Abstract

Two-dimensional (2D) perovskites are hybrid layered materials in which the inorganic lattice of an octahedron is sandwiched by organic layers. They behave as a quantum-well structure exhibiting large exciton binding energy and high emission efficiency, which is excellent for photonic applications. Hence, the cavity modulation and cavity devices of 2D perovskites are widely investigated. In this review, we summarize the rich photophysics, synthetic methods of different cavity structures, and the cavity-based applications of 2D perovskites. We highlight the strong exciton–photon coupling and photonic lasing obtained in different cavity structures. In addition, functional optoelectronic devices using cavity structures of 2D perovskites are also reviewed.

© 2020 Chinese Laser Press

1. INTRODUCTION

The pursuit of novel optical-electrics with fast operation and small size requires the efficient control of light propagating at nanoscale. A microcavity provides a place where light can be directed with few propagation losses and a relatively long lifetime, which can be depicted as a quality (Q) factor. More importantly, the confined photons can interact with matter. The internal dissipative mechanisms, such as spontaneous emission, can be coupled with resonant optical modes. This leads to the observation of accelerated emitting dynamics, local field enhancement (Purcell effect) [1], and a variety of applications, such as light-emitting diodes (LEDs) and semiconductor lasers. If the coupling between optical modes and matter overcomes their loss, the quantum entanglement between them becomes possible, and the strong coupling between light and matter can be established. The new quasi-particle—polaritons, exhibiting the extremely light effective mass and notable nonlinearity from their light and matter part, bring fantastic polaritonic effects such as slow light, Bose–Einstein condensation (BEC), and low threshold polariton lasers [2].

To obtain efficient light harvesting for optical-electric devices, the choice of active materials for light emission and propagation has been investigated for a long time, including traditional inorganic materials, quantum-well (QW) materials, and organic dyes [3]. In recent years, lead halide perovskites have become favored materials not only for solar cells [4], but also for photon detectors [5] and light emission devices [6] such as LEDs and microlasers. They behave with a high absorption coefficient [7], long diffusion length [8], high defect tolerance [9], and low rates of nonradiative recombination [10]. The typical chemical formula can be expressed as ABX3, where A is a monovalent organic or inorganic cation (Cs+, Rb+, CH3NH3+, NH2CH=NH2+, etc.), B is a metal cation (Pb2+, Sn2+, Ge2+, etc.), and X is a halide anion (Cl, Br, I, or their mixture). The typical three-dimensional (3D) structure consists of an octahedral cluster [BX6]4 and A cations at eight corners [Fig. 1(a)]. However, when the organic cations are too large to place among the octahedral cluster, they have to be sandwiched between two [BX6]4 octahedral cluster layers because of steric effects [Fig. 1(b)]. Here perovskites behave as a two-dimensional (2D) layered structure with the chemical formula of R2BX4. The large dielectric contrast between inorganic and organic layers makes 2D perovskites a kind of QW structure [11]. The inorganic layers connected via coulombic interactions act as “wells” and are barriered by hydrophobic, insulating organic layers, leading to a periodic thickness of up to a few nanometers [12] and strong quantum confinement. After the early works of layered perovskites containing single inorganic layer (n=1) in a well, more research has centered on various inorganic layers (n>1) with the chemical formula of R2An1BnX3n+1. The additional small organic cation (A) is to form the multilayered “quasi-2D” perovskites with distinct quantum confinements at different n values. The flexible tunability of n values has a great influence on the exciton binding energy and bandgap because of the well thickness and dielectric environment [Fig. 1(c)] [13]. Therefore, 2D perovskites have unprecedented controlling ways for optical absorption [Fig. 1(d)] and colorful light emission [Fig. 1(e)] [14], including halogen alloying, structure and dielectric control by organic components, and inorganic layer thickness. The engineering of 2D perovskites is thus advantageous for light-emitting applications over the visible and near-infrared spectral region [15].

 

Fig. 1. Crystal structure and layer-dependent excitonic properties of 2D perovskite. (a) Fundamental unit of octahedral inorganic framework [PbX6]2, where X=Cl, Br, I; (b) crystal structure of 2D layered perovksite. The inorganic layers are surrounded by insulative organic layers, resulting in self-assembled multiple quantum-well structures, where interlayer organic cations provide both dielectric and quantum confinement for inorgaic stacks. (c) The exciton binding energy of 2D perovskite decreases with inorganic layer number as a result of weak quantum confinement at large inorganic layer numbers [13]. Copyright 2018, Springer Nature. (d) and (e) are the absorpation and PL spectra of 2D perovskite (BA)2(MA)n1PbnI3n+1 at different n values [14]. Copyright 2020, Springer Nature.

Download Full Size | PPT Slide | PDF

In the past few years, 2D perovskites have been the subject of fast development in cavity-based applications and fundamental studies. Due to the large exciton binding energy and oscillation strength, strong exciton–photon coupling has been observed in 2D perovskite single-crystal, Fabry–Perot (F-P) cavities, and photonic crystal structures at room temperature [16]. In addition, 2D perovskites are promising optical gain media so that lasing from 2D perovskite microstructures such as inhomogeneous thin films [17] and mechanically exfoliated plates [18] have been reported. Compared to the 3D perovskites, 2D perovskites behave with improved environmental stability and exciton confinement [11], which are more favorable for efficient LEDs and lasers. Additionally, large surface, ultrathin film can be easily exfoliated from the bulk crystal or grown by solution methods [19], which is essential for nanosized cavity devices. As a layered structure, it is very similar to the transitional metal dichalcogenide (TMD) materials. Considering the low photoluminescence quantum yield (PLQY) of TMD materials, the value of which in ABX2 (A=Mo, W; B=S, Se.) is below 1% [20], the much easier fabrication and better excitonic emission efficiency [2123] make 2D perovskites more advantageous active materials than TMD materials. Finally, the unique structures of these hybrid layered materials induce rich structure-related anisotropic emission behaviors, which may make 2D perovskite-based optical cavities the basis of novel functional devices with enhanced performance, such as photodetectors, solar cells, LEDs, light modulators, and nonlinear photonic devices [2427].

Hence, this review captures the unique optical performance of 2D perovskites inside the optical cavities, discusses the fundamental photon physics, and summarizes the potential applications of 2D perovskite-based cavities. Since 2D perovskites have infinite tunability as discussed above, we first discuss the structure-related optoelectronic properties, including the impacts of a dielectric environment and structure order/disorder. Second, we review the growing methods of 2D perovskite and integration to optical cavities, including self-organized structures, vertical F-P cavities, and periodical cavity structures. Later, we discuss the light-matter interaction and applications of 2D perovskite-based cavities, including strong exciton–photon coupling and photonic laser and function devices. Finally, we discuss the challenges and limitations of the current performance of cavity applications and propose future directions.

2. STRUCTURE-RELATED OPTOELECTRONIC PROPERTIES

A. Low Trap States and High Quantum Yield

Quantum yield is an important parameter in LEDs and lasers. To obtain high quantum yield, one would improve the rate of radiative recombination by excitonic recombination and bimolecular recombination or reduce the nonradiative recombination. Ramirez et al. reported the highly luminescent 2D perovskite (PA)2(MA)2Pb3Br10 (PA=propylamine, MA=methylamine) [28], with the quantum yield of 29.6%, which is much higher than the counterpart MAPbBr3—the value is 3.6% [Fig. 2(a)]. It shows a blueshifted and less well-defined absorption edge. Power-dependent photoluminescence (PL) spectra reveal a power-law function with the slope of 1.037, an indication of an exciton radiative recombination and low trap density [29]. The QW structure of 2D perovskites makes their exciton binding energy much higher than their 3D counterparts, and contributes to the more excitonic emission character, which is more efficient for radiative recombination. In contrast, the excitons in 3D perovskite are more easily ionized into free carriers, and the charge-carrier trapping reduces the PL emission [30]. The quantum yield of 2D perovskite can be further improved to 80% by surface passivation [31], which is able to reduce the nonradiative recombination by surface state.

 

Fig. 2. Unique excitonic behaviors of 2D perovskite. (a) Left, absorpation spectra of (PA)2(MA)2Pb3Br10 and MAPbBr3 thin films; right, optical images of the two perovskite thin films under UV illumination. Adapted from [28] with permission from Royal Society of Chemistry. (b) In-plane and out-of-plane exciton of 2D perovskite. Left, 2D Fourier image of PL in the vertical polarization (white arrow), in which out-of-plane component locates at the TIR angle (k0). Adapted with permission from [33]. Copyright 2018, American Chemical Society. Right, dielectric model of 2D perovskite indicating the in-plane and out-of-plane electric field. Adapted with permission from [34]. Copyright 2019, American Chemical Society. (c) Phonon coherence of (PEA)2PbI4. Left, absorpation and time-resolved differential transmission spectrum at 5 K; right, oscillatory components extracted from the time-resolved differential transmission spectrum indicating the coherent vibrational dynamics. Adapted with permission from [40]. Copyright 2019, Springer Nature. (d) Energy diagram showing the generation of free exciton and self-trapped exciton due to the lattice reorganization; the resulting emission spectra behave as sharp excitonic emission and broad exciton self-trapping emission at low temperature. Adapted from [43]. Published by the Royal Society of Chemistry.

Download Full Size | PPT Slide | PDF

B. Large Optical Anisotropies

2D materials usually present optical anisotropies due to the structural inhomogeneities at different crystal axes [32], which is also applicable to 2D perovskites where carriers are considered to be confined at the inorganic layers. By using a polarized Fourier-resolved PL measurement, Fieramosca et al. observed that 2D perovskites have both in-plane components and out-of-plane components of excitons, in which the out-of-plane excitonic emission is observed at the total internal reflection (TIR) angle of a TM section [33]. In contrast, MoS2 with full in-plane excitons, behaves as vanishing emissions at this angle. By using different organic ligands and the same inorganic layers, the component of out-of-plane excitons can be further varied from 10% to 18%, which also reveals the barrier-dependent exciton oscillating out of the inorganic layers plane. Later, Decrescent et al. investigated the optical constants of both the in-plane and out-of-plane by using the momentum-resolved optical spectra [Fig. 2(b)] [34]. The result can be well understood by dielectric inhomogeneity rather than the electronic states of inorganic layers, which also suggests the significant tuning of optical anisotropies by varying the organic cation.

C. Carrier–Phonon Coupling

Compared to conventional semiconductor QWs with relatively low binding energy, 2D perovskites exhibit distinct features, such as more stable excitons at room temperature. More importantly, the ionic character and the “softness” of the lattice result in carrier scattering by coupling to phonons [35]. Recent studies of vibrational spectra reveal that excitons can be coupled to a series of phonon modes, and the coupling modes can be tuned by the organic cation and thickness of the inorganic layers. The low energy longitudinal optical (LO) phonons of 8–17 meV [3638] and 12–14 meV [38,39] can be resolved by ultrafast transient absorption (TA) spectroscopy. Coherent coupling with LO phonons can be observed by high-resolution resonant impulsive stimulated Raman spectroscopy using an ultrashort pump pulse [Fig. 2(c)] [40]. Additionally, coherent longitudinal acoustic (LA) phonons coupled with hot excitons have also been observed in 2D perovskites. They propagate along the cross-plane direction of 2D perovskites, and the group velocity and propagation length can be varied by the perovskite layer thickness [41]. Generally, carrier–phonon coupling results in fast nonradiative decay, and lowers the PL quantum yield. Reduction of molecular motion by varying the organic ligands in 2D perovskites could be possible for better optoelectronic performance [42].

D. Lattice Distortion and Self-Trap States

Structure distortion can be caused and stabilized by the local potential well induced by exciton itself, resulting in a low energy, broadband white-light emission, which is called a self-trapped exciton [Fig. 2(d)]. These phenomena have been observed in layered Pb-Br perovskite of different structure types [43]. At room temperature, they behave as narrow blue PL and small Stokes shift and are assigned to free excitonic emission. At low temperature, a new broad PL band with a large Stokes shift arises, which has been attributed to self-trapped exciton emission. Cortecchia et al. reported the origin of structural distortion in (EDBE)PbI4 [EDBE=2,2-(ethylenedioxy)bis(ethylammonium)] where the large deformation of the Pb-I bond length and I-Pb-I bond angles can result in self-trapped states [44]. Self-trapped states can be established from free exciton by electron–phonon coupling with an ultrafast time scale of subpicoseconds or picoseconds, which can be distinguished from defect-induced traps [45].

3. FABRICATION OF CAVITY STRUCTURES AND MATERIAL SOURCE

In an optical cavity, light is confined and resonant-recycled with a certain photon energy and group velocity. The most common type of optical cavity is the F-P cavity, where light oscillates between two end facets of the longitudinal direction. The mode wavelength spacing of the light Δλ can be expressed as [46]

Δλ=λ22L[nλ(dn/dλ)],
where n is the refractive index, L is the cavity length, and nλ(dn/dλ) is the group refractive index ng. Another type of cavity is the whispering-gallery mode (WGM) cavity, where light can travel along the side faces of the cavity, providing that total internal reflection is reached. The shape of this cavity can be varied from square or hexagon plates, round disks, spheres, etc. The spectral spacing Δλ has the relationship with round-trip distance L as [47]
Δλ=λ2ngL.

In addition, periodic dielectric nanostructures such as 2D photonic crystals [48] and distributed Bragg reflectors (DBRs) [49] are also used as optical cavities to control the propagation of light at arbitrary designed angles. The internal elements are usually periodically separated at half the wavelength of the light.

2D perovskites can be easily prepared in the types of single crystals [50,51], nanocrystals [52], microstructures [53], and thin films [54] using chemical vapor deposition (CVD), antisolvent methods, or just spin coating on a substrate [55]. So far, these types of 2D perovskites have been widely used as active materials of different optical cavities, as mentioned above (Fig. 3). Based on the morphology of different material sources and desired optical performance, we discuss the different cavity structures as three species, i.e., self-assembled crystal cavities, structure-templated cavity arrays, and vertical F-P cavities. Table 1 shows the optical performance of different cavities of 2D perovskite, highlighting the materials sources and Q factor of different cavity structures. The details are discussed below.

 

Fig. 3. Fabrication of different 2D perovskite photonic cavities. Upper side shows the synthesis of 2D perovskite materials with different morphology, including bulk crystals, microstructures, nanocrystals, and thin films. From left to right, the first image is adapted with permission from [64]. Copyright 2016, American Chemical Society. Further permissions related to the material excerpted should be directed to the ACS. The second image is adapted with permission from [53]. Copyright 2019, John Wiley and Sons. The third image is adapted with permission from [52]. Copyright 2015, John Wiley and Sons. The fourth image is adapted from [54]. Published by MDPI. Bottom side summarizes the different cavity structures including F-P cavity, WGM cavity, photonic crystal cavity, and DBR cavity.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Optical Performance of 2D Perovskite-Based Microcavities

A. Self-Assembled Crystal Cavities by 2D Perovskite Nano/Microstructures

Owing to the high reflectivity of perovskites with different shapes, the single particle of perovskites itself can be a self-organized optical resonator [63]. Perovskite microstructures such as nanowires or nanoplates can be used as F-P cavities or WGM cavities, which can be directly obtained by solution methods or CVD without further lithography or etching processes.

As a kind of layered material, 2D perovskites micro/nanoplates can be mechanically exfoliated from their bulk crystal with a large and flat surface. The bulk crystals are usually obtained by liquid phase crystallization. The dissolved lead halide and organic amine halide are mixed together at high temperature. The crystal growth can be controlled by cooling down at a certain rate or evaporating the solvent at a slow rate. Stoumpos et al. reported (BA)2(MA)n1PbnI3n+1(BA=butylammine, n=14) by adding the neutralized BA into the mixed hot solution of HI, H3PO2, PbO, and further cooling down the mixture to room temperature [64]. Leng et al. also synthesized centimeter-sized single-crystal 2D perovskites (BA)2(MA)n1PbnI3n+1 (n=14) by a temperature-programmed crystallization method [65]. Evaporating the solvent slowly can be easier and cleaner for obtaining high-quality single crystals, such as the systemization of (HA)2PbI4 (HA=n-hexylamine) by slowly evaporating the acetone solvent [66] and (BA)4Pb3I4Br6 by slowly evaporating N,N-dimethylformamide [67], but is a time-consuming method.

Although mechanical exfoliation is a convenient way to obtain microstructures of 2D perovskites with different widths and thicknesses, the shape is uncontrollable and is challenging for reliable modulation of light in the cavity. Dou et al. obtained atomically thin, uniform square-shaped 2D perovskite (BA)2PbBr4 by evaporating the mixed solution of BABr and PbBr2 in the cosolvent of dimethylformamide (DMF) and chlorobenzene (CB) at 75°C for 10 min [68]. Shi et al. further reported the synthesis of highly stable, square-shaped 2D perovskite lateral epitaxial heterostructures by two steps of crystallization of 2D perovskite precursor solution [69]. The formation of large 2D halide perovskite sheets was controlled by evaporating the antisolvent of CB. Ma et al. reported that 2D perovskite rectangular microplates and nanowires can be directly obtained by a novel solution method named as the dissolution–recrystallization process [70]. They synthesized (PEA)2PbX4 (PEA=phenethylamine, X=Br and I) by placing a lead acetate film into the PEAX solution in isopropanol for a specified time, further washed away the solution, and dried the substrate. The obtained microplates and nanowires have a typical size of tens of micrometers and thickness of hundreds of nanometers. Another method to grow structured semiconductors is CVD. It is a scalable approach for the growth of 2D TMDs and can be applied to the growth of 3D perovskite. The CVD growing of 2D perovskites has been explored by Ghoshal et al. [53]. They developed a low-temperature vacuum-assisted chemical vapor deposition (LTCVD) method to grow (C4H9NH3)2PbI4. Briefly, lead iodide and n-butylammonium iodide are heated at the temperature of 400°C for 10 min with argon of 30 sccm and pressure of 600 mTorr. Based on the concentration and depending on the distance between material source and substrates, different growth processes form the morphology of nanoplatelet or nanowires with lengths from several to tens of micrometers.

B. Periodic and Photonic Crystal Cavities by Structure-Templated 2D Perovskite

Reproducible photonic arrays are demanded for integrated information transmission and the mass production of photonic devices, which is still challenging by direct growth of photonic nanostructures such as nanowires and nanoplates. Solution processability ensures the direct fabrication of cavity arrays by casting perovskite solution onto a periodical structure such as SiO2 etching hole lattices and Ag gratings [62,71]. This convenient method, however, often results in disordered grain boundary and reducing quantity factor of cavity structures. Miscibility of perovskite with organic matrix materials [72,73] provides another avenue of emitted cavity array by engineering the shape of perovskite-embedded organic matrix materials. Compared with solution-processed thin film, this method can produce cavities of different shapes with a flat surface and a homogeneous distribution of perovskite. The flexibility has been proved in 3D perovskite by embedding CsPbBr3 nanocrystals (NCs) with poly-(methylmetacrylate) (PMMA) [74] or polyacrylonitrile (PAN) [75]. Comparatively, 2D perovskites behave with improved flexibility and deformable properties due to the organic layers [76]. Zhang et al. designed the 2D perovskites nanowire and microring arrays by a polydimethylsiloxane (PDMS) template that confined solution growth of 2D perovskites [61,77]. Initially, the PDMS templates were fabricated by casting PDMS against the silicon mother-molds of microrings or nanowires by photolithography. By pressing the PDMS templates onto the top of stock solution containing BABr, MABr, and PbBr2, the nucleation of 2D perovskites can occur inside the PDMS templates, and the PDMS-templated 2D perovskite cavity arrays can be obtained. The direct nucleation from comixing the precursor solution, however, often induces the formation of multiple phase 2D perovskites with different inorganic layer numbers, which is widely observed in spin-coating film of 2D perovskites. To obtain the structure templated cavity with a pure phase of desired inorganic layer number, one would consider the synthesis of 2D perovskite colloidal NCs with a single emission peak. Chang et al. reported the synthesis of (BA)2(MA)n1PbnI3n+1 (n=15) quantum dots (QDs) with an average size of 10 nm at room temperature [22]. By adjusting the ratio of MAX and PbX2 in the precursor solution before its being dropped into a quenching solvent chlorobenzene, well-dispersed perovskite QDs with different n values were obtained. Upon increasing the n value, the PL spectra of these QDs show a redshift and low FWHM of 11–21 nm, suggesting highly pure 2D perovskite QDs. In addition, they are more optically stable than 3D perovskite QDs, which makes them an advantageous gain medium for structure-templated cavities.

C. Vertical F–P Cavities Containing 2D Perovskite Thin Film or Single Crystals

A vertical F–P cavity means that the F–P oscillation modes are perpendicular to the plane of active material. It consists of two strictly parallel mirrors separated by the active material. The reflectivity of the two mirrors has a great impact on the cavity loss and Q factor. Metallic mirrors behave as the constant reflectivity of a broad wavelength, which may not be suitable for the transmission of light at certain wavelengths. Bragg mirrors can also be used as mirror pairs of an F–P cavity, which is equivalently called the DBR cavity. A Bragg mirror is produced by periodically stacking a quarter-wave thickness of two dielectric materials with different refractive indices, resulting in ultrahigh reflectivity at the designed wavelength [78]. In a typical DBR cavity, two Bragg mirrors are sandwiched by a gain medium, resulting in a vertical F–P cavity mode across the gain medium. If the resonance energy of the vertical F–P cavity is within the high-reflectivity energy region of two Bragg mirrors, the DBR cavity with a high Q factor can be established [79]. Early work on 2D perovskite-embedded vertical F–P cavities usually used a solution-processed 2D perovskite thin film as the gain medium between Bragg mirrors and a metal surface, which behave at the low Q factor of 25 [80,81]. A higher Q factor of 86 was later obtained in a two-Bragg-mirror structure containing 60 nm of spin-coated (PEA)2PbI4 film [59]. The Q factor can be further improved by using a 2D perovskite single-crystal structure as the gain medium inside two Bragg mirrors. For example, Wang et al. fabricated a DBR cavity containing (PEA)2PbX4 (X=Br, I) bulk crystal and a high Q factor of 2200 [60]. 2D perovskite-embedded DBR cavities have witnessed the strong exciton–photon coupling and vertical cavity surface-emitting lasers (VCSELs) at room temperature.

4. LIGHT-MATTER INTERACTIONS AND OPTOELECTRONIC APPLICATIONS OF 2D PEROVSKITE CAVITY STRUCTURES

2D perovskites exhibit unique optical properties, combining the advantage of atomic thin 2D materials and the high quantum efficiency of perovskite, as discussed in Section 2. Moreover, the ease of fabrication and integration with different optical cavities makes 2D perovskites attractive active materials for various photonic applications. In optical cavities, the excitonic transition of a semiconductor can be coupled to the external optical field. Based on the architecture of the cavities and the excitation conditions, the light-matter interaction can be in the strong coupling region or weak coupling region. Consequently, various optical performances and optoelectronic applications of 2D perovskites can be expected, such as exciton–polariton, lasing, and functional devices of different photonic structures.

