25 (2017).
[Crossref]

R. Wang, J. J. Xue, L. Meng, J.-W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. H. Yuan, Y. Huang, and Y. Yang, “Caffeine improves the performance and thermal stability of perovskite solar cells,” Joule 3, 1464–1477 (2019).
[Crossref]

Jpn. J. Appl. Phys. (1)

O. Marinov, M. J. Deen, and R. Datars, “Compact modeling of charge carrier mobility in organic thin-film transistors,” Jpn. J. Appl. Phys. 106, 064501 (2009).
[Crossref]

Nano Converg. (1)

Y. H. Deng, Z. Q. Yang, and R. M. Ma, “Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering,” Nano Converg. 7, 25 (2020).
[Crossref]

Nano Energy (6)

A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, and D. Mandal, “Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application,” Nano Energy 49, 380–392 (2018).
[Crossref]

C. W. Liu, Z. L. Qiu, W. L. Meng, J. W. Chen, J. J. Qi, C. Dong, and M. T. Wang, “Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter,” Nano Energy 12, 59–68 (2015).
[Crossref]

X. L. Zhang, W. G. Wang, B. Xu, S. Liu, H. T. Dai, D. Bian, S. M. Chen, K. Wang, and X. W. Sun, “Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering,” Nano Energy 37, 40–45 (2017).
[Crossref]

F. Zhang, Z. Q. Wang, H. W. Zhu, N. Pellet, J. S. Luo, C. Y. Yi, X. C. Liu, H. L. Liu, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, D. Q. Bi, and M. Grätzel, “Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials,” Nano Energy 41, 469–475 (2017).
[Crossref]

I. M. Asuo, D. Gedamua, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, and R. Nechachea, “High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector,” Nano Energy 51, 324–332 (2018).
[Crossref]

H. Zhou, Z. N. Song, C. R. Grice, C. Chen, J. Zhang, Y. F. Zhu, R. H. Liu, H. Wang, and Y. F. Yan, “Self-powered CsPbBr3 nanowire photodetector with a vertical structure,” Nano Energy 53, 880–886 (2018).
[Crossref]

Nano Lett. (13)

L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. S. Song, G. D. Niu, and J. Tang, “Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity, and polarization sensitivity,” Nano Lett. 16, 7446–7454 (2016).
[Crossref]

Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers,” Nano Lett. 14, 5995–6001 (2014).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

D. Q. Zhang, L. L. Gu, Q. P. Zhang, Y. J. Lin, D.-H. Lien, M. Kam, S. Poddar, E. C. Garnett, A. Javey, and Z. Y. Fan, “Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays,” Nano Lett. 19, 2850–2857 (2019).
[Crossref]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

P. C. Zhu, S. Gu, X. P. Shen, N. Xu, Y. L. Tan, S. D. Zhuang, Y. Deng, Z. D. Lu, Z. L. Wang, and J. Zhu, “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices,” Nano Lett. 16, 871–876 (2016).
[Crossref]

W. Deng, L. M. Huang, X. Z. Xu, X. J. Zhang, X. C. Jin, S.-T. Lee, and J. S. Jie, “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement,” Nano Lett. 17, 2482–2489 (2017).
[Crossref]

H. Deng, X. K. Yang, D. D. Dong, B. Li, D. Yang, S. J. Yuan, K. K. Qiao, Y. B. Cheng, J. Tang, and H. S. Song, “Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability,” Nano Lett. 15, 7963–7969 (2015).
[Crossref]

E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, and L. S. Forro, “Nanowires of methylammonium lead iodide (CH3NH3Pbl3) prepared by low temperature solution-mediated crystallization,” Nano Lett. 14, 6761–6766 (2014).
[Crossref]

R. Xiao, Y. S. Hou, Y. P. Fu, X. Y. Peng, Q. Wang, E. Gonzalez, S. Jin, and D. Yu, “Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures,” Nano Lett. 16, 7710–7717 (2016).
[Crossref]