A. Strong Exciton–Photon Coupling of 2D Perovskite Cavity Structures

The establishment of strong exciton-photon coupling requires the robust exciton to be well overlapped with the antinode of the optical field inside a cavity [3]. A typical structure is shown in Fig. 4(a), in which the active material is inserted between two mirrors, and excitons are coupled with the F–P cavity mode. The resulting quasi-particle, exciton polariton behaves as two separating energy branches named as upper polariton branches (UPBs) and lower polariton branches (LPBs) in a dispersion curve [Fig. 4(b)], which stems from the crossed dispersion of exciton EX and cavity mode EC. The dispersion relation of the two polariton branches can be expressed as

E=12(EC+EX±Δ2+Ω2),
in which Δ=ECEX is the detuning energy, and Ω is the Rabi splitting, related to the coupling strength of the exciton and photon [2].

 

Fig. 4. Model of exciton polariton inside a cavity. (a) Schematic diagram showing the strong coupling of excitons in the gain medium and F–P cavity mode between two reflectors; (b) dispersion curve of exciton polariton consisting of two polariton branches. The dashed lines are uncoupled exciton and cavity modes.

Download Full Size | PPT Slide | PDF

Traditional III–V and II–VI semiconductors such as GaAs and ZnTe were initially demonstrated as exciton–photon coupling [8285]. Their QW structures exhibit a narrow exciton linewidth and a large exciton Bohr radius, indicating low loss and sizeable nonlinear interaction with polaritons [3]. However, their weak exciton binding energy restricts the operating temperature to below 100 K. Wide bandgap inorganic materials such as GaN and ZnO possess large exciton binding energy (45–60 meV) and oscillator strength, making the polariton operation at room temperature necessary [86,87]. The intrinsic small exciton Bohr radius of these materials indicates weak exciton–exciton interaction, which is a drawback because the nonlinear polariton interaction is hindered [88]. A similar situation also exists in organic dyes and polymers with Frenkel excitons [89].

Metal-halide perovskites have been considered competitive materials for room temperature polaritons due to their large exciton binding energy and high quantum yield [10,90]. In the past several years, room temperature exciton polaritons [9194] and polariton condensation [92,95,96] have been demonstrated in 3D perovskite [97]. Continuous-wave pumped lasers have also been reported in CsPbBr3 nanowires due to the large refractive index induced by the exciton–polariton effect [98,99]. The investigation of exciton–polariton in 2D perovskites with much higher binding energy is essentially much earlier. Due to the ease of the solution process, most of the early work was focused on the polycrystalline film coupled with different cavities, which often results in a low Q factor [81,100,101]. The investigation is accelerated along with the pursuit for high-quality cavity structure, leading to the observation of attractive polariton effects that are different from their 3D counterparts [33,102]. 2D perovskites coupled with different cavity structures are reviewed below.

1. Exciton–Polariton in Self-Assembled Crystal Cavities of 2D Perovskite

Fieramosca et al. reported the first observation of exciton polaritons in 2D perovskite single-crystal flakes [33]. Light inside the single crystal of 2D perovskites can be a self-assembled cavity in which light can oscillate between two smooth interfaces of a single crystal or propagate along the plane of the flake [Fig. 5(a)]. The latter was verified by the PL image in Fig. 5(b). Apart from the bright spot representing the excitation region, the bright boundary of flakes is induced by the leakage of guided light at the edges of the flake because light can propagate for tens of microns without being scattered by defects. Polarization-dependent and angle-resolved reflection spectra indicate the strong coupling of multi-F–P modes with either in-plane or out-of-plane oscillating dipoles when close to the excitonic resonance. Moreover, by increasing the length of the organic ligand, the out-of-plane oscillator strength is weakened. The observations suggest the organic interlayer plays a significant role in the anisotropy of the exciton and exciton polariton, rather than a passive insulating barrier. Later, they observed the blueshift of polariton modes in single crystals of 2D perovskites (PEA)2PbI4, which is related to polariton nonlinearity [102]. By injecting a linearly polarized laser beam beyond the crystal–air TIR angle [green region in Fig. 5(c)], the blueshift of two LPBs (LP1, LP2) is characterized by increasing the incident power. The LP1, with more excitonic fraction, behaves with a larger blueshift, which confirms the inherent excitonic interaction with the interaction constant gx1±0.2  μeV·μm2 per inorganic layer. This value is much higher than the value in organic excitons and is comparable with the value estimated for a GaAs QW [103]. In another type of 2D perovskite (PEA)2PbBr4, Zhang et al. reported exciton polaritons with Rabi splitting of 259  meV in a millimeter-sized single crystal sheet [56]. By the microregion PL measurement at different sites of the 2D perovskite sheet, they found the enhanced PL emission from the edge of the sheet exhibiting F–P mode oscillation. The mode spacing is reduced when approaching the excitonic resonant energy, in indication of strong exciton–photon coupling. The oscillating mode energies in energy-wave vector coordinates can be well fitted by a coupled oscillator model describing the strong coupling of light and matter [104]. A sensitive detection of the F–P oscillation is realized in 2D perovskite sheets with an extremely smooth top surface and both edges. In the bottom of Fig. 5(d), the PL mapping of the selected area overlaps with an evident interference pattern, which concludes as the oscillating modes are induced by the exciton–photon coupling.

 

Fig. 5. Polariton in 2D perovskite self-organized crystal cavity. (a) Schematic diagram showing the oscillation of light between top and bottom interface of 2D perovskite single crystal (green arrow) and in-plane transmission of light inside the perovskite crystal (yellow arrow). (b) In-plane and out-of-plane exciton polariton in (PEAI)2PbI4 crystal. Top left is the PL image of perovskite crystal; right is the real-space intensity image of a resonant injected beam in the perovskite crystal; bottom, energy-momentum resolved reflection spectra of TE (left) and TM (middle) polarizations; the calculated reflection minima with (blue lines) and without (red lines) the interaction of excitonic resonance indicating the strong light-matter coupling. Adapted with permission from [33]. Copyright 2018, American Chemical Society. (c) Energy dispersion of a 2D perovskite (PEAI)2PbI4 single crystal showing the multimode exciton polaritons. The two low polariton modes (blue region) under different pumping power show energy blueshift of different values, indicating the exciton polariton nonlinearity. Adapted from [102]. Copyright 2019, AAAS. (d) Upper side, PL spectra consisting of a series of oscillating modes in a 2D perovskite planar cavity. The relation of oscillating modes versus wave vector can be fitted by a polariton model with a large Rabi splitting. Bottom is the PL mapping of a selected area of 2D perovskite planar crystal cavity. The interference pattern indicates the oscillating emission of exciton polariton. Adapted with permission from [56]. Copyright 2020, American Chemical Society.

Download Full Size | PPT Slide | PDF

2. Exciton–Polariton in 2D Perovskite-Embedded Vertical F–P Cavities

Deleporte’s group demonstrated the first vertical F–P cavity containing 2D perovskite (PEA)2PbI4 thin film between a dielectric mirror and a silver mirror [80]. The strong coupling of exciton and F–P mode photon was verified by reflectivity spectra at different incident angles. Two dips with an angle-dependent energy position, linewidth, and intensity were observed with anticrossing behavior—a sign of strong exciton–photon coupling. Two dips at different angles can thus be ascribed to the LPB and UPB of polariton dispersion with Rabi splitting of 140 meV [Fig. 6(a)]. They also found that by changing the thickness of spacer layers or perovskite film, the detuning and Rabi splitting can be precisely controlled [81]. Pradeesh et al. investigated the exciton–photon coupling in an all-metal cavity containing two silver mirrors and sandwiched 2D perovskite (C6H9C2H4NH3)2PbI4 [Fig. 6(b)] [101]. Compared with open metal-perovskite–air cavity, this cavity enhances the Rabi splitting from 130 meV to 160 meV due to the greater field confinement. However, these cavities often possess low Q factor—no more than 100, which restrains the study of stimulated polaritonic effects. Han et al. improved the Q factor by designing a DBR cavity containing two DBR mirrors and the inserted perovskite (C6H5C2H4NH3)2PbI4 layer [59]. During the fabrication, the top dielectric mirror was migrated in liquid to avoid the degradation of perovskite. The far-field emission map in Fig. 6(c) reveals the dominated emission from middle polariton branches (MPBs); the linewidth of the MPB is 26 meV, corresponding to a Q factor of 86. In recent years, the Q factor of vertical F–P cavities has significantly improved due to the use of DBR cavities coupled with 2D perovskite single crystals, which promotes the observation of new polaritonic effects. Wang et al. observed that in a DBR cavity containing 2D perovskite crystal microplates, multimode polariton barchans are not only from the strong coupling of excitons and cavity modes, but also the Bragg modes from the Bragg mirrors [60]. Thus, the reversible energetic exchange can be established in these three states. In DBR cavity of (PEA)2PbI4, Fieramosca et al. found that the polariton blueshift is sensitive to the polarization of the pump laser. The blueshift obtained with a circularly polarized laser is higher than the blueshift obtained by using a linearly polarized laser. This indicates the existence of different spins of polaritons influencing the polariton–polariton interaction [102]. The spin-dependent nonlinearities can be applied to spintronics, which is only available at cryogenic temperatures for GaAs-based systems [105]. Very recently, Polimeno et al. reported the polariton condensation in a vertical cavity containing exfoliated (PEA)2PbI4 sandwiched between a bottom Bragg mirror and a top silver mirror at liquid helium temperature [106]. This was confirmed by a two-laser threshold behavior under increasing pump fluence. The first laser threshold was assigned to a biexciton lasing action above the bottom of the LPB. Further increasing the pump fluence led to shutdown of the biexciton lasing and the population collapse to the bottom of the LPB as a sign of bosonic condensate. The author thus argued that a simple two-level system is not adapted to such material because of the energetically competitive lasing action. This stimulated polariton phenomenon suggests the exploration of quantum coherent states based on 2D perovskites.

 

Fig. 6. Polariton in vertical F–P cavities coupled with 2D perovskite. (a) Sketch of a microcavity containing 2D perovksite thin film. Anticrossing is observed in angle-resolved reflectivity spectra as two series of dips. Adapted from [81]. Copyright IOP Publishing and Deutsche Physikalische Gesellschaft. Reproduced by permission of IOP Publishing. All rights reserved. (b) Vertical F–P cavity of 2D perovskite thin flim formed by top and bottom silver films. Two polariton branches can be observed in angle-resolved transmission spectra with Rabi splitting of 160 meV. Adapted with permission from [101]. Copyright The Optical Society. (c) Energy dispersion of micro PL spectrum in a 2D perovskite cavity with relatively high Q factor; the emission of MPB is as narrow as 26 meV. Adapted with permission from [59]. Copyright The Optical Society. (d) Strong coupling of exciton with vertical cavity mode and Bragg modes in a DBR cavity of 2D perovskite. Left, cavity structure consisting of exfoliated 2D perovskite microflakes between top and bottom Bragg mirrors; right, angle-resolved reflection and emission spectra. Adapted with permission from [60]. Copyright 2018, American Chemical Society. (e) Polarization-sensitive polariton nonlinearity of 2D perovskite. Left, cavity structure of a DBR cavity; middle, energy momentum k emission; right, polariton blueshift at different pump powers by using a linearly polarized (L) laser and a circularly polarized (C) laser. Adapted from [102]. Copyright 2019, AAAS. (f) Formation of biexciton laser (left) and polariton condensate (right) in a (PEA)2PbI4 vertical cavity at liquid helium temperature. Adapted from [106]. Copyright 2020, John Wiley and Sons.

Download Full Size | PPT Slide | PDF

3. Exciton–Polariton in Photonic Crystals of 2D Perovskite

2D perovskite can be effectively coupled with a period lattice structure owing to its solution processing and soft nature, allowing the mismatched growth on different substrates. The first attempt was done by Fujita et al. [100]. They fabricated a distributed feedback (DFB) cavity on a quartz substrate and spin-coated a 30 nm thick (PEA)2PbI4 film followed with a polystyrene film [Fig. 7(a)]. The dispersion of DFB-guided wave-like modes and coupling with excitons were obtained by plotting the transmission dip at different angles. Anticrossing behaviors can be observed at 2.4–2.5 eV with polariton splitting of 100  meV. The dielectric DFB structure can be further replaced by silver gratings. Niu et al. reported the strong coupling of excitons and the surface plasmon polaritons (SPPs) in this kind of structure [Fig. 7(b)] [71]. In this structure, an “image biexciton” is formed by the out-of-plane interaction of exciton and the electromagnetic field near the silver surface. By increasing the incident angle from 0° to 90°, the exciton splitting increases, the grating modes become more dispersive, and the plasmonic modes are more resonant with the exciton and image biexciton energy. As a result, strong coupling between SPPs and exciton/image biexciton can be observed with Rabi splitting of 150 and 125 meV, respectively. In addition, a 2D periodic lattice cavity coupled with 2D perovskite was also reported recently [Fig. 7(c)] [62]. The cavity was fabricated through infiltrating (PEA)2PbI4/DMF solution inside the air hole of a periodically patterned SiO2 backbone. Angle-resolved reflection and PL spectra reveal the strong coupling between Bloch modes with (PEA)2PbI4 excitons, along with a Rabi splitting of 200  meV. Many polariton-dispersive properties such as linearity, slow light, and multivalley polariton mode can also be modified in this 2D lattice cavity.

 

Fig. 7. Polariton in DFB and photonic crystal cavities coupled with 2D perovskite. (a) Structure of a DFB microcavity containing (PEA)2PbI4 (upper) and energy dispersion of transmission dips indicating the strong coupling of exciton and grating modes. Adapted with permission from [100]. Copyright 1998, American Physical Society. (b) Plasmon-exciton strong coupling in silver grating overcoated with 2D perovskite. Top left, cross section of the grating structure; top right, possible emission routes of SPP-mediated image biexciton; bottom, TM-polarized reflectivity at different incident angles. Adapted with permission from [71]. Copyright 2015, American Physical Society. (c) Exciton polariton of perovskite-based 2D lattice cavity structure: top, cavity design and scanning electron microscope (SEM) images of metasurface; bottom, angle-resolved reflection and emission (left) and corresponding simulation of photonic crystal polariton dispersion (right) with a Rabi splitting of 205 meV. Adapted with permission from [62]. Copyright 2020, American Chemical Society.

Download Full Size | PPT Slide | PDF

B. Optical Gain and Photonic Laser of 2D Perovskite Cavity Structures

The generation of lasers requires high optical gain material coupled with a suitable optical cavity. The gain materials that can amplify light through stimulated emission play the important role in laser performance and encourage the discovering of new optical gain materials. Perovskites have shown excellent optical gain coefficients that are comparable to industrial gain materials such as GaAs [10] Room temperature low-threshold and even continuous-wave pumped lasers have been reported abundantly in 3D perovskites of different cavity structures [63,107110] since the first observation of room temperature amplified spontaneous emission (ASE) in 3D perovskites in 2014 [111]. Comparatively, the ASE of a 2D perovskite was first observed in 1998 without much attention due to the operation at cryogenic temperatures [112]. Although both 3D and 2D perovskites possess some similar photoelectric performance such as efficient LEDs and high photoelectric conversion efficiency (PCE) of solar cells [6,113], the intrinsic differences in crystal and electrical structures are still considerable in photophysical processes such as recombination of photon-excited states.

In 3D perovskites, the exciton binding energy is generally modest, which indicates the coexistence of free carriers and excitons [114]. Based on the Saha–Langmuir equation describing the population distribution of free carriers and excitons [115], the exciton fabrication should be increased at high excitation density. However, this relation becomes invalidated when the carrier density approaches the Mott density, indicating the transition from exciton to free carriers [Fig. 8(a)] [116]. For 3D perovskite with low binding energy, such as MAPbI3, free carriers dominate, even below Mott density, and the origin of lasing can be argued as the electron-hole recombination [117]. The judgment becomes complicated when the threshold density is located near the Mott density where the excitons are not a minority in CsPbBr3 [118,119]. Marongiu et al. compared the power law of instantaneous PL intensity versus injected carrier density for 3D perovskite MAPbI3 and 2D perovskite BA2PbBr4 under the pulse excitation of a 50 ps window [Fig. 8(b)] [120]. The quadratic behaviors in MAPbI3 indicate bimolecular recombination at an all-density region at room temperature; a linear relation only exists in a low excitation region at cryogenic temperatures. In 2D perovskite with large binding energy, the linear relation in all the excitation ranges suggests the majority of excitons and only a neglectable fraction of ionized excitons, in sharp contrast to 3D perovskite. Indeed, excitonic ASE and lasing of 2D perovskite have been verified in recent years, as is discussed below.

 

Fig. 8. Excitonic and free-carrier recombination of 2D and 3D perovskites. (a) The fabrication of free carriers over the total excitation density at different binding energies by using the Saha–Langmuir equation. Adapted with permission from [116]. Copyright 2016, American Chemical Society. Further permissions related to the material excerpted should be directed to the ACS. (b) The relation of emission intensity and injected carrier concentration of 3D perovskite MAPbI3 and 2D perovskite BA2PbBr4 at different temperatures. The slope indicates dominant bimolecular recombination (n=2) or excitonic recombination (n=1). Adapted from [120] with permission from the Royal Society of Chemistry.

Download Full Size | PPT Slide | PDF

1. Optical Gain in 2D Perovskite

Room temperature optical gain was first observed in 2D perovskite (NMA)2(FA)n1PbnX3n+1 (NMA=C10H7CH2NH3+) by Li et al. [121]. During the formation of 2D perovskite thin film, multiple QW phases of different n values were arranged vertically to substrate from small to large n. These self-organized QWs naturally form an energy cascade, allowing the ultrafast exciton transfer from small n values to large n values with decreasing bandgap [Fig. 9(a)]. ASE was observed by pumping the perovskite thin film with a rectangle strip of femtosecond laser. Below the threshold, emission from large n values (n>5) follows a power law of 0.86, which is close to 1, indicating the excitonic recombination of spontaneous emission. When above the threshold, a sharp peak arises from the red side of the spontaneous emission (SE) peak. The optical gain value of (NMA)2FAPb2Br7 can reach 330  cm1, which is much larger than that of 3D perovskite film with a similar thickness [111,122]. Moreover, the ASE peak can be shifted from 530 to 810 nm by changing the stoichiometry, and the ASE stability at ambient conditions also shows better performance than 3D perovskite thin films [Fig. 9(b)]. In contrast, 2D perovskites with small n values still have difficulty in obtaining room temperature ASE and lasing. Chong et al. developed a theoretical model of charge carrier relaxation in n=1 perovskite (PEA)2PbI4 and explained the limitation of optical gain in this 2D perovskite [123]. The modeling consists of the interaction of free exciton, bound exciton, and bound biexciton in Fig. 9(c). The free exciton trapping and formation of bound exciton can effectively compete with biexciton gain, leading to a large biexciton ASE threshold beyond the damage threshold of these materials. Liang et al. systemically investigated the PL decay and temperature-dependent PL of pure phase (n value) of (BA)2(MA)n1PbnI3n+1(n=25) and attributed the large laser threshold of small n value 2D perovskites to fast Auger recombination and large exciton-LO phonon coupling in these materials [Fig. 9(d)] [18]. Nonradioactive recombination of these processes restrains the optical gain, which is more obvious at small n values with increased quantum confinement and lattice deformation.

 

Fig. 9. Optical gain in 2D perovskites. (a) Cascade energy transfer from wide-bandgap QWs to large QWs with increasing n-value; (b) wavelength tunability of 2D perovskite with different y values by mixing precursor solutions and the stability of ASE over 30 h. The inset shows the ASE spectra at the start and after 30 h. Adapted with permission from [121]. Copyright 2018, John Wiley and Sons. (c) Proposed relaxation channels of excitons in (PEA)2PbI4. Adapted from [123]. Published by the PCCP Owner Societies. (d) Schematic shows the biexciton Auger recombination in 2D perovskites with n values of 2 and 4. Auger recombination becomes stronger at small n values as a result of narrow well and larger spatial confinement of exciton. Adapted with permission from [18]. Copyright 2019, John Wiley and Sons.

Download Full Size | PPT Slide | PDF

2. Lasing in Self-Assembled 2D Perovskite Crystal Cavities

Li et al. demonstrated the room temperature microlaser in solution-processed 2D perovskite (OA)2(MA)n1PbnBr3n+1 (OA=octylamine) with mixed layers of different n values [124]. Multimode WGM laser can be obtained by pumping a single microplate above the threshold of 8.5  μJ/cm2, which is lower than the ASE threshold of 3D perovskite MAPbBr3 film with a similar thickness. Dual-wavelength lasing can be observed in a single microplate with higher content of low-dimensional layers [Fig. 10(a), top], and no lasing is observed in microplates with pure low-dimensional 2D perovskite (n=5). Micro-area transient absorption (TA) spectroscopy reveals the fast exciton localization from the lower to higher dimensional perovskite layers within 1 ps, which is much shorter than the lasing lifetime. Therefore, efficient exciton localization contributes to the low-threshold lasing [125]. In addition, lasing from these 2D perovskite microplates shows linearly polarized emission [Fig. 10(a), bottom], indicating the photon confinement of higher-dimensional perovskite layers given by the cladding layers of lower-dimensional perovskite layers (small refractive index). However, high-quality homologous 2D perovskite single crystals are still essential for the deep understanding of the fundamental physical properties. Raghavan et al. observed the room temperature low-threshold lasing from (BA)2(MA)n1PbnI3n+1 homologous single crystal with different n (1, 2, and 3) in Fig. 10(b) [57]. Laser modes consist of several small spikes around a few strong sharp peaks, which can be proposed as random lasing or light-trapping inside the crystals [126,127]. Since 2D perovskite can be exfoliated from the bulk crystals, Liang et al. investigated the lasing behaviors of (BA)2(MA)n1PbnI3n+1 thin flakes with thicknesses of 100–300 nm in Fig. 10(c) [18]. For the microflakes of n=3 perovskite, lasing can occur at pump fluence of 2.6  μJ/cm2 and temperature of 78 K. Since the shapes of microflakes are not well defined, light can leak out from the edge of the in-plane cavity. However, no stimulated emission was obtained in n=1, 2 microflakes, even at a low temperature of 78 K, which is different from the lasing in bulk crystals. At higher temperatures, the laser threshold dramatically increases as a result of increased electron–phonon scattering. The steeper increase of threshold at small n values indicates the weak thermal stability and large optical losses in low-dimensional perovskite layers.

 

Fig. 10. Lasing behaviors of 2D perovskite self-organized crystal cavity. (a) Top, lasing of a single 2D perovskite microplate (left) and dual-wavelength lasing (right) from 2D perovskite with n=6 and n7. The insets show the corresponding optical images, PL images above laser threshold, and PL intensity as a function of pump fluence. Adapted with permission from [124]. Copyright 2018, John Wiley and Sons. (b) Lasing spectra from homologous 2D perovskite single crystals with different n values and bandgaps. Adapted with permission from [57]. Copyright 2018, American Chemical Society. (c) Lasing of exfoliated 2D perovskite microflakes. Top, lasing spectra (left) and integrated intensity (right) of n=3 under different pump fluences and corresponding optical images; bottom, lasing (n = 3–5) and ASE (n=2) spectra of 2D perovskite with different n values and corresponding lasing thresholds at different temperatures. Adapted with permission from [18]. Copyright 2019, John Wiley and Sons.