J. Xue, Z. F. Zhu, X. B. Xu, Y. Gu, S. L. Wang, L. M. Xu, Y. S. Zou, J. Z. Song, H. B. Zeng, and Q. Chen, “Narrowband perovskite photodetector-based image array for potential application in artificial vision,” Nano Lett. 18, 7628–7634 (2018).
[Crossref]

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. V. Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14, 2584–2590 (2014).
[Crossref]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).
[Crossref]

Nano Today (1)

Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, “Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today 10, 355–396 (2015).
[Crossref]

Nanoscale (5)

C. Liu, K. Wang, P. C. Du, E. M. Wang, X. Gong, and A. J. Heeger, “Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters,” Nanoscale 7, 16460–16469 (2015).
[Crossref]

X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen, and H. Song, “All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation,” Nanoscale 10, 10505–10513 (2018).
[Crossref]

H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tang, and H. S. Song, “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices,” Nanoscale 7, 4163–4170 (2015).
[Crossref]

D. D. Dong, H. Deng, C. Hu, H. B. Song, K. K. Qiao, X. K. Yang, J. Zhang, F. S. Cai, J. Tang, and H. S. Song, “Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices,” Nanoscale 9, 1567–1574 (2017).
[Crossref]

Q. Hu, H. Wu, J. Sun, D. H. Yan, Y. L. Gao, and J. L. Yang, “Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading,” Nanoscale 8, 5350–5357 (2016).
[Crossref]

Nat. Commun. (2)

L. Dou, Y. M. Yang, J. B. You, Z. R. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Y. C. Liu, Y. X. Zhang, Z. Yang, H. C. Ye, J. S. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. X. Li, M. X. Hu, L. N. Meng, K. Wang, D.-M. Smilgies, G. T. Zhao, H. Xu, Z. P. Yang, A. Amassian, J. W. Li, K. Zhao, and S. Z. F. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Nat. Electron. (1)

J. G. Feng, C. Gong, H. F. Gao, W. Wen, Y. J. Gong, X. Y. Jiang, B. Zhang, Y. C. Wu, Y. S. Wu, H. B. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Nat. Energy (2)

Y. H. Deng, X. P. Zheng, Y. Bai, Q. Wang, J. J. Zhao, and J. S. Huang, “Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules,” Nat. Energy 3, 560–566 (2018).
[Crossref]

Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells,” Nat. Energy 1, 15001 (2016).
[Crossref]

Nat. Mater. (1)

H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Nat. Nanotechnol. (2)

M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. H. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7, 798–802 (2012).
[Crossref]

Nat. Photonics (3)

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1, 531–534 (2007).
[Crossref]

W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, and J. Tang, “Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit,” Nat. Photonics 11, 726–732 (2017).
[Crossref]

Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination,” Nat. Photonics 9, 679–686 (2015).
[Crossref]

Nature (2)

K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245–248 (2018).
[Crossref]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Opt. Express (1)

Org. Electron. (1)

R. Gao, G. H. Li, Y. Han, Y. Y. Xi, T. Ji, Y. Tian, B. N. Tian, Y. Y. Hao, Y. C. Wu, and Y. X. Cui, “Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors,” Org. Electron. 83, 105744 (2020).
[Crossref]

Part. Part. Syst. Charact. (1)

R. Pan, H. Y. Li, J. Wang, X. Jin, Q. H. Li, Z. M. Wu, J. Gou, Y. D. Jiang, and Y. L. Song, “High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid,” Part. Part. Syst. Charact. 35, 201700304 (2018).
[Crossref]

Phys. Chem. Chem. Phys. (1)

H. M. Zhang, C. J. Liang, Y. Zhao, M. J. Sun, H. Liu, J. J. Liang, D. Li, F. J. Zhang, and Z. Q. He, “Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells,” Phys. Chem. Chem. Phys. 17, 9613–9618 (2015).
[Crossref]