Download Full Size | PPT Slide | PDF

3. Lasing in 2D Perovskite Cavity Arrays

Integrated laser arrays can be applied in full color display and sensing applications [128]. 2D perovskites hold great advantages for laser array engineering, considering the ease of integration to different cavity structures and for high optical gain. Zhang et al. demonstrated 2D perovskite laser arrays composed of microrings and nanowires by the structure-templated methods [61,77]. The desired (BA)2(MA)n1PbnBr3n+1 cavity with nominal value of 2 actually consists of QWs with n2 to , resulting in different exciton energy values [Fig. 11(a)]. As discussed above, such energy cascades can result in efficient energy transfer between QWs from small n values to large n values. ASE measurement on 2D perovskite film showed that no ASE was obtained at small n values 1–3, and n=6 perovskite thin film exhibited the best ASE performance with low threshold and high gain [Fig. 11(b)]. Consequently, they selected the n=6 2D perovskite as the gain medium of microring laser arrays. Upon the pumping by a 400 nm pulsed laser, microring cavity arrays generated laser modes around 543 nm with a high Q factor of 2600. Similarly, nanowire laser arrays were also fabricated, and a multimode laser was obtained around 548 nm with a laser threshold of 72.5  μJ/cm2 [Fig. 11(c)]. The oscillating type of microring and nanowire arrays were confirmed as WGM mode and F–P mode by comparing the mode spacing of adjacent laser modes versus the cavity length of different sizes of microrings and nanowires, respectively [Fig. 11(d)] [129,130].

 

Fig. 11. Lasing behaviors of 2D perovskite microcavity array. (a) SEM image and schematics show the microring and nanowire structures consisiting of multi-QW structure; (b) top, light harvesting of the nominal n=2 perovskite thin film for ASE; bottom, gain coefficient and PLQY for perovskite thin film with different nominal n values; (c) emission images and lasing spectra of microring (upper) and nanowire (lower) arrays at different pump fluences; (d) relation of lasing mode spacing versus ring diameter or nanowire length indicating the WGM lasing mode of microring array (left) and F–P lasing mode of nanowire array (right). Adapted with permission from [61,77]. Copyright 2018, John Wiley and Sons.

Download Full Size | PPT Slide | PDF

4. Lasing in 2D Perovskite-Embedded Vertical F–P Cavities

Vertical cavity structures consisting of Bragg mirrors and/or metallic reflectors are essential for the fabrication of VCSELs with a high Q factor and a reduced threshold [131]. A room-temperature VCSEL of a quasi-2D perovskite (PEA)2Csn1PbnBr3n+1 is obtained in a vertical cavity embedded with the microcrystals of the quasi-2D perovskite [Fig. 12(a)] [17]. The active layer is designed as a sandwich structure of perovskite/PMMA/perovskite, resulting in the self-organized segregated patterns and surrounding thinner smooth film of quasi-2D perovskite with diverse phases (n values). Interestingly, lasing can only be observed in segregated areas under the nanosecond pulsed laser, which might benefit from the reduction of the surface trap by long-chain PEA and energy transfer within the crystal [121]. A single-mode laser occurred at 532 nm, which slightly blueshifts to the cavity mode at 534 nm. The lasing threshold of 500μJ/cm2 is the same order of VCSEL in CsPbBr3 QDs and 3D perovskite film pumped by a nanosecond laser [132,133], which suggests the possibility of continuous-wave pumped laser of 2D perovskite. In the vertical cavity of another 2D perovskite (DA)2PbI4 (DA=dodecylammonium), biexciton lasing is even observed at an intermediate temperature up to 125 K [Fig. 12(b)] [134], which is much higher than the biexciton lasing of 2D perovskite (HA)2PbI4 [112] at 16 K. The cavity is fabricated by spin-coating 25 nm of DA2PbI4 and a spacer layer of PMMA between a Bragg mirror and a silver layer. Biexcitons of DA2PbI4 were found to have a large binding energy of 50 meV, which was ready for the operation of biexciton lasing at high temperature. Lasing occurs from the low-energy tail of biexciton emission spectra and supports the narrowing peak and the s-like curve of emission intensity at different pump fluence. Room temperature laser in this material can be expected with improved fabrication of cavity structure and material source.

 

Fig. 12. Lasing behaviors of 2D perovskite embedded vertical F–P cavity. (a) Lasing of segregated quasi-2D perovskite microcrystals in vertical cavity: top, schematic of cavity structure (left) and PL images (right) of segregated patterns; bottom, pump fluence-dependent emission spectra, integrated intensity, and FWHM, indicating the lasing threshold of 500  μJ/cm2. Adapted from [17] with permission of AIP Publishing. (b) Vertical cavity biexciton lasing of 2D perovskite: top left, schematic of DBR cavity consisting of Bragg mirror, spin-coated DA2PbI4, PMMA, and top silver mirror; top right, pump fluence-dependent cavity emission at 2.28 and 2.41 eV, indicating the lasing mode and nonlasing mode; bottom, emission spectra of cavity at different optical pump powers with and without silver mirror, and perovskite thin film on glass. Adapted from [134]. Copyright 2018, John Wiley and Sons.

Download Full Size | PPT Slide | PDF

C. Functional Devices of 2D Perovskite Photonic Structures

Optical cavities can enhance the emission or absorption and modulate the guided optical modes in a desired energy region. The cooperation of photonic structures and optoelectronic devices is expected to enhance the device performance and/or realize new device functions [90,135].

Liu et al. developed a perovskite-microsphere hybrid structure to enhance the two-photon absorption-induced PL (TPL) of 2D perovskite (PEA)2PbI4 [136]. This was done by transferring the SiO2 microspheres onto a perovskite flake under a microscope. Under the pumping of pulsed laser of 800 nm (8 fs, 80 MHz), TPL from the perovskite flake exhibited a small green spot with a modest emission intensity. In contrast, TPL from the perovskite-microsphere structure was much stronger and appeared as a large “bright ball” [Fig. 13(a)]. TPL spectra revealed the enhanced TPL by 2 orders of magnitude from the perovskite-microsphere structure [Fig. 13(b)], which can be explained as a nanofocusing enhanced optical field [137] and improved TPL detection efficiency [138] by the sphere cavity. Field-enhanced operation can also be obtained by plasmonic effects or photonic crystals, which have been reported in 3D perovskite-based solar cells and photodetectors [139142].

 

Fig. 13. Enhanced TPL emission from a 2D perovskite-microsphere cavity structure. (a) Emission images of pure perovskite flake and with SiO2 microsphere under the pump power of 0.1 mW; (b) TPL spectra of bare perovskite flake and perovskite-microsphere cavity structures with different sizes of microspheres. Adapted with permission from [136]. Copyright 2018, John Wiley and Sons.

Download Full Size | PPT Slide | PDF

2D perovskite nanowires with optical anisotropy have also been adopted in efficient light detection devices. Feng et al. fabricated a photodetector consisting of 2D perovskite nanowire arrays between two silver electrodes [Fig. 14(a)] [143]. Unlike polycrystalline film with many surface defects and grain boundaries, single-crystalline nanowires with pure (101) crystallographic orientation allow the efficient excitons to diffuse to the edge along the short length side and dissociate into free carriers through exciton edge states [144]. In addition, efficient charge transport in well layers and photocarriers concentration at the surface of layer edges result in a high photoconductivity channel at the layer edges. The detector exhibits high average responsivities of 1.5×104  A/W and detectivities over 7×1015 Jones with suppressing dark currents. Later, Ghoshal et al. observed the highly polarized PL from 2D perovskite (BA)2PbI4 nanowires and further the anisotropic photocurrent [Fig. 14(b)] [53]. PL emission is boosted when the polarization of excited light is parallel to the length of nanowire and weakened when it is perpendicular to the nanowire. The polarization ratio increases up to 0.73 with reduced lateral width as a result of dielectric confinements. Further, polarized photodetection is demonstrated, consisting of a graphene/(BA)2PbI4 nanowire heterostructure. The bump at 518 nm is consistent with the excitonic absorption, indicating the photocurrent response from the optical behaviors of the perovskite nanowire. Polarized light detection can be observed, as the photocurrent is strongly dependent on the angle between the polarization of incident light and the orientation of nanowires, which is similar to the polarized PL spectra. Apart from photodetection, nanowires can also be applied in optical logical gates, waveguides, etc. [145147], which need further exploration in 2D perovskites.

 

Fig. 14. Ultrasensitive and polarized light detection of 2D perovskite nanowires. (a) Schematics of 2D perovskite nanowire photodetectors. Top, photodetectors based on polycrystalline thin films and nanowire array; bottom, carrier dynamics in the photodetector of single crystalline nanowires indicating the organic barriers for suppressing the dark current and conductive channels at crystalline edges for excitonic dissociation and free-carrier conduction. Adapted from [143] with permission of Springer Nature, Nature Electronics, Copyright 2018. (b) 2D perovskite nanowires for polarized light detection: top, PL spectra excited by light with polarization parallel (red) and perpendicular (black) to the nanowire orientation (left) and polar plot of PL intensity with different excitation polarizations (right); bottom, schematic of the perovskite/graphene hybrid device (left), photocurrent as a function of excitation energy at fixed power and source-drain voltage (middle), and polarization dependent photocurrent under pulsed laser at 2.52 eV and source-drain bias of 30 mV (right). Adapted with permission from [53]. Copyright 2019, John Wiley and Sons.

Download Full Size | PPT Slide | PDF

5. SUMMARY AND OUTLOOK

2D perovskites have become attractive active materials for photonic applications over the past few years. The advantages of these materials lies in the quantum-well-like structures sustaining strong excitonic emission with large binding energy, and ease of integration with different kinds of optical cavities. The review summarizes the recent advances in the cavity application of 2D perovskites, as well as the inherent photophysics and light-matter interaction in the cavity structures of 2D perovskites. The accelerating investigations in 2D perovskite-based photonics reveal fantastic structure-related optoelectronics that are different from their 3D counterparts and conventional layered semiconductors to some degree. Moreover, the flexibility of organic ligands, halide ions, and dimensionality highly expands their optoelectronic behaviors. New types of photonic devices can thus be expected in 2D perovskite-based photonic structures. We should also note that there are still many issues concerning the practical usage and production of 2D perovskite-based photonics that need further investigation.

Different synthetic methods have been explored for 2D perovskites. The most convenient and productive way is spin-coating the as-prepared solution to form 2D perovskite thin film on different structures. However, the intrinsic surface traps and grain boundaries of thin film are drawbacks for efficient device performance. Single-crystal form 2D perovskite-based photonic structures usually behave with better cavity Q factor and radiative efficiency. Antisolvent methods have shown advantages in fabrication of large-area single-crystalline bulk film, which are still time-consuming and uncontrollable in shape and limited by the substrates. Vapor-phase syntheses by CVD are relatively few, partly due to the complexity of organic components and the uncontrollability of gas flow, which are sensitive factors for different phases of 2D perovskites. Large-scale growth of 2D perovskite single-crystalline film with controlled thickness on desired substrates and structures still calls for further exploration.

Strong exciton–photon coupling and lasing behaviors of 2D perovskite-based cavities, which are still not yet clearly understood, are highlighted in the review. In 2D perovskite with low quantum-well thickness, i.e., n value, photon-induced excitons are believed to be a dominating factor, and lasing machines are considered as excitonic optical gains. However, with increasing n value and a trend to a more 3D-like perovskite, the evolution of lasing machines needs further investigation, considering the increasing fabrication of free carriers and possible optical dipoles between different inorganic layers. In addition, strong exciton–photon coupling of 2D perovskites is robust, with large Rabi splitting energy; however, so far, stimulated polariton behavior is only found in n=1 type of 2D perovskites at cryogenic temperatures. Compared to 3D perovskites, charge carriers’ dynamics of 2D perovskites are found to be rather intricate, such as the formation of edge states in the interface of perovskites [144] and excitonic transport [14] between different layer numbers. The interplay of excitonic dynamics and optical oscillation of photonic cavities are thus unique in various kinds of 2D perovskites. Hence, the dynamics of laser generation and the formation of polariton on different 2D perovskite active materials should be investigated in order to give better understanding of the light-matter interaction and pave the way for practical coherent photonic and polaritonic applications.

Functional devices can be expected in the integration of 2D perovskites with photonic cavities. For example, the observed nonlinear optics in 2D perovskites such as second harmonic generation (SHG) and TPL [26], and chiral photonics of 2D perovskites by introducing chiral organic ligands [148] can be amplified and/or guided by the coupled photonic cavities. Cavity enhancement or modification of these effects provides enormous potential in obtaining lower-power and highly sensitive optoelectrical devices. The limitations of 2D perovskites for practical functional devices are their potential toxicity and low stability under ambient environments, although they are believed to be more tolerant than 3D perovskites. We believe that these problems can be relieved in future works with developed tactics including lead-free perovskite and encapsulating technology.

Funding

Strategic Priority Research Program of the Chinese Academy of Sciences (XDB36000000); Ministry of Science and Technology (2016YFA0200700, 2017YFA0205004); National Natural Science Foundation of China (21673054, 11874130); Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (KF201902).

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” in Confined Electrons and Photons (Springer, 1995), p. 839.

2. K. Lagoudakis, The Physics of Exciton-Polariton Condensates (PPUR Polytechniques, 2013).

3. D. Sanvitto and S. Kéna-Cohen, “The road towards polaritonic devices,” Nat. Mater. 15, 1061–1073 (2016). [CrossRef]  

4. Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu, “Scalable fabrication of perovskite solar cells,” Nat. Rev. Mater. 3, 18017 (2018). [CrossRef]  

5. H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46, 5204–5236 (2017). [CrossRef]  

6. L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019). [CrossRef]  

7. M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014). [CrossRef]  

8. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015). [CrossRef]  

9. K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, and J. J. Berry, “Defect tolerance in methylammonium lead triiodide perovskite,” ACS Energy Lett. 1, 360–366 (2016). [CrossRef]  

10. B. R. Sutherland and E. H. Sargent, “Perovskite photonic sources,” Nat. Photonics 10, 295–302 (2016). [CrossRef]  

11. D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “2D homologous perovskites as light-absorbing materials for solar cell applications,” J. Am. Chem. Soc. 137, 7843–7850 (2015). [CrossRef]  

12. C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019). [CrossRef]  

13. J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018). [CrossRef]  

14. S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou, and L. Huang, “Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites,” Nat. Commun. 11, 664 (2020). [CrossRef]  

15. Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, and Q. Bao, “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Mater. Sci. 1, 268–287 (2019). [CrossRef]  

16. V. Ardizzone, L. De Marco, M. De Giorgi, L. Dominici, D. Ballarini, and D. Sanvitto, “Emerging 2D materials for room-temperature polaritonics,” Nanophotonics 8, 1547–1558 (2019). [CrossRef]  

17. W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019). [CrossRef]  

18. Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019). [CrossRef]  

19. C. Lan, Z. Zhou, R. Wei, and J. C. Ho, “Two-dimensional perovskite materials: from synthesis to energy-related applications,” Mater. Today Energy 11, 61–82 (2019). [CrossRef]  

20. S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020). [CrossRef]  

21. X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019). [CrossRef]  

22. Y.-H. Chang, J.-C. Lin, Y.-C. Chen, T.-R. Kuo, and D.-Y. Wang, “Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties,” Nanoscale Res. Lett. 13, 247 (2018). [CrossRef]  

23. M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016). [CrossRef]  

24. Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, and W. Huang, “Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application,” J. Mater. Chem. A 7, 13860–13872 (2019). [CrossRef]  

25. H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, and H. Chang, “Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications,” Energy Environ. Mater. (2020). [CrossRef]  

26. X. Han, Y. Zheng, S. Chai, S. Chen, and J. Xu, “2D organic-inorganic hybrid perovskite materials for nonlinear optics,” Nanophotonics 9, 38 (2020). [CrossRef]  

27. J. Yan, W. Qiu, G. Wu, P. Heremans, and H. Chen, “Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells,” J. Mater. Chem. A 6, 11063–11077 (2018). [CrossRef]  

28. D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. F. I. Morral, and F. Jaramillo, “Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10thin films,” J. Mater. Chem. C 6, 6216–6221 (2018). [CrossRef]  

29. T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45, 8989–8994 (1992). [CrossRef]  

30. H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016). [CrossRef]  

31. M.-G. La-Placa, G. Longo, A. Babaei, L. Martínez-Sarti, M. Sessolo, and H. J. Bolink, “Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control,” Chem. Commun. 53, 8707–8710 (2017). [CrossRef]  

32. W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018). [CrossRef]  

33. A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018). [CrossRef]  

34. R. A. DeCrescent, N. R. Venkatesan, C. J. Dahlman, R. M. Kennard, M. L. Chabinyc, and J. A. Schuller, “Optical constants and effective-medium origins of large optical anisotropies in layered hybrid organic/inorganic perovskites,” ACS Nano 13, 10745–10753 (2019). [CrossRef]  

35. Z. Guo, X. Wu, T. Zhu, X. Zhu, and L. Huang, “Electron-phonon scattering in atomically thin 2D perovskites,” ACS Nano 10, 9992–9998 (2016). [CrossRef]  

36. S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, and A. R. S. Kandada, “Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites,” Phys. Rev. Mater. 2, 064605 (2018). [CrossRef]  

37. J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, and M. D. Fayer, “Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy,” J. Am. Chem. Soc. 140, 9882–9890 (2018). [CrossRef]  

38. L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017). [CrossRef]  

39. D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, “Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites,” J. Am. Chem. Soc. 138, 13798–13801 (2016). [CrossRef]  

40. F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019). [CrossRef]  

41. P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, and R. D. Schaller, “Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites,” Nat. Commun. 9, 2019 (2018). [CrossRef]  

42. X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018). [CrossRef]  

43. M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, and H. I. Karunadasa, “Structural origins of broadband emission from layered Pb-Br hybrid perovskites,” Chem. Sci. 8, 4497–4504 (2017). [CrossRef]  

44. D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, “Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation,” J. Am. Chem. Soc. 139, 39–42 (2017). [CrossRef]  

45. T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016). [CrossRef]  

46. D. O’carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2, 180–184 (2007). [CrossRef]  

47. H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array,” Laser Photon. Rev. 7, 281–288 (2013). [CrossRef]  

48. S. Noda, F. T. Mahi, and H. Zappe, “Photonic crystals,” in Reference Module in Materials Science and Materials Engineering (Elsevier, 2016), pp. 1–11. [CrossRef]  

49. G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999). [CrossRef]  

50. Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018). [CrossRef]  

51. Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, and S. Liu, “Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector,” J. Mater. Chem. C 7, 1584–1591 (2019). [CrossRef]  

52. Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, “Structure‐tuned lead halide perovskite nanocrystals,” Adv. Mater. 28, 566–573 (2016). [CrossRef]  

53. D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, and S. F. Shi, “Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection,” Adv. Opt. Mater. 7, 1900039 (2019). [CrossRef]  

54. A. Kooijman, L. A. Muscarella, and R. M. Williams, “Perovskite thin film materials stabilized and enhanced by zinc (II) doping,” Appl. Sci. 9, 1678 (2019). [CrossRef]  

55. S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, and X. Liu, “Growth of metal halide perovskite materials,” Sci. China Mater. 63, 1438–1463 (2020). [CrossRef]  

56. X. Zhang, H. Shi, H. Dai, X. Zhang, X. W. Sun, and Z. Zhang, “Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet,” ACS Appl. Mater. Interfaces 12, 5081–5089 (2020). [CrossRef]  

57. C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018). [CrossRef]  

58. A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006). [CrossRef]  

59. Z. Han, H.-S. Nguyen, F. Boitier, Y. Wei, K. Abdel-Baki, J.-S. Lauret, J. Bloch, S. Bouchoule, and E. Deleporte, “High-Q planar organic-inorganic perovskite-based microcavity,” Opt. Lett. 37, 5061–5063 (2012). [CrossRef]  

60. J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018). [CrossRef]  

61. H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018). [CrossRef]  

62. N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020). [CrossRef]  

63. H. Dong, C. Zhang, X. Liu, J. Yao, and Y. S. Zhao, “Materials chemistry and engineering in metal halide perovskite lasers,” Chem. Soc. Rev. 49, 951–982 (2020). [CrossRef]  

64. C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors,” Chem. Mater. 28, 2852–2867 (2016). [CrossRef]  

65. K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018). [CrossRef]  

66. K. Tanaka and T. Kondo, “Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals,” Sci. Technol. Adv. Mater. 4, 599–604 (2003). [CrossRef]  

67. T. Dammak, S. Elleuch, H. Bougzhala, A. Mlayah, R. Chtourou, and Y. Abid, “Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6,” J. Lumin. 129, 893–897 (2009). [CrossRef]  

68. L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015). [CrossRef]  

69. E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020). [CrossRef]  

70. D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei, and S. Jin, “Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics,” Nano Res. 10, 2117–2129 (2017). [CrossRef]  

71. W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, and J. J. Baumberg, “Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors,” Phys. Rev. B 91, 161303 (2015). [CrossRef]  

72. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014). [CrossRef]  

73. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015). [CrossRef]  

74. L.-C. Chen, C.-H. Tien, Z.-L. Tseng, Y.-S. Dong, and S. Yang, “Influence of PMMA on all-inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix,” Materials 12, 985 (2019). [CrossRef]  

75. L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019). [CrossRef]  

76. H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016). [CrossRef]  

77. H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018). [CrossRef]  

78. D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992). [CrossRef]  

79. H. K. H. Choy, Design and Fabrication of Distributed Bragg Reflectors for Vertical-Cavity Surface-Emitting Lasers (Massachusetts Institute of Technology, 1998).

80. A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006). [CrossRef]  

81. G. Lanty, A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” New J. Phys. 10, 065007 (2008). [CrossRef]  

82. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992). [CrossRef]  

83. M. Brodin and M. Matsko, “Polariton effects in luminescence from ZnTe crystals: surface and bulk polaritons,” Solid State Commun. 35, 375–377 (1980). [CrossRef]  

84. R. André, D. Heger, L. S. Dang, and Y. M. d’Aubigné, “Spectroscopy of polaritons in CdTe-based microcavities,” J. Cryst. Growth 184, 758–762 (1998). [CrossRef]  

85. H. Mathieu, Y. Chen, J. Camassel, J. Allegre, and D. Robertson, “Excitons and polaritons in InP,” Phys. Rev. B 32, 4042–4051 (1985). [CrossRef]  

86. G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett. 81, 412–414 (2002). [CrossRef]  

87. Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “Strong light-matter interaction in ZnO microcavities,” Light Sci. Appl. 2, e76 (2013). [CrossRef]  

88. J.-H. Song, “Optical properties of GaN and ZnO,” in Oxide and Nitride Semiconductors: Processing, Properties, and Applications, T. Yao and S.-K. Hong, eds. (Springer, 2009), pp. 311–354.