Phys. Status Solidi B (1)

J. A. Geurst, “Theory of space-charge-limited currents in thin semiconductor layers,” Phys. Status Solidi B 15, 107–118 (1966).
[Crossref]

Physica E (1)

W. M. Kong, G. H. Li, Q. B. Liang, X. Q. Ji, G. Li, T. Ji, T. Che, Y. Y. Hao, and Y. X. Cui, “Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature,” Physica E 97, 130–135 (2018).
[Crossref]

Sci. China Chem. (1)

Y. C. Liu, X. D. Ren, J. Zhang, Z. Yang, D. Yang, F. Y. Yu, J. K. Sun, C. M. Zhao, Z. Yao, B. Wang, Q. B. Wei, F. W. Xiao, H. B. Fan, H. Deng, L. P. Deng, and S. Z. F. Liu, “120 mm single-crystalline perovskite and wafers: towards viable applications,” Sci. China Chem. 60, 1367–1376 (2017).
[Crossref]

Sci. Rep. (1)

Z. P. Lian, Q. F. Yan, Q. R. Lv, Y. Wang, L. L. Liu, L. J. Zhang, S. L. Pan, Q. Li, L. D. Wang, and J. L. Sun, “High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal,” Sci. Rep. 5, 16563 (2015).
[Crossref]

Science (6)

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519–522 (2015).
[Crossref]

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356, 1376–1379 (2017).
[Crossref]

D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, and R. Zhu, “Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,” Science 360, 1442–1446 (2018).
[Crossref]

G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Small (2)