89. M. Litinskaya, “Exciton polariton kinematic interaction in crystalline organic microcavities,” Phys. Rev. B 77, 155325 (2008). [CrossRef]  

90. Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019). [CrossRef]  

91. S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018). [CrossRef]  

92. W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018). [CrossRef]  

93. Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020). [CrossRef]  

94. Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, and Q. Zhang, “Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton,” Nano Lett. 20, 1023–1032 (2020). [CrossRef]  

95. R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017). [CrossRef]  

96. S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020). [CrossRef]  

97. W. Du, S. Zhang, Q. Zhang, and X. Liu, “Recent progress of strong exciton-photon coupling in lead halide perovskites,” Adv. Mater. 31, 1804894 (2019). [CrossRef]  

98. T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018). [CrossRef]  

99. Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020). [CrossRef]  

100. T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57, 12428–12434 (1998). [CrossRef]  

101. K. Pradeesh, J. Baumberg, and G. V. Prakash, “Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity,” Opt. Express 17, 22171–22178 (2009). [CrossRef]  

102. A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019). [CrossRef]  

103. P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015). [CrossRef]  

104. L. K. Van Vugt, B. Piccione, and R. Agarwal, “Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion,” Appl. Phys. Lett. 97, 061115 (2010). [CrossRef]  

105. M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010). [CrossRef]  

106. L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020). [CrossRef]  

107. J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, and X. Liu, “Perovskite quantum dot lasers,” InfoMat 2, 170–183 (2020). [CrossRef]  

108. Y. Mi, Y. Zhong, Q. Zhang, and X. Liu, “Continuous‐wave pumped perovskite lasers,” Adv. Opt. Mater. 7, 1900544 (2019). [CrossRef]  

109. Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, “Advances in small perovskite‐based lasers,” Small Methods 1, 1700163 (2017). [CrossRef]  

110. C. Li, Z. Liu, Q. Shang, and Q. Zhang, “Surface‐plasmon‐assisted metal halide perovskite small lasers,” Adv. Opt. Mater. 7, 1900279 (2019). [CrossRef]  

111. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014). [CrossRef]  

112. T. Kondo, T. Azuma, T. Yuasa, and R. Ito, “Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4,” Solid State Commun. 105, 253–255 (1998). [CrossRef]  

113. G. Grancini and M. K. Nazeeruddin, “Dimensional tailoring of hybrid perovskites for photovoltaics,” Nat. Rev. Mater. 4, 4–22 (2019). [CrossRef]  

114. M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016). [CrossRef]  

115. M. N. Saha and A. Fowler, “On a physical theory of stellar spectra,” Proc. R. Soc. London Series A 99, 135–153 (1921). [CrossRef]  

116. J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016). [CrossRef]  

117. M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014). [CrossRef]  

118. A. P. Schlaus, M. S. Spencer, and X. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019). [CrossRef]  

119. W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019). [CrossRef]  

120. D. Marongiu, M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “The role of excitons in 3D and 2D lead halide perovskites,” J. Mater. Chem. C 7, 12006–12018 (2019). [CrossRef]  

121. M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018). [CrossRef]  

122. B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014). [CrossRef]  

123. W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, “Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films,” Phys. Chem. Chem. Phys. 18, 14701–14708 (2016). [CrossRef]  

124. Z. Liu, “Research progress of low-dimensional metal halide perovskites for lasing applications,” Chin. Phys. B 27, 114209 (2018). [CrossRef]  

125. G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017). [CrossRef]  

126. H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, and R. P. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999). [CrossRef]  

127. M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011). [CrossRef]  

128. A. Baranov and E. Tournié, Semiconductor Lasers: Fundamentals and Applications (Elsevier, 2013).

129. Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015). [CrossRef]  

130. W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, and Y. S. Zhao, “Controlling the cavity structures of two‐photon‐pumped perovskite microlasers,” Adv. Mater. 28, 4040–4046 (2016). [CrossRef]  

131. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978–987 (2000). [CrossRef]  

132. S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers,” Adv. Mater. 29, 1604781 (2017). [CrossRef]  

133. Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals,” Adv. Func. Mater. 27, 1605088 (2017). [CrossRef]  

134. E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018). [CrossRef]  

135. Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, and S. Jin, “Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties,” Nat. Rev. Mater. 4, 169–188 (2019). [CrossRef]  

136. W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018). [CrossRef]  

137. H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016). [CrossRef]  

138. Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22, 23552–23564 (2014). [CrossRef]  

139. Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016). [CrossRef]  

140. B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018). [CrossRef]  

141. C.-K. Lim, Q. Li, T. Zhang, T. Thomay, A. N. Cartwright, M. T. Swihart, and P. N. Prasad, “Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker,” Sol. Energy Mater. Sol. Cells 176, 30–35 (2018). [CrossRef]  

142. A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018). [CrossRef]  

143. J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018). [CrossRef]  

144. J. Bao and V. G. Hadjiev, “Origin of luminescent centers and edge states in low-dimensional lead halide perovskites: controversies, challenges and instructive approaches,” Nano-Micro Lett. 11, 26 (2019). [CrossRef]  

145. B. Piccione, C.-H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7, 640–645 (2012). [CrossRef]  

146. X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47, 656–666 (2014). [CrossRef]  

147. S. Kim and R. Yan, “Recent developments in photonic, plasmonic and hybrid nanowire waveguides,” J. Mater. Chem. C 6, 11795–11816 (2018). [CrossRef]  

148. Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, and J. Xu, “Chiral perovskites: promising materials toward next‐generation optoelectronics,” Small 15, 1902237 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” in Confined Electrons and Photons (Springer, 1995), p. 839.
  2. K. Lagoudakis, The Physics of Exciton-Polariton Condensates (PPUR Polytechniques, 2013).
  3. D. Sanvitto and S. Kéna-Cohen, “The road towards polaritonic devices,” Nat. Mater. 15, 1061–1073 (2016).
    [Crossref]
  4. Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu, “Scalable fabrication of perovskite solar cells,” Nat. Rev. Mater. 3, 18017 (2018).
    [Crossref]
  5. H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46, 5204–5236 (2017).
    [Crossref]
  6. L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
    [Crossref]
  7. M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014).
    [Crossref]
  8. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
    [Crossref]
  9. K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, and J. J. Berry, “Defect tolerance in methylammonium lead triiodide perovskite,” ACS Energy Lett. 1, 360–366 (2016).
    [Crossref]
  10. B. R. Sutherland and E. H. Sargent, “Perovskite photonic sources,” Nat. Photonics 10, 295–302 (2016).
    [Crossref]
  11. D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “2D homologous perovskites as light-absorbing materials for solar cell applications,” J. Am. Chem. Soc. 137, 7843–7850 (2015).
    [Crossref]
  12. C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
    [Crossref]
  13. J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
    [Crossref]
  14. S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou, and L. Huang, “Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites,” Nat. Commun. 11, 664 (2020).
    [Crossref]
  15. Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, and Q. Bao, “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Mater. Sci. 1, 268–287 (2019).
    [Crossref]
  16. V. Ardizzone, L. De Marco, M. De Giorgi, L. Dominici, D. Ballarini, and D. Sanvitto, “Emerging 2D materials for room-temperature polaritonics,” Nanophotonics 8, 1547–1558 (2019).
    [Crossref]
  17. W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019).
    [Crossref]
  18. Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
    [Crossref]
  19. C. Lan, Z. Zhou, R. Wei, and J. C. Ho, “Two-dimensional perovskite materials: from synthesis to energy-related applications,” Mater. Today Energy 11, 61–82 (2019).
    [Crossref]
  20. S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020).
    [Crossref]
  21. X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
    [Crossref]
  22. Y.-H. Chang, J.-C. Lin, Y.-C. Chen, T.-R. Kuo, and D.-Y. Wang, “Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties,” Nanoscale Res. Lett. 13, 247 (2018).
    [Crossref]
  23. M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
    [Crossref]
  24. Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, and W. Huang, “Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application,” J. Mater. Chem. A 7, 13860–13872 (2019).
    [Crossref]
  25. H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, and H. Chang, “Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications,” Energy Environ. Mater. (2020).
    [Crossref]
  26. X. Han, Y. Zheng, S. Chai, S. Chen, and J. Xu, “2D organic-inorganic hybrid perovskite materials for nonlinear optics,” Nanophotonics 9, 38 (2020).
    [Crossref]
  27. J. Yan, W. Qiu, G. Wu, P. Heremans, and H. Chen, “Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells,” J. Mater. Chem. A 6, 11063–11077 (2018).
    [Crossref]
  28. D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. F. I. Morral, and F. Jaramillo, “Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10thin films,” J. Mater. Chem. C 6, 6216–6221 (2018).
    [Crossref]
  29. T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45, 8989–8994 (1992).
    [Crossref]
  30. H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
    [Crossref]
  31. M.-G. La-Placa, G. Longo, A. Babaei, L. Martínez-Sarti, M. Sessolo, and H. J. Bolink, “Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control,” Chem. Commun. 53, 8707–8710 (2017).
    [Crossref]
  32. W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
    [Crossref]
  33. A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
    [Crossref]
  34. R. A. DeCrescent, N. R. Venkatesan, C. J. Dahlman, R. M. Kennard, M. L. Chabinyc, and J. A. Schuller, “Optical constants and effective-medium origins of large optical anisotropies in layered hybrid organic/inorganic perovskites,” ACS Nano 13, 10745–10753 (2019).
    [Crossref]
  35. Z. Guo, X. Wu, T. Zhu, X. Zhu, and L. Huang, “Electron-phonon scattering in atomically thin 2D perovskites,” ACS Nano 10, 9992–9998 (2016).
    [Crossref]
  36. S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, and A. R. S. Kandada, “Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites,” Phys. Rev. Mater. 2, 064605 (2018).
    [Crossref]
  37. J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, and M. D. Fayer, “Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy,” J. Am. Chem. Soc. 140, 9882–9890 (2018).
    [Crossref]
  38. L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017).
    [Crossref]
  39. D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, “Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites,” J. Am. Chem. Soc. 138, 13798–13801 (2016).
    [Crossref]
  40. F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019).
    [Crossref]
  41. P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, and R. D. Schaller, “Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites,” Nat. Commun. 9, 2019 (2018).
    [Crossref]
  42. X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
    [Crossref]
  43. M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, and H. I. Karunadasa, “Structural origins of broadband emission from layered Pb-Br hybrid perovskites,” Chem. Sci. 8, 4497–4504 (2017).
    [Crossref]
  44. D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, “Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation,” J. Am. Chem. Soc. 139, 39–42 (2017).
    [Crossref]
  45. T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
    [Crossref]
  46. D. O’carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2, 180–184 (2007).
    [Crossref]
  47. H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array,” Laser Photon. Rev. 7, 281–288 (2013).
    [Crossref]
  48. S. Noda, F. T. Mahi, and H. Zappe, “Photonic crystals,” in Reference Module in Materials Science and Materials Engineering (Elsevier, 2016), pp. 1–11.
    [Crossref]
  49. G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
    [Crossref]
  50. Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
    [Crossref]
  51. Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, and S. Liu, “Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector,” J. Mater. Chem. C 7, 1584–1591 (2019).
    [Crossref]
  52. Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, “Structure‐tuned lead halide perovskite nanocrystals,” Adv. Mater. 28, 566–573 (2016).
    [Crossref]
  53. D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, and S. F. Shi, “Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection,” Adv. Opt. Mater. 7, 1900039 (2019).
    [Crossref]
  54. A. Kooijman, L. A. Muscarella, and R. M. Williams, “Perovskite thin film materials stabilized and enhanced by zinc (II) doping,” Appl. Sci. 9, 1678 (2019).
    [Crossref]
  55. S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, and X. Liu, “Growth of metal halide perovskite materials,” Sci. China Mater. 63, 1438–1463 (2020).
    [Crossref]
  56. X. Zhang, H. Shi, H. Dai, X. Zhang, X. W. Sun, and Z. Zhang, “Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet,” ACS Appl. Mater. Interfaces 12, 5081–5089 (2020).
    [Crossref]
  57. C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
    [Crossref]
  58. A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
    [Crossref]
  59. Z. Han, H.-S. Nguyen, F. Boitier, Y. Wei, K. Abdel-Baki, J.-S. Lauret, J. Bloch, S. Bouchoule, and E. Deleporte, “High-Q planar organic-inorganic perovskite-based microcavity,” Opt. Lett. 37, 5061–5063 (2012).
    [Crossref]
  60. J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018).
    [Crossref]
  61. H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018).
    [Crossref]
  62. N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020).
    [Crossref]
  63. H. Dong, C. Zhang, X. Liu, J. Yao, and Y. S. Zhao, “Materials chemistry and engineering in metal halide perovskite lasers,” Chem. Soc. Rev. 49, 951–982 (2020).
    [Crossref]
  64. C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors,” Chem. Mater. 28, 2852–2867 (2016).
    [Crossref]
  65. K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
    [Crossref]
  66. K. Tanaka and T. Kondo, “Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals,” Sci. Technol. Adv. Mater. 4, 599–604 (2003).
    [Crossref]
  67. T. Dammak, S. Elleuch, H. Bougzhala, A. Mlayah, R. Chtourou, and Y. Abid, “Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6,” J. Lumin. 129, 893–897 (2009).
    [Crossref]
  68. L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
    [Crossref]
  69. E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
    [Crossref]
  70. D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei, and S. Jin, “Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics,” Nano Res. 10, 2117–2129 (2017).
    [Crossref]
  71. W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, and J. J. Baumberg, “Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors,” Phys. Rev. B 91, 161303 (2015).
    [Crossref]
  72. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
    [Crossref]
  73. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
    [Crossref]
  74. L.-C. Chen, C.-H. Tien, Z.-L. Tseng, Y.-S. Dong, and S. Yang, “Influence of PMMA on all-inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix,” Materials 12, 985 (2019).
    [Crossref]
  75. L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
    [Crossref]
  76. H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
    [Crossref]
  77. H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
    [Crossref]
  78. D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
    [Crossref]
  79. H. K. H. Choy, Design and Fabrication of Distributed Bragg Reflectors for Vertical-Cavity Surface-Emitting Lasers (Massachusetts Institute of Technology, 1998).
  80. A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
    [Crossref]
  81. G. Lanty, A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” New J. Phys. 10, 065007 (2008).
    [Crossref]
  82. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
    [Crossref]
  83. M. Brodin and M. Matsko, “Polariton effects in luminescence from ZnTe crystals: surface and bulk polaritons,” Solid State Commun. 35, 375–377 (1980).
    [Crossref]
  84. R. André, D. Heger, L. S. Dang, and Y. M. d’Aubigné, “Spectroscopy of polaritons in CdTe-based microcavities,” J. Cryst. Growth 184, 758–762 (1998).
    [Crossref]
  85. H. Mathieu, Y. Chen, J. Camassel, J. Allegre, and D. Robertson, “Excitons and polaritons in InP,” Phys. Rev. B 32, 4042–4051 (1985).
    [Crossref]
  86. G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett. 81, 412–414 (2002).
    [Crossref]
  87. Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “Strong light-matter interaction in ZnO microcavities,” Light Sci. Appl. 2, e76 (2013).
    [Crossref]
  88. J.-H. Song, “Optical properties of GaN and ZnO,” in Oxide and Nitride Semiconductors: Processing, Properties, and Applications, T. Yao and S.-K. Hong, eds. (Springer, 2009), pp. 311–354.
  89. M. Litinskaya, “Exciton polariton kinematic interaction in crystalline organic microcavities,” Phys. Rev. B 77, 155325 (2008).
    [Crossref]
  90. Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
    [Crossref]
  91. S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
    [Crossref]
  92. W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
    [Crossref]
  93. Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
    [Crossref]
  94. Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, and Q. Zhang, “Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton,” Nano Lett. 20, 1023–1032 (2020).
    [Crossref]
  95. R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
    [Crossref]
  96. S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
    [Crossref]
  97. W. Du, S. Zhang, Q. Zhang, and X. Liu, “Recent progress of strong exciton-photon coupling in lead halide perovskites,” Adv. Mater. 31, 1804894 (2019).
    [Crossref]
  98. T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
    [Crossref]
  99. Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
    [Crossref]
  100. T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57, 12428–12434 (1998).
    [Crossref]
  101. K. Pradeesh, J. Baumberg, and G. V. Prakash, “Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity,” Opt. Express 17, 22171–22178 (2009).
    [Crossref]
  102. A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
    [Crossref]
  103. P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015).
    [Crossref]
  104. L. K. Van Vugt, B. Piccione, and R. Agarwal, “Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion,” Appl. Phys. Lett. 97, 061115 (2010).
    [Crossref]
  105. M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
    [Crossref]
  106. L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
    [Crossref]
  107. J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, and X. Liu, “Perovskite quantum dot lasers,” InfoMat 2, 170–183 (2020).
    [Crossref]
  108. Y. Mi, Y. Zhong, Q. Zhang, and X. Liu, “Continuous‐wave pumped perovskite lasers,” Adv. Opt. Mater. 7, 1900544 (2019).
    [Crossref]
  109. Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, “Advances in small perovskite‐based lasers,” Small Methods 1, 1700163 (2017).
    [Crossref]
  110. C. Li, Z. Liu, Q. Shang, and Q. Zhang, “Surface‐plasmon‐assisted metal halide perovskite small lasers,” Adv. Opt. Mater. 7, 1900279 (2019).
    [Crossref]
  111. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
    [Crossref]
  112. T. Kondo, T. Azuma, T. Yuasa, and R. Ito, “Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4,” Solid State Commun. 105, 253–255 (1998).
    [Crossref]
  113. G. Grancini and M. K. Nazeeruddin, “Dimensional tailoring of hybrid perovskites for photovoltaics,” Nat. Rev. Mater. 4, 4–22 (2019).
    [Crossref]
  114. M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
    [Crossref]
  115. M. N. Saha and A. Fowler, “On a physical theory of stellar spectra,” Proc. R. Soc. London Series A 99, 135–153 (1921).
    [Crossref]
  116. J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016).
    [Crossref]
  117. M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
    [Crossref]
  118. A. P. Schlaus, M. S. Spencer, and X. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019).
    [Crossref]
  119. W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
    [Crossref]
  120. D. Marongiu, M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “The role of excitons in 3D and 2D lead halide perovskites,” J. Mater. Chem. C 7, 12006–12018 (2019).
    [Crossref]
  121. M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018).
    [Crossref]
  122. B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
    [Crossref]
  123. W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, “Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films,” Phys. Chem. Chem. Phys. 18, 14701–14708 (2016).
    [Crossref]
  124. Z. Liu, “Research progress of low-dimensional metal halide perovskites for lasing applications,” Chin. Phys. B 27, 114209 (2018).
    [Crossref]
  125. G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
    [Crossref]
  126. H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, and R. P. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [Crossref]
  127. M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
    [Crossref]
  128. A. Baranov and E. Tournié, Semiconductor Lasers: Fundamentals and Applications (Elsevier, 2013).
  129. Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
    [Crossref]
  130. W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, and Y. S. Zhao, “Controlling the cavity structures of two‐photon‐pumped perovskite microlasers,” Adv. Mater. 28, 4040–4046 (2016).
    [Crossref]
  131. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978–987 (2000).
    [Crossref]
  132. S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers,” Adv. Mater. 29, 1604781 (2017).
    [Crossref]
  133. Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals,” Adv. Func. Mater. 27, 1605088 (2017).
    [Crossref]
  134. E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
    [Crossref]
  135. Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, and S. Jin, “Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties,” Nat. Rev. Mater. 4, 169–188 (2019).
    [Crossref]
  136. W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
    [Crossref]
  137. H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
    [Crossref]
  138. Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22, 23552–23564 (2014).
    [Crossref]
  139. Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
    [Crossref]
  140. B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
    [Crossref]
  141. C.-K. Lim, Q. Li, T. Zhang, T. Thomay, A. N. Cartwright, M. T. Swihart, and P. N. Prasad, “Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker,” Sol. Energy Mater. Sol. Cells 176, 30–35 (2018).
    [Crossref]
  142. A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
    [Crossref]
  143. J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
    [Crossref]
  144. J. Bao and V. G. Hadjiev, “Origin of luminescent centers and edge states in low-dimensional lead halide perovskites: controversies, challenges and instructive approaches,” Nano-Micro Lett. 11, 26 (2019).
    [Crossref]
  145. B. Piccione, C.-H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7, 640–645 (2012).
    [Crossref]
  146. X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47, 656–666 (2014).
    [Crossref]
  147. S. Kim and R. Yan, “Recent developments in photonic, plasmonic and hybrid nanowire waveguides,” J. Mater. Chem. C 6, 11795–11816 (2018).
    [Crossref]
  148. Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, and J. Xu, “Chiral perovskites: promising materials toward next‐generation optoelectronics,” Small 15, 1902237 (2019).
    [Crossref]

2020 (15)

S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou, and L. Huang, “Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites,” Nat. Commun. 11, 664 (2020).
[Crossref]

S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020).
[Crossref]

H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, and H. Chang, “Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications,” Energy Environ. Mater. (2020).
[Crossref]

X. Han, Y. Zheng, S. Chai, S. Chen, and J. Xu, “2D organic-inorganic hybrid perovskite materials for nonlinear optics,” Nanophotonics 9, 38 (2020).
[Crossref]

S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, and X. Liu, “Growth of metal halide perovskite materials,” Sci. China Mater. 63, 1438–1463 (2020).
[Crossref]

X. Zhang, H. Shi, H. Dai, X. Zhang, X. W. Sun, and Z. Zhang, “Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet,” ACS Appl. Mater. Interfaces 12, 5081–5089 (2020).
[Crossref]

N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020).
[Crossref]

H. Dong, C. Zhang, X. Liu, J. Yao, and Y. S. Zhao, “Materials chemistry and engineering in metal halide perovskite lasers,” Chem. Soc. Rev. 49, 951–982 (2020).
[Crossref]

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, and Q. Zhang, “Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton,” Nano Lett. 20, 1023–1032 (2020).
[Crossref]

S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
[Crossref]

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, and X. Liu, “Perovskite quantum dot lasers,” InfoMat 2, 170–183 (2020).
[Crossref]

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

2019 (28)

C. Li, Z. Liu, Q. Shang, and Q. Zhang, “Surface‐plasmon‐assisted metal halide perovskite small lasers,” Adv. Opt. Mater. 7, 1900279 (2019).
[Crossref]

G. Grancini and M. K. Nazeeruddin, “Dimensional tailoring of hybrid perovskites for photovoltaics,” Nat. Rev. Mater. 4, 4–22 (2019).
[Crossref]

Y. Mi, Y. Zhong, Q. Zhang, and X. Liu, “Continuous‐wave pumped perovskite lasers,” Adv. Opt. Mater. 7, 1900544 (2019).
[Crossref]

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
[Crossref]

W. Du, S. Zhang, Q. Zhang, and X. Liu, “Recent progress of strong exciton-photon coupling in lead halide perovskites,” Adv. Mater. 31, 1804894 (2019).
[Crossref]

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

A. P. Schlaus, M. S. Spencer, and X. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019).
[Crossref]

W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
[Crossref]

D. Marongiu, M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “The role of excitons in 3D and 2D lead halide perovskites,” J. Mater. Chem. C 7, 12006–12018 (2019).
[Crossref]

Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, and S. Jin, “Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties,” Nat. Rev. Mater. 4, 169–188 (2019).
[Crossref]

J. Bao and V. G. Hadjiev, “Origin of luminescent centers and edge states in low-dimensional lead halide perovskites: controversies, challenges and instructive approaches,” Nano-Micro Lett. 11, 26 (2019).
[Crossref]

Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, and J. Xu, “Chiral perovskites: promising materials toward next‐generation optoelectronics,” Small 15, 1902237 (2019).
[Crossref]

L.-C. Chen, C.-H. Tien, Z.-L. Tseng, Y.-S. Dong, and S. Yang, “Influence of PMMA on all-inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix,” Materials 12, 985 (2019).
[Crossref]