W. Tian, H. P. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017).
[Crossref]

I. M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi, A. Pignolet, R. Nechache, and S. G. Cloutier, “Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires,” Small 15, 1804150 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. (a) Optical image of MAPbI3 nanostructures grown from PbAc2 thin film. (b) Cross-sectional SEM image of a single MAPbI3 nanowire. (c) Low-resolution TEM image of a single MAPbI3 nanowire. (d) High-resolution TEM image of a selected area of a single MAPbI3 nanowire; the inset represents its corresponding FFT pattern. (e) AFM image of a single MAPbI3 nanowire. (f) AFM image of the selected nanowire region with the average surface roughness measured to be 0.27 nm. (g) XRD pattern of as-grown MAPbI3 nanowires with a comparison of the simulated tetragonal phase MAPbI3. (h) Transient PL spectrum of the MAPbI3 nanowire.
Fig. 2.
Fig. 2. (a) Logarithmic I-V curves under 325-nm, 505-nm, and 660-nm LED illumination at the power density of 10.19  mW/cm2. (b) I-V curves under 660-nm illumination with different power densities. (c) Double logarithmic I-V plot at the power density of 10.19  mW/cm2, 660 nm. (d) Wavelength-dependent EQE response and the absorption spectrum of the MAPbI3 nanowire photodetector.
Fig. 3.
Fig. 3. (a) Current versus illumination power density (i.e., LDR measurement) of the prepared photodetector under 532-nm continuous laser illumination. (b) External quantum efficiency (EQE) versus illumination power density. (c) Responsivity (R) versus the illumination power density. (d) Detectivity (D*) versus illumination power density.
Fig. 4.
Fig. 4. (a) Transient photo response measurement of the fabricated MAPbI3 nanowire photodetector under 660-nm illumination at the power density of 10.19  mW/cm2. (b) Rise/fall time indicated in one cycle. (c) Frequency response of the MAPbI3 nanowire photodetector. (d) Stability test with the photodetector stored in air at a temperature of 20°C and humidity of 10%. The prepared photodetector exhibits stable response when the illumination is turned on and off.
Fig. 5.
Fig. 5. Schematic illustration of the surface-initiated solution-growth strategy for preparing the single-crystalline MAPbI3 nanowires. It includes mainly two steps. The first step is to coat a transparent lead acetate (PbAc2) solid film based on the blade coating method, and the second step is to immerse the PbAc2 film into the methyl ammonium iodide (MAI) solution at high concentration.
Fig. 6.
Fig. 6. (a)–(d) Optical images of MAPbI3 nanowires grown from PbAc2 thin film in relative humidities of 20%, 25%, 30%, and 35%. (e), (f) Corresponding absorption and PL spectra of MAPbI3 nanowires grown in different humidities. (g) XRD pattern of as-grown MAPbI3 nanowires with a comparison of these humidities.
Fig. 7.
Fig. 7. Experimental XRD pattern of as-grown MAPbI3 nanowires with a comparison of the simulated tetragonal phase MAPbI3. The as-grown MAPbI3 nanowires exhibit approximately the same XRD pattern as the simulated one.
Fig. 8.
Fig. 8. (a) Experimental XRD pattern of the MAPbI3 nanowires with a washing time of 20 s. (b) Simulated XRD pattern of MAI. Too short washing time (20 s) could cause a significant amount of MAI residue. The peaks at 19.8° and 29.7° in (a) indicate the existence of MAI in the final product. When the washing time is prolonged to 1 min, the pure single-crystalline MAPbI3 product can be obtained.
Fig. 9.
Fig. 9. Microscopic characterizations of the as-grown MAPbI3 nanowires. (a) SEM image with an area of a single MAPbI3 nanowire framed for the following EDS measurement. (b) EDS elemental mappings of C, Pb, N, and I, and the atomic ratios of different elements. The distribution of elements indicates that Pb and I elements are homogeneously distributed in the individual MAPbI3 nanowire, and the atomic ratio between Pb and I elements is approximately 1∶3.
Fig. 10.
Fig. 10. AFM morphology of the PEDOT:PSS surface. It has an average RMS value of 0.16 nm, only a bit lower than that of the as-grown MAPbI3 nanowires.
Fig. 11.
Fig. 11. (a) Schematic diagram of the fabricated MSM-type MAPbI3 nanowire photodetector. (b) SEM image of a single MAPbI3 nanowire sitting on the fingers of the interdigitated electrode. The planar metal–semiconductor–metal (MSM)-type photodetector with multiple nanowires adhered on top of the metal electrodes is fabricated. The effective photosensitive area is calculated by integrating all the areas of nanowires lying in between neighboring fingers of the electrode. At least 10 devices are fabricated for validating the calculation of the effective photosensitive area (90  μm2).
Fig. 12.
Fig. 12. Dark and photo I-V characteristic of a photodetector prepared by evaporating the electrodes on top of the as-grown MAPbI3 wires.
Fig. 13.
Fig. 13. Measured dark-current noise at various frequencies for the MAPbI3 nanowire photodetector at 1 V bias. The calculated shot noise and thermal noise limits are also included for reference.
Fig. 14.
Fig. 14. (a), (b) Illumination spectrum with power densities of μW/cm2 magnitude from the Xe lamp calibrated by the power meter and the corresponding spectral photocurrent response. The wavelength-dependent photodetection capability of MAPbI3 nanowire photodetectors is studied using the Xe lamp as the light source for I-V characterizations. Illumination spectrum with power densities of μW/cm2 magnitude from the Xe lamp calibrated by the power meter. It is found that our device exhibits a broadband photodetection ability from the wavelength of 300 nm to 800 nm. Here, the photocurrent at 500 nm with a power density of 29.8  μW/cm2 is on the order of 1.15 nA, coincident with the LDR measurements shown in Fig. 2(d).

Tables (1)

Tables Icon

Table 1. Device Performance Comparison of Different Perovskite Nanowire Photodetectors Measured at Room Temperaturea

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

EQE=IlIdPinAhνe,
R=IlIdPinA,
G=EQE=μpτV0L2=τtp,
in,s=2eidB,
in,t=4kBTBr,
in,T=in,s2+in,t2.
D*=RABin,
D*=R2eJd.