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, and S. Liu, “Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector,” J. Mater. Chem. C 7, 1584–1591 (2019).
[Crossref]

D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, and S. F. Shi, “Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection,” Adv. Opt. Mater. 7, 1900039 (2019).
[Crossref]

A. Kooijman, L. A. Muscarella, and R. M. Williams, “Perovskite thin film materials stabilized and enhanced by zinc (II) doping,” Appl. Sci. 9, 1678 (2019).
[Crossref]

F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019).
[Crossref]

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, and W. Huang, “Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application,” J. Mater. Chem. A 7, 13860–13872 (2019).
[Crossref]

R. A. DeCrescent, N. R. Venkatesan, C. J. Dahlman, R. M. Kennard, M. L. Chabinyc, and J. A. Schuller, “Optical constants and effective-medium origins of large optical anisotropies in layered hybrid organic/inorganic perovskites,” ACS Nano 13, 10745–10753 (2019).
[Crossref]

X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
[Crossref]

Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, and Q. Bao, “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Mater. Sci. 1, 268–287 (2019).
[Crossref]

V. Ardizzone, L. De Marco, M. De Giorgi, L. Dominici, D. Ballarini, and D. Sanvitto, “Emerging 2D materials for room-temperature polaritonics,” Nanophotonics 8, 1547–1558 (2019).
[Crossref]

W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019).
[Crossref]

Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
[Crossref]

C. Lan, Z. Zhou, R. Wei, and J. C. Ho, “Two-dimensional perovskite materials: from synthesis to energy-related applications,” Mater. Today Energy 11, 61–82 (2019).
[Crossref]

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

2018 (29)

Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu, “Scalable fabrication of perovskite solar cells,” Nat. Rev. Mater. 3, 18017 (2018).
[Crossref]

Y.-H. Chang, J.-C. Lin, Y.-C. Chen, T.-R. Kuo, and D.-Y. Wang, “Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties,” Nanoscale Res. Lett. 13, 247 (2018).
[Crossref]

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
[Crossref]

S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, and A. R. S. Kandada, “Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites,” Phys. Rev. Mater. 2, 064605 (2018).
[Crossref]

J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, and M. D. Fayer, “Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy,” J. Am. Chem. Soc. 140, 9882–9890 (2018).
[Crossref]

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

J. Yan, W. Qiu, G. Wu, P. Heremans, and H. Chen, “Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells,” J. Mater. Chem. A 6, 11063–11077 (2018).
[Crossref]

D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. F. I. Morral, and F. Jaramillo, “Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10thin films,” J. Mater. Chem. C 6, 6216–6221 (2018).
[Crossref]

P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, and R. D. Schaller, “Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites,” Nat. Commun. 9, 2019 (2018).
[Crossref]

X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
[Crossref]

J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018).
[Crossref]

H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018).
[Crossref]

K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
[Crossref]

S. Kim and R. Yan, “Recent developments in photonic, plasmonic and hybrid nanowire waveguides,” J. Mater. Chem. C 6, 11795–11816 (2018).
[Crossref]

E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
[Crossref]

B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
[Crossref]

C.-K. Lim, Q. Li, T. Zhang, T. Thomay, A. N. Cartwright, M. T. Swihart, and P. N. Prasad, “Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker,” Sol. Energy Mater. Sol. Cells 176, 30–35 (2018).
[Crossref]

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018).
[Crossref]

Z. Liu, “Research progress of low-dimensional metal halide perovskites for lasing applications,” Chin. Phys. B 27, 114209 (2018).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
[Crossref]

2017 (11)

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, “Advances in small perovskite‐based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
[Crossref]

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals,” Adv. Func. Mater. 27, 1605088 (2017).
[Crossref]

D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei, and S. Jin, “Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics,” Nano Res. 10, 2117–2129 (2017).
[Crossref]

M.-G. La-Placa, G. Longo, A. Babaei, L. Martínez-Sarti, M. Sessolo, and H. J. Bolink, “Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control,” Chem. Commun. 53, 8707–8710 (2017).
[Crossref]

M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, and H. I. Karunadasa, “Structural origins of broadband emission from layered Pb-Br hybrid perovskites,” Chem. Sci. 8, 4497–4504 (2017).
[Crossref]

D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, “Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation,” J. Am. Chem. Soc. 139, 39–42 (2017).
[Crossref]

L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017).
[Crossref]

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46, 5204–5236 (2017).
[Crossref]

2016 (17)

D. Sanvitto and S. Kéna-Cohen, “The road towards polaritonic devices,” Nat. Mater. 15, 1061–1073 (2016).
[Crossref]

K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, and J. J. Berry, “Defect tolerance in methylammonium lead triiodide perovskite,” ACS Energy Lett. 1, 360–366 (2016).
[Crossref]

B. R. Sutherland and E. H. Sargent, “Perovskite photonic sources,” Nat. Photonics 10, 295–302 (2016).
[Crossref]

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, “Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites,” J. Am. Chem. Soc. 138, 13798–13801 (2016).
[Crossref]

Z. Guo, X. Wu, T. Zhu, X. Zhu, and L. Huang, “Electron-phonon scattering in atomically thin 2D perovskites,” ACS Nano 10, 9992–9998 (2016).
[Crossref]

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
[Crossref]

T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
[Crossref]

Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, “Structure‐tuned lead halide perovskite nanocrystals,” Adv. Mater. 28, 566–573 (2016).
[Crossref]

H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
[Crossref]

C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors,” Chem. Mater. 28, 2852–2867 (2016).
[Crossref]

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, “Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films,” Phys. Chem. Chem. Phys. 18, 14701–14708 (2016).
[Crossref]

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, and Y. S. Zhao, “Controlling the cavity structures of two‐photon‐pumped perovskite microlasers,” Adv. Mater. 28, 4040–4046 (2016).
[Crossref]

M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
[Crossref]

J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016).
[Crossref]

2015 (7)

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, and J. J. Baumberg, “Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors,” Phys. Rev. B 91, 161303 (2015).
[Crossref]

D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “2D homologous perovskites as light-absorbing materials for solar cell applications,” J. Am. Chem. Soc. 137, 7843–7850 (2015).
[Crossref]

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

2014 (7)

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014).
[Crossref]

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22, 23552–23564 (2014).
[Crossref]

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47, 656–666 (2014).
[Crossref]

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

2013 (2)

Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “Strong light-matter interaction in ZnO microcavities,” Light Sci. Appl. 2, e76 (2013).
[Crossref]

H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array,” Laser Photon. Rev. 7, 281–288 (2013).
[Crossref]

2012 (2)

Z. Han, H.-S. Nguyen, F. Boitier, Y. Wei, K. Abdel-Baki, J.-S. Lauret, J. Bloch, S. Bouchoule, and E. Deleporte, “High-Q planar organic-inorganic perovskite-based microcavity,” Opt. Lett. 37, 5061–5063 (2012).
[Crossref]

B. Piccione, C.-H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7, 640–645 (2012).
[Crossref]

2011 (1)

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

2010 (2)

L. K. Van Vugt, B. Piccione, and R. Agarwal, “Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion,” Appl. Phys. Lett. 97, 061115 (2010).
[Crossref]

M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
[Crossref]

2009 (2)

K. Pradeesh, J. Baumberg, and G. V. Prakash, “Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity,” Opt. Express 17, 22171–22178 (2009).
[Crossref]

T. Dammak, S. Elleuch, H. Bougzhala, A. Mlayah, R. Chtourou, and Y. Abid, “Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6,” J. Lumin. 129, 893–897 (2009).
[Crossref]

2008 (2)

M. Litinskaya, “Exciton polariton kinematic interaction in crystalline organic microcavities,” Phys. Rev. B 77, 155325 (2008).
[Crossref]

G. Lanty, A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” New J. Phys. 10, 065007 (2008).
[Crossref]

2007 (1)

D. O’carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2, 180–184 (2007).
[Crossref]

2006 (2)

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
[Crossref]

A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
[Crossref]

2003 (1)

K. Tanaka and T. Kondo, “Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals,” Sci. Technol. Adv. Mater. 4, 599–604 (2003).
[Crossref]

2002 (1)

G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett. 81, 412–414 (2002).
[Crossref]

2000 (1)

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978–987 (2000).
[Crossref]

1999 (2)

H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, and R. P. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
[Crossref]

1998 (3)

R. André, D. Heger, L. S. Dang, and Y. M. d’Aubigné, “Spectroscopy of polaritons in CdTe-based microcavities,” J. Cryst. Growth 184, 758–762 (1998).
[Crossref]

T. Kondo, T. Azuma, T. Yuasa, and R. Ito, “Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4,” Solid State Commun. 105, 253–255 (1998).
[Crossref]

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57, 12428–12434 (1998).
[Crossref]

1992 (3)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
[Crossref]

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45, 8989–8994 (1992).
[Crossref]

1985 (1)

H. Mathieu, Y. Chen, J. Camassel, J. Allegre, and D. Robertson, “Excitons and polaritons in InP,” Phys. Rev. B 32, 4042–4051 (1985).
[Crossref]

1980 (1)

M. Brodin and M. Matsko, “Polariton effects in luminescence from ZnTe crystals: surface and bulk polaritons,” Solid State Commun. 35, 375–377 (1980).
[Crossref]

1921 (1)

M. N. Saha and A. Fowler, “On a physical theory of stellar spectra,” Proc. R. Soc. London Series A 99, 135–153 (1921).
[Crossref]

Abdel-Baki, K.

Abdelrahman, A. I.

Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, “Structure‐tuned lead halide perovskite nanocrystals,” Adv. Mater. 28, 566–573 (2016).
[Crossref]

Abdelwahab, I.

K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
[Crossref]

Abid, Y.

T. Dammak, S. Elleuch, H. Bougzhala, A. Mlayah, R. Chtourou, and Y. Abid, “Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6,” J. Lumin. 129, 893–897 (2009).
[Crossref]

Abolins, H.

E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
[Crossref]

Adachi, M. M.

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

Agarwal, R.

B. Piccione, C.-H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7, 640–645 (2012).
[Crossref]

L. K. Van Vugt, B. Piccione, and R. Agarwal, “Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion,” Appl. Phys. Lett. 97, 061115 (2010).
[Crossref]

Ahmad, S.

L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017).
[Crossref]

Akriti,

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

Alivisatos, A. P.

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Allegre, J.

H. Mathieu, Y. Chen, J. Camassel, J. Allegre, and D. Robertson, “Excitons and polaritons in InP,” Phys. Rev. B 32, 4042–4051 (1985).
[Crossref]

Amassian, A.

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

An, C.

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

André, R.

R. André, D. Heger, L. S. Dang, and Y. M. d’Aubigné, “Spectroscopy of polaritons in CdTe-based microcavities,” J. Cryst. Growth 184, 758–762 (1998).
[Crossref]

Andreani, L. C.

G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
[Crossref]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Ardizzone, V.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
[Crossref]

V. Ardizzone, L. De Marco, M. De Giorgi, L. Dominici, D. Ballarini, and D. Sanvitto, “Emerging 2D materials for room-temperature polaritonics,” Nanophotonics 8, 1547–1558 (2019).
[Crossref]

Aresti, M.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Armitage, A.

G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
[Crossref]

Asadpour, R.

H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
[Crossref]

Astratov, V.

G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
[Crossref]

Atallah, T. L.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Azuma, T.

T. Kondo, T. Azuma, T. Yuasa, and R. Ito, “Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4,” Solid State Commun. 105, 253–255 (1998).
[Crossref]

Babaei, A.

M.-G. La-Placa, G. Longo, A. Babaei, L. Martínez-Sarti, M. Sessolo, and H. J. Bolink, “Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control,” Chem. Commun. 53, 8707–8710 (2017).
[Crossref]

Babic, D. I.

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
[Crossref]

Ballarini, D.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

V. Ardizzone, L. De Marco, M. De Giorgi, L. Dominici, D. Ballarini, and D. Sanvitto, “Emerging 2D materials for room-temperature polaritonics,” Nanophotonics 8, 1547–1558 (2019).
[Crossref]

Bao, D.

J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018).
[Crossref]

Bao, J.

J. Bao and V. G. Hadjiev, “Origin of luminescent centers and edge states in low-dimensional lead halide perovskites: controversies, challenges and instructive approaches,” Nano-Micro Lett. 11, 26 (2019).
[Crossref]

Bao, Q.

Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, and Q. Bao, “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Mater. Sci. 1, 268–287 (2019).
[Crossref]

Bao, X.

Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, and Q. Bao, “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Mater. Sci. 1, 268–287 (2019).
[Crossref]

Bappi, G.

X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
[Crossref]

Baranov, A.

A. Baranov and E. Tournié, Semiconductor Lasers: Fundamentals and Applications (Elsevier, 2013).

Bargigia, I.

F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019).
[Crossref]

Baumberg, J.

Baumberg, J. J.

W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, and J. J. Baumberg, “Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors,” Phys. Rev. B 91, 161303 (2015).
[Crossref]

G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett. 81, 412–414 (2002).
[Crossref]

Baxter, D.

G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
[Crossref]

Beauregard, E. M.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Beljonne, D.

F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019).
[Crossref]

Berry, J. J.

Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu, “Scalable fabrication of perovskite solar cells,” Nat. Rev. Mater. 3, 18017 (2018).
[Crossref]

K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, and J. J. Berry, “Defect tolerance in methylammonium lead triiodide perovskite,” ACS Energy Lett. 1, 360–366 (2016).
[Crossref]

Beverina, L.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Bischak, C. G.

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Blancon, J. C.

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

Blancon, J.-C.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
[Crossref]

Bloch, J.

Z. Han, H.-S. Nguyen, F. Boitier, Y. Wei, K. Abdel-Baki, J.-S. Lauret, J. Bloch, S. Bouchoule, and E. Deleporte, “High-Q planar organic-inorganic perovskite-based microcavity,” Opt. Lett. 37, 5061–5063 (2012).
[Crossref]

M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
[Crossref]

Bodnarchuk, M. I.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Boitier, F.

Bolink, H. J.

M.-G. La-Placa, G. Longo, A. Babaei, L. Martínez-Sarti, M. Sessolo, and H. J. Bolink, “Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control,” Chem. Commun. 53, 8707–8710 (2017).
[Crossref]

Bongiovanni, G.

D. Marongiu, M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “The role of excitons in 3D and 2D lead halide perovskites,” J. Mater. Chem. C 7, 12006–12018 (2019).
[Crossref]

M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
[Crossref]

Booker, E. P.

E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
[Crossref]

Bouchoule, S.

Bougzhala, H.

T. Dammak, S. Elleuch, H. Bougzhala, A. Mlayah, R. Chtourou, and Y. Abid, “Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6,” J. Lumin. 129, 893–897 (2009).
[Crossref]

Breen, J. P.

J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, and M. D. Fayer, “Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy,” J. Am. Chem. Soc. 140, 9882–9890 (2018).
[Crossref]

Brehier, A.

G. Lanty, A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” New J. Phys. 10, 065007 (2008).
[Crossref]

A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
[Crossref]

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
[Crossref]

Brodin, M.

M. Brodin and M. Matsko, “Polariton effects in luminescence from ZnTe crystals: surface and bulk polaritons,” Solid State Commun. 35, 375–377 (1980).
[Crossref]

Brovelli, S.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Brus, L. E.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Budden, P. J.

E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
[Crossref]

Bushuyev, O.

X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
[Crossref]

Cadelano, M.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Calabró, E.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Camassel, J.

H. Mathieu, Y. Chen, J. Camassel, J. Allegre, and D. Robertson, “Excitons and polaritons in InP,” Phys. Rev. B 32, 4042–4051 (1985).
[Crossref]

Cao, D. H.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors,” Chem. Mater. 28, 2852–2867 (2016).
[Crossref]

D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “2D homologous perovskites as light-absorbing materials for solar cell applications,” J. Am. Chem. Soc. 137, 7843–7850 (2015).
[Crossref]

Cao, H.

H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, and R. P. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Cao, L.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

Cao, Q.

S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, and X. Liu, “Growth of metal halide perovskite materials,” Sci. China Mater. 63, 1438–1463 (2020).
[Crossref]

Caputo, R.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Cartwright, A. N.

C.-K. Lim, Q. Li, T. Zhang, T. Thomay, A. N. Cartwright, M. T. Swihart, and P. N. Prasad, “Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker,” Sol. Energy Mater. Sol. Cells 176, 30–35 (2018).
[Crossref]

Chabinyc, M. L.

R. A. DeCrescent, N. R. Venkatesan, C. J. Dahlman, R. M. Kennard, M. L. Chabinyc, and J. A. Schuller, “Optical constants and effective-medium origins of large optical anisotropies in layered hybrid organic/inorganic perovskites,” ACS Nano 13, 10745–10753 (2019).
[Crossref]

Chai, S.

X. Han, Y. Zheng, S. Chai, S. Chen, and J. Xu, “2D organic-inorganic hybrid perovskite materials for nonlinear optics,” Nanophotonics 9, 38 (2020).
[Crossref]

Chang, H.

H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, and H. Chang, “Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications,” Energy Environ. Mater. (2020).
[Crossref]

Chang, R. P.

H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, and R. P. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Chang, S. W.

D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, and S. F. Shi, “Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection,” Adv. Opt. Mater. 7, 1900039 (2019).
[Crossref]

Chang, Y.-H.

Y.-H. Chang, J.-C. Lin, Y.-C. Chen, T.-R. Kuo, and D.-Y. Wang, “Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties,” Nanoscale Res. Lett. 13, 247 (2018).
[Crossref]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978–987 (2000).
[Crossref]

Cheminal, A.

L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017).
[Crossref]

Chen, C.-C.

C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
[Crossref]

Chen, D.

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

Chen, F.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Chen, H.

J. Yan, W. Qiu, G. Wu, P. Heremans, and H. Chen, “Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells,” J. Mater. Chem. A 6, 11063–11077 (2018).
[Crossref]

Chen, J.

J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, and X. Liu, “Perovskite quantum dot lasers,” InfoMat 2, 170–183 (2020).
[Crossref]

S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
[Crossref]

W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
[Crossref]

Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, and S. Jin, “Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties,” Nat. Rev. Mater. 4, 169–188 (2019).
[Crossref]

Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
[Crossref]

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

Chen, L.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Chen, L.-C.

L.-C. Chen, C.-H. Tien, Z.-L. Tseng, Y.-S. Dong, and S. Yang, “Influence of PMMA on all-inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix,” Materials 12, 985 (2019).
[Crossref]

Chen, Q. D.

H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array,” Laser Photon. Rev. 7, 281–288 (2013).
[Crossref]

Chen, S.

X. Han, Y. Zheng, S. Chai, S. Chen, and J. Xu, “2D organic-inorganic hybrid perovskite materials for nonlinear optics,” Nanophotonics 9, 38 (2020).
[Crossref]

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

Chen, T.-P.

C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
[Crossref]

Chen, W.

W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019).
[Crossref]

Chen, W.-L.

C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
[Crossref]

Chen, Y.

Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, and W. Huang, “Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application,” J. Mater. Chem. A 7, 13860–13872 (2019).
[Crossref]

H. Mathieu, Y. Chen, J. Camassel, J. Allegre, and D. Robertson, “Excitons and polaritons in InP,” Phys. Rev. B 32, 4042–4051 (1985).
[Crossref]

Chen, Y.-C.

Y.-H. Chang, J.-C. Lin, Y.-C. Chen, T.-R. Kuo, and D.-Y. Wang, “Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties,” Nanoscale Res. Lett. 13, 247 (2018).
[Crossref]

Chen, Z.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018).
[Crossref]

K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
[Crossref]

K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
[Crossref]

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Chi, X.

K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
[Crossref]

Cho, C.-H.

B. Piccione, C.-H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7, 640–645 (2012).
[Crossref]

Cho, K.

S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020).
[Crossref]

Chong, W. K.

W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, “Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films,” Phys. Chem. Chem. Phys. 18, 14701–14708 (2016).
[Crossref]

Choy, H. K. H.

H. K. H. Choy, Design and Fabrication of Distributed Bragg Reflectors for Vertical-Cavity Surface-Emitting Lasers (Massachusetts Institute of Technology, 1998).

Christians, J. A.

J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016).
[Crossref]

Chtourou, R.

T. Dammak, S. Elleuch, H. Bougzhala, A. Mlayah, R. Chtourou, and Y. Abid, “Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6,” J. Lumin. 129, 893–897 (2009).
[Crossref]

Chu, L.

K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
[Crossref]

Cinquino, M.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

Clark, D. J.

C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors,” Chem. Mater. 28, 2852–2867 (2016).
[Crossref]

Colombo, A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Colvin, V. L.

X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
[Crossref]

Comin, R.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Conti, C.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

Corbett, J.

T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
[Crossref]

Cortecchia, D.

F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019).
[Crossref]

S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, and A. R. S. Kandada, “Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites,” Phys. Rev. Mater. 2, 064605 (2018).
[Crossref]

D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, “Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation,” J. Am. Chem. Soc. 139, 39–42 (2017).
[Crossref]

Corzine, S. W.

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
[Crossref]

Crochet, J. J.

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
[Crossref]

Crommie, M.

D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, and S. F. Shi, “Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection,” Adv. Opt. Mater. 7, 1900039 (2019).
[Crossref]

Cronenberger, S.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
[Crossref]

Crooker, S. A.

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

Cruciani, G.

A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
[Crossref]

d’Aubigné, Y. M.

R. André, D. Heger, L. S. Dang, and Y. M. d’Aubigné, “Spectroscopy of polaritons in CdTe-based microcavities,” J. Cryst. Growth 184, 758–762 (1998).
[Crossref]

Dahlman, C. J.

R. A. DeCrescent, N. R. Venkatesan, C. J. Dahlman, R. M. Kennard, M. L. Chabinyc, and J. A. Schuller, “Optical constants and effective-medium origins of large optical anisotropies in layered hybrid organic/inorganic perovskites,” ACS Nano 13, 10745–10753 (2019).
[Crossref]

Dai, G.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Dai, H.

X. Zhang, H. Shi, H. Dai, X. Zhang, X. W. Sun, and Z. Zhang, “Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet,” ACS Appl. Mater. Interfaces 12, 5081–5089 (2020).
[Crossref]

Dai, Z.

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

Dammak, T.

T. Dammak, S. Elleuch, H. Bougzhala, A. Mlayah, R. Chtourou, and Y. Abid, “Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6,” J. Lumin. 129, 893–897 (2009).
[Crossref]

Dang, L.

D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei, and S. Jin, “Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics,” Nano Res. 10, 2117–2129 (2017).
[Crossref]

Dang, L. S.

R. André, D. Heger, L. S. Dang, and Y. M. d’Aubigné, “Spectroscopy of polaritons in CdTe-based microcavities,” J. Cryst. Growth 184, 758–762 (1998).
[Crossref]

Dang, N. H. M.

N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020).
[Crossref]

Darancet, P.

P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, and R. D. Schaller, “Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites,” Nat. Commun. 9, 2019 (2018).
[Crossref]

De Angelis, F.

D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, “Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation,” J. Am. Chem. Soc. 139, 39–42 (2017).
[Crossref]

De Giorgi, M.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
[Crossref]

V. Ardizzone, L. De Marco, M. De Giorgi, L. Dominici, D. Ballarini, and D. Sanvitto, “Emerging 2D materials for room-temperature polaritonics,” Nanophotonics 8, 1547–1558 (2019).
[Crossref]

A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
[Crossref]

De Marco, L.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
[Crossref]

V. Ardizzone, L. De Marco, M. De Giorgi, L. Dominici, D. Ballarini, and D. Sanvitto, “Emerging 2D materials for room-temperature polaritonics,” Nanophotonics 8, 1547–1558 (2019).
[Crossref]

A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
[Crossref]

DeCrescent, R. A.

R. A. DeCrescent, N. R. Venkatesan, C. J. Dahlman, R. M. Kennard, M. L. Chabinyc, and J. A. Schuller, “Optical constants and effective-medium origins of large optical anisotropies in layered hybrid organic/inorganic perovskites,” ACS Nano 13, 10745–10753 (2019).
[Crossref]

del Valle-Inclan Redondo, Y.

E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
[Crossref]

Deleporte, E.

N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020).
[Crossref]

Z. Han, H.-S. Nguyen, F. Boitier, Y. Wei, K. Abdel-Baki, J.-S. Lauret, J. Bloch, S. Bouchoule, and E. Deleporte, “High-Q planar organic-inorganic perovskite-based microcavity,” Opt. Lett. 37, 5061–5063 (2012).
[Crossref]

G. Lanty, A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” New J. Phys. 10, 065007 (2008).
[Crossref]

A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
[Crossref]

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
[Crossref]

Deng, L.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Deng, S.

S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou, and L. Huang, “Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites,” Nat. Commun. 11, 664 (2020).
[Crossref]

Deschler, F.

E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
[Crossref]

Di Carlo, A.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett. 81, 412–414 (2002).
[Crossref]

Diederichs, C.

J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018).
[Crossref]

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Ding, R.

H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array,” Laser Photon. Rev. 7, 281–288 (2013).
[Crossref]

Ding, T.

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Dohner, E. R.

M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, and H. I. Karunadasa, “Structural origins of broadband emission from layered Pb-Br hybrid perovskites,” Chem. Sci. 8, 4497–4504 (2017).
[Crossref]

T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
[Crossref]

Dominici, L.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
[Crossref]

V. Ardizzone, L. De Marco, M. De Giorgi, L. Dominici, D. Ballarini, and D. Sanvitto, “Emerging 2D materials for room-temperature polaritonics,” Nanophotonics 8, 1547–1558 (2019).
[Crossref]

A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
[Crossref]

Dong, H.

H. Dong, C. Zhang, X. Liu, J. Yao, and Y. S. Zhao, “Materials chemistry and engineering in metal halide perovskite lasers,” Chem. Soc. Rev. 49, 951–982 (2020).
[Crossref]

Dong, Q.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

Dong, Y.

Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, and J. Xu, “Chiral perovskites: promising materials toward next‐generation optoelectronics,” Small 15, 1902237 (2019).
[Crossref]

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Dong, Y.-S.

L.-C. Chen, C.-H. Tien, Z.-L. Tseng, Y.-S. Dong, and S. Yang, “Influence of PMMA on all-inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix,” Materials 12, 985 (2019).
[Crossref]

Dou, L.

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou, and L. Huang, “Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites,” Nat. Commun. 11, 664 (2020).
[Crossref]

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Drouard, E.

N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020).
[Crossref]

Du, B.

B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
[Crossref]

G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
[Crossref]

Du, W.

J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, and X. Liu, “Perovskite quantum dot lasers,” InfoMat 2, 170–183 (2020).
[Crossref]

S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
[Crossref]

S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, and X. Liu, “Growth of metal halide perovskite materials,” Sci. China Mater. 63, 1438–1463 (2020).
[Crossref]

W. Du, S. Zhang, Q. Zhang, and X. Liu, “Recent progress of strong exciton-photon coupling in lead halide perovskites,” Adv. Mater. 31, 1804894 (2019).
[Crossref]

W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, “Advances in small perovskite‐based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Eaton, S. W.

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Elleuch, S.

T. Dammak, S. Elleuch, H. Bougzhala, A. Mlayah, R. Chtourou, and Y. Abid, “Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6,” J. Lumin. 129, 893–897 (2009).
[Crossref]

Evans, T. J. S.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Even, J.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

Eyre, L.

E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
[Crossref]

Fan, S.

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

Fang, H. H.

H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array,” Laser Photon. Rev. 7, 281–288 (2013).
[Crossref]

Fang, Y.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

Farha, O. K.

D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “2D homologous perovskites as light-absorbing materials for solar cell applications,” J. Am. Chem. Soc. 137, 7843–7850 (2015).
[Crossref]

Farrer, I.

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Fayer, M. D.

J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, and M. D. Fayer, “Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy,” J. Am. Chem. Soc. 140, 9882–9890 (2018).
[Crossref]

Feng, J.

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array,” Laser Photon. Rev. 7, 281–288 (2013).
[Crossref]

Feng, Y.

Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, and J. Xu, “Chiral perovskites: promising materials toward next‐generation optoelectronics,” Small 15, 1902237 (2019).
[Crossref]

Fieramosca, A.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
[Crossref]

A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
[Crossref]

Figus, C.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Fisher, A.

T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
[Crossref]

Fowler, A.

M. N. Saha and A. Fowler, “On a physical theory of stellar spectra,” Proc. R. Soc. London Series A 99, 135–153 (1921).
[Crossref]

Francaviglia, L.

D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. F. I. Morral, and F. Jaramillo, “Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10thin films,” J. Mater. Chem. C 6, 6216–6221 (2018).
[Crossref]

Friend, R. H.

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
[Crossref]

Fu, A.

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Fu, H.

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018).
[Crossref]

M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018).
[Crossref]

H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
[Crossref]

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Fu, L.

S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
[Crossref]

Fu, W.

K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
[Crossref]

Fu, Y.

Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, and S. Jin, “Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties,” Nat. Rev. Mater. 4, 169–188 (2019).
[Crossref]

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei, and S. Jin, “Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics,” Nano Res. 10, 2117–2129 (2017).
[Crossref]

Fujita, T.

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57, 12428–12434 (1998).
[Crossref]

Furasova, A.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Gao, H.

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Gao, P.

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

Gao, Q.

H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
[Crossref]

M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018).
[Crossref]

H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018).
[Crossref]

Gao, X.

X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
[Crossref]

Gao, Y.

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
[Crossref]

Ge, C.

W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019).
[Crossref]

Gebhardt, J.

D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, “Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites,” J. Am. Chem. Soc. 138, 13798–13801 (2016).
[Crossref]

Gerace, D.

N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020).
[Crossref]

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
[Crossref]

Ghoshal, D.

D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, and S. F. Shi, “Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection,” Adv. Opt. Mater. 7, 1900039 (2019).
[Crossref]

Gigli, G.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
[Crossref]

A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
[Crossref]

Gijs, M. A.

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

Ginsberg, N. S.

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Giovanni, D.

W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, “Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films,” Phys. Chem. Chem. Phys. 18, 14701–14708 (2016).
[Crossref]

Goh, T. W.

W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, “Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films,” Phys. Chem. Chem. Phys. 18, 14701–14708 (2016).
[Crossref]

Gong, C.

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Gong, Q.

B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
[Crossref]

Gong, X.

X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
[Crossref]

Gong, Y.

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Grancini, G.

G. Grancini and M. K. Nazeeruddin, “Dimensional tailoring of hybrid perovskites for photovoltaics,” Nat. Rev. Mater. 4, 4–22 (2019).
[Crossref]

Grätzel, M.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Green, M. A.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014).
[Crossref]

Gu, Y.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Guo, J.

G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
[Crossref]

Guo, N.

K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
[Crossref]

Guo, P.

P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, and R. D. Schaller, “Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites,” Nat. Commun. 9, 2019 (2018).
[Crossref]

Guo, X.

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47, 656–666 (2014).
[Crossref]

Guo, Y.

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

Guo, Z.

Z. Guo, X. Wu, T. Zhu, X. Zhu, and L. Huang, “Electron-phonon scattering in atomically thin 2D perovskites,” ACS Nano 10, 9992–9998 (2016).
[Crossref]

Guzei, I. A.

D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei, and S. Jin, “Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics,” Nano Res. 10, 2117–2129 (2017).
[Crossref]

Ha, S. T.

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, “Advances in small perovskite‐based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Hadjiev, V. G.

J. Bao and V. G. Hadjiev, “Origin of luminescent centers and edge states in low-dimensional lead halide perovskites: controversies, challenges and instructive approaches,” Nano-Micro Lett. 11, 26 (2019).
[Crossref]

Haider, G.

C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
[Crossref]

Han, J.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

Han, Q.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

Han, X.

X. Han, Y. Zheng, S. Chai, S. Chen, and J. Xu, “2D organic-inorganic hybrid perovskite materials for nonlinear optics,” Nanophotonics 9, 38 (2020).
[Crossref]

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Han, Z.

Harutyunyan, B.

H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
[Crossref]

Hassan, Y.

Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, “Structure‐tuned lead halide perovskite nanocrystals,” Adv. Mater. 28, 566–573 (2016).
[Crossref]

Haus, J. W.

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

Hautzinger, M. P.

Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, and S. Jin, “Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties,” Nat. Rev. Mater. 4, 169–188 (2019).
[Crossref]

He, H.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
[Crossref]

He, J.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
[Crossref]

He, X.

H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, and H. Chang, “Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications,” Energy Environ. Mater. (2020).
[Crossref]

Heger, D.

R. André, D. Heger, L. S. Dang, and Y. M. d’Aubigné, “Spectroscopy of polaritons in CdTe-based microcavities,” J. Cryst. Growth 184, 758–762 (1998).
[Crossref]

Hendon, C. H.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Heremans, P.

J. Yan, W. Qiu, G. Wu, P. Heremans, and H. Chen, “Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells,” J. Mater. Chem. A 6, 11063–11077 (2018).
[Crossref]

Hinrichsen, T. F.

L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017).
[Crossref]

Ho, J. C.

C. Lan, Z. Zhou, R. Wei, and J. C. Ho, “Two-dimensional perovskite materials: from synthesis to energy-related applications,” Mater. Today Energy 11, 61–82 (2019).
[Crossref]

Ho, S.-T.

H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, and R. P. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Ho-Baillie, A.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014).
[Crossref]

Hoogland, S.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

Hu, C.

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

Hu, J. S.

W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, and Y. S. Zhao, “Controlling the cavity structures of two‐photon‐pumped perovskite microlasers,” Adv. Mater. 28, 4040–4046 (2016).
[Crossref]

Hu, K.

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Hu, M.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, and S. Liu, “Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector,” J. Mater. Chem. C 7, 1584–1591 (2019).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Hu, T.

T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
[Crossref]

Hu, W.

M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018).
[Crossref]

Hu, X.

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

Hu, Y.

X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
[Crossref]

Huang, J.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

Huang, L.

S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou, and L. Huang, “Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites,” Nat. Commun. 11, 664 (2020).
[Crossref]

Z. Guo, X. Wu, T. Zhu, X. Zhu, and L. Huang, “Electron-phonon scattering in atomically thin 2D perovskites,” ACS Nano 10, 9992–9998 (2016).
[Crossref]

Huang, S.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Huang, W.

Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, and W. Huang, “Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application,” J. Mater. Chem. A 7, 13860–13872 (2019).
[Crossref]

G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
[Crossref]

Huang, Y. Z.

H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array,” Laser Photon. Rev. 7, 281–288 (2013).
[Crossref]

Hupp, J. T.

C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors,” Chem. Mater. 28, 2852–2867 (2016).
[Crossref]

D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “2D homologous perovskites as light-absorbing materials for solar cell applications,” J. Am. Chem. Soc. 137, 7843–7850 (2015).
[Crossref]

Hurtado Parra, S.

D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, “Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites,” J. Am. Chem. Soc. 138, 13798–13801 (2016).
[Crossref]

Huszka, G.

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

Huynh, U.

L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017).
[Crossref]

Ibbotson, L. A.

W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, and J. J. Baumberg, “Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors,” Phys. Rev. B 91, 161303 (2015).
[Crossref]

Iotov, N.

D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, “Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites,” J. Am. Chem. Soc. 138, 13798–13801 (2016).
[Crossref]

Ishihara, T.

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57, 12428–12434 (1998).
[Crossref]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Ito, R.

T. Kondo, T. Azuma, T. Yuasa, and R. Ito, “Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4,” Solid State Commun. 105, 253–255 (1998).
[Crossref]

Jaffe, A.

M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, and H. I. Karunadasa, “Structural origins of broadband emission from layered Pb-Br hybrid perovskites,” Chem. Sci. 8, 4497–4504 (2017).
[Crossref]

Jain, A.

X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
[Crossref]

Jang, J. I.

C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors,” Chem. Mater. 28, 2852–2867 (2016).
[Crossref]

Jaramillo, F.

D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. F. I. Morral, and F. Jaramillo, “Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10thin films,” J. Mater. Chem. C 6, 6216–6221 (2018).
[Crossref]

Ji, L.

Jia, Z.

S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
[Crossref]

Jiang, L.

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Jiang, Q.

B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
[Crossref]

Jiang, X.

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Jiang, Y.

Jin, L.

S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou, and L. Huang, “Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites,” Nat. Commun. 11, 664 (2020).
[Crossref]

Jin, S.

Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, and S. Jin, “Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties,” Nat. Rev. Mater. 4, 169–188 (2019).
[Crossref]

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei, and S. Jin, “Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics,” Nano Res. 10, 2117–2129 (2017).
[Crossref]

Jin, Y.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
[Crossref]

Jung, H. S.

S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020).
[Crossref]

Kagan, C. R.

D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, “Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites,” J. Am. Chem. Soc. 138, 13798–13801 (2016).
[Crossref]

Kaliteevski, M.

G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
[Crossref]

Kamat, P. V.

J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016).
[Crossref]

Kanatzidis, M. G.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, and R. D. Schaller, “Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites,” Nat. Commun. 9, 2019 (2018).
[Crossref]

C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors,” Chem. Mater. 28, 2852–2867 (2016).
[Crossref]

D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “2D homologous perovskites as light-absorbing materials for solar cell applications,” J. Am. Chem. Soc. 137, 7843–7850 (2015).
[Crossref]

Kandada, A. R. S.

F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019).
[Crossref]

S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, and A. R. S. Kandada, “Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites,” Phys. Rev. Mater. 2, 064605 (2018).
[Crossref]

Kang, K.

S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020).
[Crossref]

Kanjanaboos, P.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Karunadasa, H. I.

J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, and M. D. Fayer, “Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy,” J. Am. Chem. Soc. 140, 9882–9890 (2018).
[Crossref]

M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, and H. I. Karunadasa, “Structural origins of broadband emission from layered Pb-Br hybrid perovskites,” Chem. Sci. 8, 4497–4504 (2017).
[Crossref]

T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
[Crossref]

Katan, C.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

Katsutani, F.

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

Kavokin, A.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
[Crossref]

G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett. 81, 412–414 (2002).
[Crossref]

Kavokin, A. V.

G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
[Crossref]

Kavokin, K.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
[Crossref]

Kéna-Cohen, S.

D. Sanvitto and S. Kéna-Cohen, “The road towards polaritonic devices,” Nat. Mater. 15, 1061–1073 (2016).
[Crossref]

Kennard, R. M.

R. A. DeCrescent, N. R. Venkatesan, C. J. Dahlman, R. M. Kennard, M. L. Chabinyc, and J. A. Schuller, “Optical constants and effective-medium origins of large optical anisotropies in layered hybrid organic/inorganic perovskites,” ACS Nano 13, 10745–10753 (2019).
[Crossref]

Kepenekian, M.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

Ketterson, J. B.

P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, and R. D. Schaller, “Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites,” Nat. Commun. 9, 2019 (2018).
[Crossref]

Kikkawa, J. M.

D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, “Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites,” J. Am. Chem. Soc. 138, 13798–13801 (2016).
[Crossref]

Kim, D. H.

Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu, “Scalable fabrication of perovskite solar cells,” Nat. Rev. Mater. 3, 18017 (2018).
[Crossref]

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46, 5204–5236 (2017).
[Crossref]

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Kim, J.

S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020).
[Crossref]

Kim, S.

S. Kim and R. Yan, “Recent developments in photonic, plasmonic and hybrid nanowire waveguides,” J. Mater. Chem. C 6, 11795–11816 (2018).
[Crossref]

Kim, T. S.

S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020).
[Crossref]

Kim, W. B.

S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020).
[Crossref]

Klein, T. R.

Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu, “Scalable fabrication of perovskite solar cells,” Nat. Rev. Mater. 3, 18017 (2018).
[Crossref]

Klimov, V. I.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Kobayashi, Y.

Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, “Structure‐tuned lead halide perovskite nanocrystals,” Adv. Mater. 28, 566–573 (2016).
[Crossref]

Kondo, T.

K. Tanaka and T. Kondo, “Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals,” Sci. Technol. Adv. Mater. 4, 599–604 (2003).
[Crossref]

T. Kondo, T. Azuma, T. Yuasa, and R. Ito, “Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4,” Solid State Commun. 105, 253–255 (1998).
[Crossref]

Kong, J.

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

Kono, J.

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

Kooijman, A.

A. Kooijman, L. A. Muscarella, and R. M. Williams, “Perovskite thin film materials stabilized and enhanced by zinc (II) doping,” Appl. Sci. 9, 1678 (2019).
[Crossref]

Koratkar, N.

D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, and S. F. Shi, “Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection,” Adv. Opt. Mater. 7, 1900039 (2019).
[Crossref]

Kornienko, N.

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Kovalenko, M. V.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Krieg, F.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Krizhanovskii, D. N.

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Kuitani, T.

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57, 12428–12434 (1998).
[Crossref]

Kuo, T.-R.

Y.-H. Chang, J.-C. Lin, Y.-C. Chen, T.-R. Kuo, and D.-Y. Wang, “Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties,” Nanoscale Res. Lett. 13, 247 (2018).
[Crossref]

Lagoudakis, K.

K. Lagoudakis, The Physics of Exciton-Polariton Condensates (PPUR Polytechniques, 2013).

Lai, M.

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Lai, Y.-Y.

Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “Strong light-matter interaction in ZnO microcavities,” Light Sci. Appl. 2, e76 (2013).
[Crossref]

Lamanna, E.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Lan, C.

C. Lan, Z. Zhou, R. Wei, and J. C. Ho, “Two-dimensional perovskite materials: from synthesis to energy-related applications,” Mater. Today Energy 11, 61–82 (2019).
[Crossref]

Lan, Y.-P.

Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “Strong light-matter interaction in ZnO microcavities,” Light Sci. Appl. 2, e76 (2013).
[Crossref]

Lanty, G.

G. Lanty, A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” New J. Phys. 10, 065007 (2008).
[Crossref]

La-Placa, M.-G.

M.-G. La-Placa, G. Longo, A. Babaei, L. Martínez-Sarti, M. Sessolo, and H. J. Bolink, “Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control,” Chem. Commun. 53, 8707–8710 (2017).
[Crossref]

Lauret, J. S.

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
[Crossref]

Lauret, J.-S.

Z. Han, H.-S. Nguyen, F. Boitier, Y. Wei, K. Abdel-Baki, J.-S. Lauret, J. Bloch, S. Bouchoule, and E. Deleporte, “High-Q planar organic-inorganic perovskite-based microcavity,” Opt. Lett. 37, 5061–5063 (2012).
[Crossref]

G. Lanty, A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” New J. Phys. 10, 065007 (2008).
[Crossref]

A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
[Crossref]

Lédée, F.

N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020).
[Crossref]

Lee, J.

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

Lee, T.-W.

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

Lee, Y.

S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020).
[Crossref]

Lehmann, A. G.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Leipold, D.

W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, and J. J. Baumberg, “Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors,” Phys. Rev. B 91, 161303 (2015).
[Crossref]

Lemaître, A.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
[Crossref]

Leng, K.

K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
[Crossref]

Leonetti, M.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

Lerario, G.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

Li, B.

Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, and W. Huang, “Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application,” J. Mater. Chem. A 7, 13860–13872 (2019).
[Crossref]

B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
[Crossref]

Li, C.

Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, and Q. Zhang, “Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton,” Nano Lett. 20, 1023–1032 (2020).
[Crossref]

C. Li, Z. Liu, Q. Shang, and Q. Zhang, “Surface‐plasmon‐assisted metal halide perovskite small lasers,” Adv. Opt. Mater. 7, 1900279 (2019).
[Crossref]

Li, H.

H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, and H. Chang, “Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications,” Energy Environ. Mater. (2020).
[Crossref]

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
[Crossref]

Li, J.

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
[Crossref]

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Li, L.

Li, M.

J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, and X. Liu, “Perovskite quantum dot lasers,” InfoMat 2, 170–183 (2020).
[Crossref]

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
[Crossref]

H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018).
[Crossref]

H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
[Crossref]

M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018).
[Crossref]

G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
[Crossref]

Li, Q.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, and S. Liu, “Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector,” J. Mater. Chem. C 7, 1584–1591 (2019).
[Crossref]

C.-K. Lim, Q. Li, T. Zhang, T. Thomay, A. N. Cartwright, M. T. Swihart, and P. N. Prasad, “Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker,” Sol. Energy Mater. Sol. Cells 176, 30–35 (2018).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Li, S.-S.

C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
[Crossref]

Li, X.

Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, and J. Xu, “Chiral perovskites: promising materials toward next‐generation optoelectronics,” Small 15, 1902237 (2019).
[Crossref]

Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, and Q. Bao, “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Mater. Sci. 1, 268–287 (2019).
[Crossref]

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals,” Adv. Func. Mater. 27, 1605088 (2017).
[Crossref]

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Li, Y.

W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019).
[Crossref]

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

Li, Z.

Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu, “Scalable fabrication of perovskite solar cells,” Nat. Rev. Mater. 3, 18017 (2018).
[Crossref]

Liang, Y.

Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, and Q. Zhang, “Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton,” Nano Lett. 20, 1023–1032 (2020).
[Crossref]

Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
[Crossref]

Liao, Q.

H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018).
[Crossref]

H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
[Crossref]

M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018).
[Crossref]

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Liao, Y.-M.

C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
[Crossref]

Lieberwirth, I.

D. O’carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2, 180–184 (2007).
[Crossref]

Liew, T. C.

J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018).
[Crossref]

Liew, T. C. H.

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Lim, C.-K.

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

C.-K. Lim, Q. Li, T. Zhang, T. Thomay, A. N. Cartwright, M. T. Swihart, and P. N. Prasad, “Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker,” Sol. Energy Mater. Sol. Cells 176, 30–35 (2018).
[Crossref]

Lim, S. S.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Lin, C.-C.

C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
[Crossref]

Lin, F.

B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
[Crossref]

Lin, J.-C.

Y.-H. Chang, J.-C. Lin, Y.-C. Chen, T.-R. Kuo, and D.-Y. Wang, “Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties,” Nanoscale Res. Lett. 13, 247 (2018).
[Crossref]

Lindenberg, A. M.

M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, and H. I. Karunadasa, “Structural origins of broadband emission from layered Pb-Br hybrid perovskites,” Chem. Sci. 8, 4497–4504 (2017).
[Crossref]

Lindquist, K. P.

J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, and M. D. Fayer, “Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy,” J. Am. Chem. Soc. 140, 9882–9890 (2018).
[Crossref]

Lischka, K.

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45, 8989–8994 (1992).
[Crossref]

Litinskaya, M.

M. Litinskaya, “Exciton polariton kinematic interaction in crystalline organic microcavities,” Phys. Rev. B 77, 155325 (2008).
[Crossref]

Liu, F.

S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

Liu, J.

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, and Y. S. Zhao, “Controlling the cavity structures of two‐photon‐pumped perovskite microlasers,” Adv. Mater. 28, 4040–4046 (2016).
[Crossref]

Liu, M.

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

Liu, P.

H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
[Crossref]

M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018).
[Crossref]

H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018).
[Crossref]

Liu, S.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, and S. Liu, “Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector,” J. Mater. Chem. C 7, 1584–1591 (2019).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018).
[Crossref]

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Liu, W.

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
[Crossref]

Liu, X.

S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, and X. Liu, “Growth of metal halide perovskite materials,” Sci. China Mater. 63, 1438–1463 (2020).
[Crossref]

H. Dong, C. Zhang, X. Liu, J. Yao, and Y. S. Zhao, “Materials chemistry and engineering in metal halide perovskite lasers,” Chem. Soc. Rev. 49, 951–982 (2020).
[Crossref]

Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, and Q. Zhang, “Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton,” Nano Lett. 20, 1023–1032 (2020).
[Crossref]

J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, and X. Liu, “Perovskite quantum dot lasers,” InfoMat 2, 170–183 (2020).
[Crossref]

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

Y. Mi, Y. Zhong, Q. Zhang, and X. Liu, “Continuous‐wave pumped perovskite lasers,” Adv. Opt. Mater. 7, 1900544 (2019).
[Crossref]

W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
[Crossref]

W. Du, S. Zhang, Q. Zhang, and X. Liu, “Recent progress of strong exciton-photon coupling in lead halide perovskites,” Adv. Mater. 31, 1804894 (2019).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, “Advances in small perovskite‐based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, “Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films,” Phys. Chem. Chem. Phys. 18, 14701–14708 (2016).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Liu, Y.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, and S. Liu, “Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector,” J. Mater. Chem. C 7, 1584–1591 (2019).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
[Crossref]

Liu, Z.

Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, and Q. Zhang, “Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton,” Nano Lett. 20, 1023–1032 (2020).
[Crossref]

C. Li, Z. Liu, Q. Shang, and Q. Zhang, “Surface‐plasmon‐assisted metal halide perovskite small lasers,” Adv. Opt. Mater. 7, 1900279 (2019).
[Crossref]

Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

Z. Liu, “Research progress of low-dimensional metal halide perovskites for lasing applications,” Chin. Phys. B 27, 114209 (2018).
[Crossref]

Lo, C.-Y.

C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
[Crossref]

Long, H.

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Longo, G.

M.-G. La-Placa, G. Longo, A. Babaei, L. Martínez-Sarti, M. Sessolo, and H. J. Bolink, “Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control,” Chem. Commun. 53, 8707–8710 (2017).
[Crossref]

Lopez, C.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

Lorenzon, M.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Lu, J.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

Lu, P.

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Lu, S. Y.

H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array,” Laser Photon. Rev. 7, 281–288 (2013).
[Crossref]

Lu, T.-C.

Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “Strong light-matter interaction in ZnO microcavities,” Light Sci. Appl. 2, e76 (2013).
[Crossref]

Lu, Z.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Lugli, P.

G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett. 81, 412–414 (2002).
[Crossref]

Luo, D.

B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
[Crossref]

Luo, T.

H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, and H. Chang, “Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications,” Energy Environ. Mater. (2020).
[Crossref]

Lyu, F.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

Ma, D.

D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei, and S. Jin, “Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics,” Nano Res. 10, 2117–2129 (2017).
[Crossref]

Ma, J.

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Mahi, F. T.

S. Noda, F. T. Mahi, and H. Zappe, “Photonic crystals,” in Reference Module in Materials Science and Materials Engineering (Elsevier, 2016), pp. 1–11.
[Crossref]

Maiorano, V.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
[Crossref]

Makarov, S.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Malpuech, G.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
[Crossref]

G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett. 81, 412–414 (2002).
[Crossref]

Manser, J. S.

J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016).
[Crossref]

Mao, L.

P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, and R. D. Schaller, “Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites,” Nat. Commun. 9, 2019 (2018).
[Crossref]

Marks, T. J.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

Marongiu, D.

D. Marongiu, M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “The role of excitons in 3D and 2D lead halide perovskites,” J. Mater. Chem. C 7, 12006–12018 (2019).
[Crossref]

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Martínez-Sarti, L.

M.-G. La-Placa, G. Longo, A. Babaei, L. Martínez-Sarti, M. Sessolo, and H. J. Bolink, “Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control,” Chem. Commun. 53, 8707–8710 (2017).
[Crossref]

Mathews, N.

W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, “Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films,” Phys. Chem. Chem. Phys. 18, 14701–14708 (2016).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Mathieu, H.

H. Mathieu, Y. Chen, J. Camassel, J. Allegre, and D. Robertson, “Excitons and polaritons in InP,” Phys. Rev. B 32, 4042–4051 (1985).
[Crossref]

Matsko, M.

M. Brodin and M. Matsko, “Polariton effects in luminescence from ZnTe crystals: surface and bulk polaritons,” Solid State Commun. 35, 375–377 (1980).
[Crossref]

Mazurczyk, R.

N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020).
[Crossref]

Meggiolaro, D.

D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, “Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation,” J. Am. Chem. Soc. 139, 39–42 (2017).
[Crossref]

Meinardi, F.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Melkonyan, F.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

Meng, L.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Mhaisalkar, S.

W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, “Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films,” Phys. Chem. Chem. Phys. 18, 14701–14708 (2016).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Mhaisalkar, S. G.

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

Mi, Y.

S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
[Crossref]

W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
[Crossref]

Y. Mi, Y. Zhong, Q. Zhang, and X. Liu, “Continuous‐wave pumped perovskite lasers,” Adv. Opt. Mater. 7, 1900544 (2019).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

Miard, A.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
[Crossref]

Mikhailovskii, V.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Mlayah, A.

T. Dammak, S. Elleuch, H. Bougzhala, A. Mlayah, R. Chtourou, and Y. Abid, “Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6,” J. Lumin. 129, 893–897 (2009).
[Crossref]

Mohite, A. D.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

Morral, A. F. I.

D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. F. I. Morral, and F. Jaramillo, “Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10thin films,” J. Mater. Chem. C 6, 6216–6221 (2018).
[Crossref]

Mosconi, E.

D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, “Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation,” J. Am. Chem. Soc. 139, 39–42 (2017).
[Crossref]

Mulligan, P.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

Munir, R.

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Mura, A.

D. Marongiu, M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “The role of excitons in 3D and 2D lead halide perovskites,” J. Mater. Chem. C 7, 12006–12018 (2019).
[Crossref]

M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
[Crossref]

Muscarella, L. A.

A. Kooijman, L. A. Muscarella, and R. M. Williams, “Perovskite thin film materials stabilized and enhanced by zinc (II) doping,” Appl. Sci. 9, 1678 (2019).
[Crossref]

Nagabhushana, G. P.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

Nalla, V.

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals,” Adv. Func. Mater. 27, 1605088 (2017).
[Crossref]

Nasrallah, I.

E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
[Crossref]

Navrotsky, A.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

Nazeeruddin, M. K.

G. Grancini and M. K. Nazeeruddin, “Dimensional tailoring of hybrid perovskites for photovoltaics,” Nat. Rev. Mater. 4, 4–22 (2019).
[Crossref]

Neukirch, A. J.

H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
[Crossref]

Neutzner, S.

S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, and A. R. S. Kandada, “Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites,” Phys. Rev. Mater. 2, 064605 (2018).
[Crossref]

D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, “Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation,” J. Am. Chem. Soc. 139, 39–42 (2017).
[Crossref]

Nguyen, H. S.

N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020).
[Crossref]

Nguyen, H.-S.

Ni, L.

L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017).
[Crossref]

Nie, W.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
[Crossref]

Nishida, J.

J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, and M. D. Fayer, “Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy,” J. Am. Chem. Soc. 140, 9882–9890 (2018).
[Crossref]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Niu, T.

Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, and W. Huang, “Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application,” J. Mater. Chem. A 7, 13860–13872 (2019).
[Crossref]

Niu, W.

W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, and J. J. Baumberg, “Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors,” Phys. Rev. B 91, 161303 (2015).
[Crossref]

Noda, S.

S. Noda, F. T. Mahi, and H. Zappe, “Photonic crystals,” in Reference Module in Materials Science and Materials Engineering (Elsevier, 2016), pp. 1–11.
[Crossref]

Noe, G. T.

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

Nokhrin, S.

X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
[Crossref]

Nurmikko, A.

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

O’carroll, D.

D. O’carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2, 180–184 (2007).
[Crossref]

Ou, Q.

Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, and Q. Bao, “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Mater. Sci. 1, 268–287 (2019).
[Crossref]

Panzarini, G.

G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
[Crossref]

Parashkov, R.

G. Lanty, A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” New J. Phys. 10, 065007 (2008).
[Crossref]

A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
[Crossref]

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
[Crossref]

Passoni, M.

A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
[Crossref]

Pedesseau, L.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

Peng, L.

W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, and Y. S. Zhao, “Controlling the cavity structures of two‐photon‐pumped perovskite microlasers,” Adv. Mater. 28, 4040–4046 (2016).
[Crossref]

Pensack, R. D.

Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, “Structure‐tuned lead halide perovskite nanocrystals,” Adv. Mater. 28, 566–573 (2016).
[Crossref]

Petrozza, A.

F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019).
[Crossref]

S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, and A. R. S. Kandada, “Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites,” Phys. Rev. Mater. 2, 064605 (2018).
[Crossref]

D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, “Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation,” J. Am. Chem. Soc. 139, 39–42 (2017).
[Crossref]

Phillips, R. T.

E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
[Crossref]

Piccione, B.

B. Piccione, C.-H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7, 640–645 (2012).
[Crossref]

L. K. Van Vugt, B. Piccione, and R. Agarwal, “Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion,” Appl. Phys. Lett. 97, 061115 (2010).
[Crossref]

Piontkowski, Z.

X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
[Crossref]

Piras, R.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Polimeno, L.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
[Crossref]

A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
[Crossref]

Pradeesh, K.

Prakash, G. V.

W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, and J. J. Baumberg, “Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors,” Phys. Rev. B 91, 161303 (2015).
[Crossref]

K. Pradeesh, J. Baumberg, and G. V. Prakash, “Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity,” Opt. Express 17, 22171–22178 (2009).
[Crossref]

Prasad, P. N.

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

C.-K. Lim, Q. Li, T. Zhang, T. Thomay, A. N. Cartwright, M. T. Swihart, and P. N. Prasad, “Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker,” Sol. Energy Mater. Sol. Cells 176, 30–35 (2018).
[Crossref]

Price, M. B.

E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
[Crossref]

Prontera, C. T.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

Protesescu, L.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Pugliese, M.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” in Confined Electrons and Photons (Springer, 1995), p. 839.

Qin, C.

W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
[Crossref]

Qiu, J.

Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, and W. Huang, “Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application,” J. Mater. Chem. A 7, 13860–13872 (2019).
[Crossref]

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

Qiu, W.

J. Yan, W. Qiu, G. Wu, P. Heremans, and H. Chen, “Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells,” J. Mater. Chem. A 6, 11063–11077 (2018).
[Crossref]

Qiu, X.

W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

Quan, L. N.

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Quarti, C.

F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019).
[Crossref]

Quochi, F.

D. Marongiu, M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “The role of excitons in 3D and 2D lead halide perovskites,” J. Mater. Chem. C 7, 12006–12018 (2019).
[Crossref]

M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
[Crossref]

Raghavan, C. M.

C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
[Crossref]

Ramirez, D.

D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. F. I. Morral, and F. Jaramillo, “Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10thin films,” J. Mater. Chem. C 6, 6216–6221 (2018).
[Crossref]

Ran, G.

W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019).
[Crossref]

Ran, X.

Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, and W. Huang, “Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application,” J. Mater. Chem. A 7, 13860–13872 (2019).
[Crossref]

Rand, B. P.

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

Rao, A.

L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017).
[Crossref]

Rappe, A. M.

D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, “Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites,” J. Am. Chem. Soc. 138, 13798–13801 (2016).
[Crossref]

Redmond, G.

D. O’carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2, 180–184 (2007).
[Crossref]

Ritchie, D. A.

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Rizzo, A.

A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
[Crossref]

Roberts, J.

G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
[Crossref]

Robertson, D.

H. Mathieu, Y. Chen, J. Camassel, J. Allegre, and D. Robertson, “Excitons and polaritons in InP,” Phys. Rev. B 32, 4042–4051 (1985).
[Crossref]

Romero-Gomez, P.

D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. F. I. Morral, and F. Jaramillo, “Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10thin films,” J. Mater. Chem. C 6, 6216–6221 (2018).
[Crossref]

Rondinelli, J. M.

C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors,” Chem. Mater. 28, 2852–2867 (2016).
[Crossref]

Rosa, B. L.

A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
[Crossref]

Roy, S.

S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020).
[Crossref]

Royall, B.

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Runge, E.

W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, and J. J. Baumberg, “Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors,” Phys. Rev. B 91, 161303 (2015).
[Crossref]

Saba, M.

D. Marongiu, M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “The role of excitons in 3D and 2D lead halide perovskites,” J. Mater. Chem. C 7, 12006–12018 (2019).
[Crossref]

M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
[Crossref]

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Sabatini, R.

X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
[Crossref]

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Sabba, D.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Sadasivam, S.

P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, and R. D. Schaller, “Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites,” Nat. Commun. 9, 2019 (2018).
[Crossref]

Sadhanala, A.

L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017).
[Crossref]

Saha, M. N.

M. N. Saha and A. Fowler, “On a physical theory of stellar spectra,” Proc. R. Soc. London Series A 99, 135–153 (1921).
[Crossref]

Sankar, R.

C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
[Crossref]

Sanvitto, D.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

V. Ardizzone, L. De Marco, M. De Giorgi, L. Dominici, D. Ballarini, and D. Sanvitto, “Emerging 2D materials for room-temperature polaritonics,” Nanophotonics 8, 1547–1558 (2019).
[Crossref]

D. Sanvitto and S. Kéna-Cohen, “The road towards polaritonic devices,” Nat. Mater. 15, 1061–1073 (2016).
[Crossref]

Sargent, E. H.

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

B. R. Sutherland and E. H. Sargent, “Perovskite photonic sources,” Nat. Photonics 10, 295–302 (2016).
[Crossref]

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

Sarritzu, V.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Sato, Y.

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57, 12428–12434 (1998).
[Crossref]

Savoie, B. M.

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

Scalbert, D.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
[Crossref]

Schaller, R. D.

P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, and R. D. Schaller, “Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites,” Nat. Commun. 9, 2019 (2018).
[Crossref]

Schlaus, A.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Schlaus, A. P.

A. P. Schlaus, M. S. Spencer, and X. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019).
[Crossref]

Schmidt, T.

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45, 8989–8994 (1992).
[Crossref]

Scholes, G. D.

Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, “Structure‐tuned lead halide perovskite nanocrystals,” Adv. Mater. 28, 566–573 (2016).
[Crossref]

Schuller, J. A.

R. A. DeCrescent, N. R. Venkatesan, C. J. Dahlman, R. M. Kennard, M. L. Chabinyc, and J. A. Schuller, “Optical constants and effective-medium origins of large optical anisotropies in layered hybrid organic/inorganic perovskites,” ACS Nano 13, 10745–10753 (2019).
[Crossref]

Schulz, P.

K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, and J. J. Berry, “Defect tolerance in methylammonium lead triiodide perovskite,” ACS Energy Lett. 1, 360–366 (2016).
[Crossref]

Seassal, C.

N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020).
[Crossref]

Seelig, E.

H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, and R. P. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Sessolo, M.

M.-G. La-Placa, G. Longo, A. Babaei, L. Martínez-Sarti, M. Sessolo, and H. J. Bolink, “Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control,” Chem. Commun. 53, 8707–8710 (2017).
[Crossref]

Sestu, N.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Shan, H.

B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
[Crossref]

Shang, Q.

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, and Q. Zhang, “Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton,” Nano Lett. 20, 1023–1032 (2020).
[Crossref]

C. Li, Z. Liu, Q. Shang, and Q. Zhang, “Surface‐plasmon‐assisted metal halide perovskite small lasers,” Adv. Opt. Mater. 7, 1900279 (2019).
[Crossref]

W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
[Crossref]

Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

Shao, H.

Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, and Q. Bao, “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Mater. Sci. 1, 268–287 (2019).
[Crossref]

Shao, L.

Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, and Q. Bao, “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Mater. Sci. 1, 268–287 (2019).
[Crossref]

Shao, Y.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967–970 (2015).
[Crossref]

Sharbirin, A. S.

S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020).
[Crossref]

Shen, B.

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
[Crossref]

Shen, C.

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

Shen, W.

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

Sher, M.-J.

T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
[Crossref]

Shi, E.

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou, and L. Huang, “Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites,” Nat. Commun. 11, 664 (2020).
[Crossref]

Shi, H.

X. Zhang, H. Shi, H. Dai, X. Zhang, X. W. Sun, and Z. Zhang, “Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet,” ACS Appl. Mater. Interfaces 12, 5081–5089 (2020).
[Crossref]

Shi, J.

S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
[Crossref]

S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
[Crossref]

J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, and X. Liu, “Perovskite quantum dot lasers,” InfoMat 2, 170–183 (2020).
[Crossref]

Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

Shi, S. F.

D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, and S. F. Shi, “Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection,” Adv. Opt. Mater. 7, 1900039 (2019).
[Crossref]

Shi, Z.

X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
[Crossref]

Shiring, S. B.

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

Shivanna, R.

L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017).
[Crossref]

Shivaramaiah, R.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

Si, J.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
[Crossref]

Silva, C.

F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019).
[Crossref]

S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, and A. R. S. Kandada, “Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites,” Phys. Rev. Mater. 2, 064605 (2018).
[Crossref]

Simonutti, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Skolnick, M.

G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
[Crossref]

Skolnick, M. S.

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Skryabin, D. V.

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Smilgies, D.-M.

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Smith, M. D.

M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, and H. I. Karunadasa, “Structural origins of broadband emission from layered Pb-Br hybrid perovskites,” Chem. Sci. 8, 4497–4504 (2017).
[Crossref]

T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
[Crossref]

Snaith, H. J.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014).
[Crossref]

Soci, C.

D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, “Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation,” J. Am. Chem. Soc. 139, 39–42 (2017).
[Crossref]

Soe, C. M. M.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

Solnyshkov, D.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
[Crossref]

Song, J.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Song, J.-H.

J.-H. Song, “Optical properties of GaN and ZnO,” in Oxide and Nitride Semiconductors: Processing, Properties, and Applications, T. Yao and S.-K. Hong, eds. (Springer, 2009), pp. 311–354.

Song, Y.

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, “Structure‐tuned lead halide perovskite nanocrystals,” Adv. Mater. 28, 566–573 (2016).
[Crossref]

Spencer, M. S.

A. P. Schlaus, M. S. Spencer, and X. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019).
[Crossref]

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Srimath Kandada, A. R.

D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, “Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation,” J. Am. Chem. Soc. 139, 39–42 (2017).
[Crossref]

Steirer, K. X.

K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, and J. J. Berry, “Defect tolerance in methylammonium lead triiodide perovskite,” ACS Energy Lett. 1, 360–366 (2016).
[Crossref]

Stevanovic, V.

K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, and J. J. Berry, “Defect tolerance in methylammonium lead triiodide perovskite,” ACS Energy Lett. 1, 360–366 (2016).
[Crossref]

Stier, A. V.

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

Stoumpos, C. C.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, and R. D. Schaller, “Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites,” Nat. Commun. 9, 2019 (2018).
[Crossref]

H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
[Crossref]

C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors,” Chem. Mater. 28, 2852–2867 (2016).
[Crossref]

D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “2D homologous perovskites as light-absorbing materials for solar cell applications,” J. Am. Chem. Soc. 137, 7843–7850 (2015).
[Crossref]

Straus, D. B.

D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, “Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites,” J. Am. Chem. Soc. 138, 13798–13801 (2016).
[Crossref]

Su, C.

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

Su, R.

J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018).
[Crossref]

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, “Advances in small perovskite‐based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Subotnik, J. E.

D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, “Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites,” J. Am. Chem. Soc. 138, 13798–13801 (2016).
[Crossref]

Sui, X.

S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

Sum, T. C.

G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
[Crossref]

W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, “Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films,” Phys. Chem. Chem. Phys. 18, 14701–14708 (2016).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Sun, H.

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals,” Adv. Func. Mater. 27, 1605088 (2017).
[Crossref]

Sun, H. B.

H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array,” Laser Photon. Rev. 7, 281–288 (2013).
[Crossref]

Sun, L.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

Sun, X. W.

X. Zhang, H. Shi, H. Dai, X. Zhang, X. W. Sun, and Z. Zhang, “Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet,” ACS Appl. Mater. Interfaces 12, 5081–5089 (2020).
[Crossref]

Sun, Z.

H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, and H. Chang, “Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications,” Energy Environ. Mater. (2020).
[Crossref]

Sutherland, B. R.

B. R. Sutherland and E. H. Sargent, “Perovskite photonic sources,” Nat. Photonics 10, 295–302 (2016).
[Crossref]

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

Swihart, M. T.

C.-K. Lim, Q. Li, T. Zhang, T. Thomay, A. N. Cartwright, M. T. Swihart, and P. N. Prasad, “Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker,” Sol. Energy Mater. Sol. Cells 176, 30–35 (2018).
[Crossref]

Tanaka, K.

K. Tanaka and T. Kondo, “Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals,” Sci. Technol. Adv. Mater. 4, 599–604 (2003).
[Crossref]

Tang, A.

W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, and Y. S. Zhao, “Controlling the cavity structures of two‐photon‐pumped perovskite microlasers,” Adv. Mater. 28, 4040–4046 (2016).
[Crossref]

Tang, W.

B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
[Crossref]

Tao, J.

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

Teeter, G.

K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, and J. J. Berry, “Defect tolerance in methylammonium lead triiodide perovskite,” ACS Energy Lett. 1, 360–366 (2016).
[Crossref]

Telychko, M.

K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
[Crossref]

Thirumal, K.

W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, “Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films,” Phys. Chem. Chem. Phys. 18, 14701–14708 (2016).
[Crossref]

Thomas, T. H.

L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017).
[Crossref]

Thomay, T.

C.-K. Lim, Q. Li, T. Zhang, T. Thomay, A. N. Cartwright, M. T. Swihart, and P. N. Prasad, “Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker,” Sol. Energy Mater. Sol. Cells 176, 30–35 (2018).
[Crossref]

Thouin, F.

F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019).
[Crossref]

S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, and A. R. S. Kandada, “Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites,” Phys. Rev. Mater. 2, 064605 (2018).
[Crossref]

Tian, C.

W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019).
[Crossref]

Tien, C.-H.

L.-C. Chen, C.-H. Tien, Z.-L. Tseng, Y.-S. Dong, and S. Yang, “Influence of PMMA on all-inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix,” Materials 12, 985 (2019).
[Crossref]

Tiguntseva, E.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Tinkler, L.

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Todisco, F.

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

Tong, L.

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47, 656–666 (2014).
[Crossref]

Tournié, E.

A. Baranov and E. Tournié, Semiconductor Lasers: Fundamentals and Applications (Elsevier, 2013).

Traoré, B.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

Tretiak, S.

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
[Crossref]

Trinh, M. T.

T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
[Crossref]

Trippé-Allard, G.

N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020).
[Crossref]

Trouillon, R.

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

Tsai, H.

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
[Crossref]

Tsai, H. Z.

D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, and S. F. Shi, “Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection,” Adv. Opt. Mater. 7, 1900039 (2019).
[Crossref]

Tseng, Z.-L.

L.-C. Chen, C.-H. Tien, Z.-L. Tseng, Y.-S. Dong, and S. Yang, “Influence of PMMA on all-inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix,” Materials 12, 985 (2019).
[Crossref]

Ubyivovk, E.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Umeyama, D.

J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, and M. D. Fayer, “Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy,” J. Am. Chem. Soc. 140, 9882–9890 (2018).
[Crossref]

Uribe, J. I.

D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. F. I. Morral, and F. Jaramillo, “Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10thin films,” J. Mater. Chem. C 6, 6216–6221 (2018).
[Crossref]

Ushakova, E.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Valverde-Chávez, D. A.

F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019).
[Crossref]

van Hest, M. F. A. M.

Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu, “Scalable fabrication of perovskite solar cells,” Nat. Rev. Mater. 3, 18017 (2018).
[Crossref]

van Vugt, L. K.

B. Piccione, C.-H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7, 640–645 (2012).
[Crossref]

L. K. Van Vugt, B. Piccione, and R. Agarwal, “Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion,” Appl. Phys. Lett. 97, 061115 (2010).
[Crossref]

Velizhanin, K. A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Venkatesan, N. R.

R. A. DeCrescent, N. R. Venkatesan, C. J. Dahlman, R. M. Kennard, M. L. Chabinyc, and J. A. Schuller, “Optical constants and effective-medium origins of large optical anisotropies in layered hybrid organic/inorganic perovskites,” ACS Nano 13, 10745–10753 (2019).
[Crossref]

Verduzco, R.

H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
[Crossref]

Verzhbitskiy, I.

K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
[Crossref]

Viswanatha, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Vladimirova, M.

M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
[Crossref]

Vladimirova, M. R.

G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
[Crossref]

Voznyy, O.

X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
[Crossref]

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Walker, P. M.

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Walsh, A.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Walters, G.

X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
[Crossref]

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Wang, A.

S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, and X. Liu, “Growth of metal halide perovskite materials,” Sci. China Mater. 63, 1438–1463 (2020).
[Crossref]

Wang, B.

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Wang, D.-Y.

Y.-H. Chang, J.-C. Lin, Y.-C. Chen, T.-R. Kuo, and D.-Y. Wang, “Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties,” Nanoscale Res. Lett. 13, 247 (2018).
[Crossref]

Wang, H.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
[Crossref]

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46, 5204–5236 (2017).
[Crossref]

Wang, J.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018).
[Crossref]

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
[Crossref]

Wang, K.

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Wang, L.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Wang, L.-W.

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Wang, N.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
[Crossref]

Wang, Q.

H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, and R. P. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Wang, R.

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

Wang, S.

S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, and X. Liu, “Growth of metal halide perovskite materials,” Sci. China Mater. 63, 1438–1463 (2020).
[Crossref]

Wang, T.

D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, and S. F. Shi, “Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection,” Adv. Opt. Mater. 7, 1900039 (2019).
[Crossref]

Wang, X.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
[Crossref]

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Wang, Y.

J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, and X. Liu, “Perovskite quantum dot lasers,” InfoMat 2, 170–183 (2020).
[Crossref]

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals,” Adv. Func. Mater. 27, 1605088 (2017).
[Crossref]

Wang, Z.

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

Wei, Q.

Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
[Crossref]

G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
[Crossref]

Wei, R.

C. Lan, Z. Zhou, R. Wei, and J. C. Ho, “Two-dimensional perovskite materials: from synthesis to energy-related applications,” Mater. Today Energy 11, 61–82 (2019).
[Crossref]

Wei, Y.

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

Z. Han, H.-S. Nguyen, F. Boitier, Y. Wei, K. Abdel-Baki, J.-S. Lauret, J. Bloch, S. Bouchoule, and E. Deleporte, “High-Q planar organic-inorganic perovskite-based microcavity,” Opt. Lett. 37, 5061–5063 (2012).
[Crossref]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Wen, W.

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Williams, R. M.

A. Kooijman, L. A. Muscarella, and R. M. Williams, “Perovskite thin film materials stabilized and enhanced by zinc (II) doping,” Appl. Sci. 9, 1678 (2019).
[Crossref]

Winnik, M. A.

Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, “Structure‐tuned lead halide perovskite nanocrystals,” Adv. Mater. 28, 566–573 (2016).
[Crossref]

Wong, A. B.

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Wong, C. T.

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

Wu, B.

G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
[Crossref]

Wu, G.

J. Yan, W. Qiu, G. Wu, P. Heremans, and H. Chen, “Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells,” J. Mater. Chem. A 6, 11063–11077 (2018).
[Crossref]

Wu, S.

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

Wu, T.

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

Wu, X.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
[Crossref]

T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
[Crossref]

Z. Guo, X. Wu, T. Zhu, X. Zhu, and L. Huang, “Electron-phonon scattering in atomically thin 2D perovskites,” ACS Nano 10, 9992–9998 (2016).
[Crossref]

Wu, Y.

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
[Crossref]

H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018).
[Crossref]

M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018).
[Crossref]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22, 23552–23564 (2014).
[Crossref]

Wu, Z.

W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

Xia, Y.

Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, and W. Huang, “Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application,” J. Mater. Chem. A 7, 13860–13872 (2019).
[Crossref]

Xiao, Y.

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

Xing, G.

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, and Q. Bao, “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Mater. Sci. 1, 268–287 (2019).
[Crossref]

G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Xing, J.

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018).
[Crossref]

Xiong, Q.

J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018).
[Crossref]

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, “Advances in small perovskite‐based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Xu, H.

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Xu, J.

X. Han, Y. Zheng, S. Chai, S. Chen, and J. Xu, “2D organic-inorganic hybrid perovskite materials for nonlinear optics,” Nanophotonics 9, 38 (2020).
[Crossref]

Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, and J. Xu, “Chiral perovskites: promising materials toward next‐generation optoelectronics,” Small 15, 1902237 (2019).
[Crossref]

Xu, L.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Xu, W.

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Xu, Z.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, and S. Liu, “Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector,” J. Mater. Chem. C 7, 1584–1591 (2019).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Xue, J.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Yakunin, S.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Yan, J.

J. Yan, W. Qiu, G. Wu, P. Heremans, and H. Chen, “Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells,” J. Mater. Chem. A 6, 11063–11077 (2018).
[Crossref]

Yan, R.

S. Kim and R. Yan, “Recent developments in photonic, plasmonic and hybrid nanowire waveguides,” J. Mater. Chem. C 6, 11795–11816 (2018).
[Crossref]

Yan, Y.

Yang, F.

S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, and X. Liu, “Growth of metal halide perovskite materials,” Sci. China Mater. 63, 1438–1463 (2020).
[Crossref]

Yang, H.

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

Yang, M.

Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu, “Scalable fabrication of perovskite solar cells,” Nat. Rev. Mater. 3, 18017 (2018).
[Crossref]

K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, and J. J. Berry, “Defect tolerance in methylammonium lead triiodide perovskite,” ACS Energy Lett. 1, 360–366 (2016).
[Crossref]

Yang, P.

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Yang, R. X.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Yang, S.

L.-C. Chen, C.-H. Tien, Z.-L. Tseng, Y.-S. Dong, and S. Yang, “Influence of PMMA on all-inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix,” Materials 12, 985 (2019).
[Crossref]

Yang, W.

B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
[Crossref]

Yang, Y. D.

H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array,” Laser Photon. Rev. 7, 281–288 (2013).
[Crossref]

Yang, Z.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, and S. Liu, “Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector,” J. Mater. Chem. C 7, 1584–1591 (2019).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Yantara, N.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

Yao, J.

H. Dong, C. Zhang, X. Liu, J. Yao, and Y. S. Zhao, “Materials chemistry and engineering in metal halide perovskite lasers,” Chem. Soc. Rev. 49, 951–982 (2020).
[Crossref]

H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018).
[Crossref]

M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018).
[Crossref]

H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
[Crossref]

W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, and Y. S. Zhao, “Controlling the cavity structures of two‐photon‐pumped perovskite microlasers,” Adv. Mater. 28, 4040–4046 (2016).
[Crossref]

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Ye, H.

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, and S. Liu, “Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector,” J. Mater. Chem. C 7, 1584–1591 (2019).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Yeow, E. K.

G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
[Crossref]

Yin, W.

X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
[Crossref]

Ying, Y.

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47, 656–666 (2014).
[Crossref]

Young, J.

C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors,” Chem. Mater. 28, 2852–2867 (2016).
[Crossref]

Yu, G.

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

Yu, H.

W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019).
[Crossref]

Yu, Q.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
[Crossref]

Yu, W. W.

X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
[Crossref]

Yu, Y.

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science 349, 1518–1521 (2015).
[Crossref]

Yuan, B.

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

Yuan, K.

W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019).
[Crossref]

Yuan, L.

S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou, and L. Huang, “Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites,” Nat. Commun. 11, 664 (2020).
[Crossref]

Yuan, M.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Yuasa, T.

T. Kondo, T. Azuma, T. Yuasa, and R. Ito, “Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4,” Solid State Commun. 105, 253–255 (1998).
[Crossref]

Yulin, A.

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Zakhidov, A.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Zamfirescu, M.

G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett. 81, 412–414 (2002).
[Crossref]

Zappe, H.

S. Noda, F. T. Mahi, and H. Zappe, “Photonic crystals,” in Reference Module in Materials Science and Materials Engineering (Elsevier, 2016), pp. 1–11.
[Crossref]

Zeng, H.

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals,” Adv. Func. Mater. 27, 1605088 (2017).
[Crossref]

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Zeng, Y.

Zhai, J.

D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei, and S. Jin, “Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics,” Nano Res. 10, 2117–2129 (2017).
[Crossref]

Zhai, W.

W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019).
[Crossref]

Zhang, B.

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Zhang, C.

H. Dong, C. Zhang, X. Liu, J. Yao, and Y. S. Zhao, “Materials chemistry and engineering in metal halide perovskite lasers,” Chem. Soc. Rev. 49, 951–982 (2020).
[Crossref]

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

Zhang, D.

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

Zhang, H.

Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, and J. Xu, “Chiral perovskites: promising materials toward next‐generation optoelectronics,” Small 15, 1902237 (2019).
[Crossref]

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018).
[Crossref]

H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
[Crossref]

H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018).
[Crossref]

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

Zhang, Q.

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, and X. Liu, “Perovskite quantum dot lasers,” InfoMat 2, 170–183 (2020).
[Crossref]

Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, and Q. Zhang, “Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton,” Nano Lett. 20, 1023–1032 (2020).
[Crossref]

W. Du, S. Zhang, Q. Zhang, and X. Liu, “Recent progress of strong exciton-photon coupling in lead halide perovskites,” Adv. Mater. 31, 1804894 (2019).
[Crossref]

Y. Mi, Y. Zhong, Q. Zhang, and X. Liu, “Continuous‐wave pumped perovskite lasers,” Adv. Opt. Mater. 7, 1900544 (2019).
[Crossref]

W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
[Crossref]

C. Li, Z. Liu, Q. Shang, and Q. Zhang, “Surface‐plasmon‐assisted metal halide perovskite small lasers,” Adv. Opt. Mater. 7, 1900279 (2019).
[Crossref]

X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, “Advances in small perovskite‐based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Zhang, S.

Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, and Q. Zhang, “Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton,” Nano Lett. 20, 1023–1032 (2020).
[Crossref]

S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
[Crossref]

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, and H. Chang, “Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications,” Energy Environ. Mater. (2020).
[Crossref]

W. Du, S. Zhang, Q. Zhang, and X. Liu, “Recent progress of strong exciton-photon coupling in lead halide perovskites,” Adv. Mater. 31, 1804894 (2019).
[Crossref]

W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
[Crossref]

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

Zhang, T.

C.-K. Lim, Q. Li, T. Zhang, T. Thomay, A. N. Cartwright, M. T. Swihart, and P. N. Prasad, “Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker,” Sol. Energy Mater. Sol. Cells 176, 30–35 (2018).
[Crossref]

Zhang, W.

H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, and H. Chang, “Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications,” Energy Environ. Mater. (2020).
[Crossref]

W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, and Y. S. Zhao, “Controlling the cavity structures of two‐photon‐pumped perovskite microlasers,” Adv. Mater. 28, 4040–4046 (2016).
[Crossref]

Zhang, X.

X. Zhang, H. Shi, H. Dai, X. Zhang, X. W. Sun, and Z. Zhang, “Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet,” ACS Appl. Mater. Interfaces 12, 5081–5089 (2020).
[Crossref]

X. Zhang, H. Shi, H. Dai, X. Zhang, X. W. Sun, and Z. Zhang, “Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet,” ACS Appl. Mater. Interfaces 12, 5081–5089 (2020).
[Crossref]

X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
[Crossref]

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Zhang, Y.

Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, and J. Xu, “Chiral perovskites: promising materials toward next‐generation optoelectronics,” Small 15, 1902237 (2019).
[Crossref]

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, and S. Liu, “Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector,” J. Mater. Chem. C 7, 1584–1591 (2019).
[Crossref]

X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
[Crossref]

Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, and Q. Bao, “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Mater. Sci. 1, 268–287 (2019).
[Crossref]

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Zhang, Z.

X. Zhang, H. Shi, H. Dai, X. Zhang, X. W. Sun, and Z. Zhang, “Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet,” ACS Appl. Mater. Interfaces 12, 5081–5089 (2020).
[Crossref]

H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018).
[Crossref]

H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
[Crossref]

Zhao, G.

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Zhao, J.

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

Zhao, K.

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Zhao, L.

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
[Crossref]

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, “Advances in small perovskite‐based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Zhao, S.

W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019).
[Crossref]

Zhao, Y.

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22, 23552–23564 (2014).
[Crossref]

H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, and R. P. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Zhao, Y. S.

H. Dong, C. Zhang, X. Liu, J. Yao, and Y. S. Zhao, “Materials chemistry and engineering in metal halide perovskite lasers,” Chem. Soc. Rev. 49, 951–982 (2020).
[Crossref]

W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, and Y. S. Zhao, “Controlling the cavity structures of two‐photon‐pumped perovskite microlasers,” Adv. Mater. 28, 4040–4046 (2016).
[Crossref]

Zheng, Y.

X. Han, Y. Zheng, S. Chai, S. Chen, and J. Xu, “2D organic-inorganic hybrid perovskite materials for nonlinear optics,” Nanophotonics 9, 38 (2020).
[Crossref]

Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, and W. Huang, “Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application,” J. Mater. Chem. A 7, 13860–13872 (2019).
[Crossref]

Zhong, H.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Zhong, X.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Zhong, Y.

S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, and X. Liu, “Growth of metal halide perovskite materials,” Sci. China Mater. 63, 1438–1463 (2020).
[Crossref]

Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
[Crossref]

Y. Mi, Y. Zhong, Q. Zhang, and X. Liu, “Continuous‐wave pumped perovskite lasers,” Adv. Opt. Mater. 7, 1900544 (2019).
[Crossref]

Zhou, Z.

C. Lan, Z. Zhou, R. Wei, and J. C. Ho, “Two-dimensional perovskite materials: from synthesis to energy-related applications,” Mater. Today Energy 11, 61–82 (2019).
[Crossref]

Zhu, H.

Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, and S. Jin, “Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties,” Nat. Rev. Mater. 4, 169–188 (2019).
[Crossref]

Zhu, J.

S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, and X. Liu, “Growth of metal halide perovskite materials,” Sci. China Mater. 63, 1438–1463 (2020).
[Crossref]

Zhu, K.

Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu, “Scalable fabrication of perovskite solar cells,” Nat. Rev. Mater. 3, 18017 (2018).
[Crossref]

K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, and J. J. Berry, “Defect tolerance in methylammonium lead triiodide perovskite,” ACS Energy Lett. 1, 360–366 (2016).
[Crossref]

Zhu, T.

Z. Guo, X. Wu, T. Zhu, X. Zhu, and L. Huang, “Electron-phonon scattering in atomically thin 2D perovskites,” ACS Nano 10, 9992–9998 (2016).
[Crossref]

Zhu, X.

A. P. Schlaus, M. S. Spencer, and X. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019).
[Crossref]

Z. Guo, X. Wu, T. Zhu, X. Zhu, and L. Huang, “Electron-phonon scattering in atomically thin 2D perovskites,” ACS Nano 10, 9992–9998 (2016).
[Crossref]

Zhu, X. Y.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Zhu, X.-Y.

Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, and S. Jin, “Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties,” Nat. Rev. Mater. 4, 169–188 (2019).
[Crossref]

T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
[Crossref]

Zou, B.

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

Zou, Y.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Zulehner, W.

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45, 8989–8994 (1992).
[Crossref]

Zuo, P.

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

Acc. Chem. Res. (3)

M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
[Crossref]

A. P. Schlaus, M. S. Spencer, and X. Zhu, “Light-matter interaction and lasing in lead halide perovskites,” Acc. Chem. Res. 52, 2950–2959 (2019).
[Crossref]

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47, 656–666 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

X. Zhang, H. Shi, H. Dai, X. Zhang, X. W. Sun, and Z. Zhang, “Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet,” ACS Appl. Mater. Interfaces 12, 5081–5089 (2020).
[Crossref]

ACS Energy Lett. (1)

K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, and J. J. Berry, “Defect tolerance in methylammonium lead triiodide perovskite,” ACS Energy Lett. 1, 360–366 (2016).
[Crossref]

ACS Nano (5)

R. A. DeCrescent, N. R. Venkatesan, C. J. Dahlman, R. M. Kennard, M. L. Chabinyc, and J. A. Schuller, “Optical constants and effective-medium origins of large optical anisotropies in layered hybrid organic/inorganic perovskites,” ACS Nano 13, 10745–10753 (2019).
[Crossref]

Z. Guo, X. Wu, T. Zhu, X. Zhu, and L. Huang, “Electron-phonon scattering in atomically thin 2D perovskites,” ACS Nano 10, 9992–9998 (2016).
[Crossref]

J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, and Q. Xiong, “Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite,” ACS Nano 12, 8382–8389 (2018).
[Crossref]

L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, “Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells,” ACS Nano 11, 10834–10843 (2017).
[Crossref]

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

ACS Photon. (4)

W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity,” ACS Photon. 5, 2051–2059 (2018).
[Crossref]

Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, and Z. Wang, “Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid,” ACS Photon. 7, 454–462 (2020).
[Crossref]

S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, and J. Shi, “Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity,” ACS Photon. 7, 327–337 (2020).
[Crossref]

A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, and G. Gigli, “Tunable out-of-plane excitons in 2D single-crystal perovskites,” ACS Photon. 5, 4179–4185 (2018).
[Crossref]

Adv. Func. Mater. (2)

M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, “Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites,” Adv. Func. Mater. 28, 1707006 (2018).
[Crossref]

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals,” Adv. Func. Mater. 27, 1605088 (2017).
[Crossref]

Adv. Funct. Mater. (1)

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Adv. Mater. (7)

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, “Perovskite microdisk microlasers self-assembled from solution,” Adv. Mater. 27, 3405–3410 (2015).
[Crossref]

W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, and Y. S. Zhao, “Controlling the cavity structures of two‐photon‐pumped perovskite microlasers,” Adv. Mater. 28, 4040–4046 (2016).
[Crossref]

W. Du, S. Zhang, Q. Zhang, and X. Liu, “Recent progress of strong exciton-photon coupling in lead halide perovskites,” Adv. Mater. 31, 1804894 (2019).
[Crossref]

Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, and M. Li, “Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness,” Adv. Mater. 31, 1903030 (2019).
[Crossref]

Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, “Structure‐tuned lead halide perovskite nanocrystals,” Adv. Mater. 28, 566–573 (2016).
[Crossref]

H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “2D Ruddlesden-Popper perovskites microring laser array,” Adv. Mater. 30, 1706186 (2018).
[Crossref]

Adv. Opt. Mater. (9)

D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, and S. F. Shi, “Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection,” Adv. Opt. Mater. 7, 1900039 (2019).
[Crossref]

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires,” Adv. Opt. Mater. 6, 1701032 (2018).
[Crossref]

L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, “Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites,” Adv. Opt. Mater. 8, 2000176 (2020).
[Crossref]

E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, “Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites,” Adv. Opt. Mater. 6, 1800616 (2018).
[Crossref]

B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, and Q. Gong, “Plasmonic‐functionalized broadband perovskite photodetector,” Adv. Opt. Mater. 6, 1701271 (2018).
[Crossref]

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Y. Mi, Y. Zhong, Q. Zhang, and X. Liu, “Continuous‐wave pumped perovskite lasers,” Adv. Opt. Mater. 7, 1900544 (2019).
[Crossref]

C. Li, Z. Liu, Q. Shang, and Q. Zhang, “Surface‐plasmon‐assisted metal halide perovskite small lasers,” Adv. Opt. Mater. 7, 1900279 (2019).
[Crossref]

Adv. Sci. (1)

X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, “Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications,” Adv. Sci. 6, 1900941 (2019).
[Crossref]

Angew. Chem. (1)

H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, and H. Fu, “A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells,” Angew. Chem. 130, 7874–7878 (2018).
[Crossref]

Appl. Phys. Lett. (5)

G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett. 81, 412–414 (2002).
[Crossref]

A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
[Crossref]

L. K. Van Vugt, B. Piccione, and R. Agarwal, “Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion,” Appl. Phys. Lett. 97, 061115 (2010).
[Crossref]

W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, “Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature,” Appl. Phys. Lett. 114, 131107 (2019).
[Crossref]

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89, 171110 (2006).
[Crossref]

Appl. Sci. (1)

A. Kooijman, L. A. Muscarella, and R. M. Williams, “Perovskite thin film materials stabilized and enhanced by zinc (II) doping,” Appl. Sci. 9, 1678 (2019).
[Crossref]

Chem. Commun. (1)

M.-G. La-Placa, G. Longo, A. Babaei, L. Martínez-Sarti, M. Sessolo, and H. J. Bolink, “Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control,” Chem. Commun. 53, 8707–8710 (2017).
[Crossref]

Chem. Mater. (1)

C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors,” Chem. Mater. 28, 2852–2867 (2016).
[Crossref]

Chem. Rev. (2)

L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, “Perovskites for next-generation optical sources,” Chem. Rev. 119, 7444–7477 (2019).
[Crossref]

J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016).
[Crossref]

Chem. Sci. (1)

M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, and H. I. Karunadasa, “Structural origins of broadband emission from layered Pb-Br hybrid perovskites,” Chem. Sci. 8, 4497–4504 (2017).
[Crossref]

Chem. Soc. Rev. (2)

H. Dong, C. Zhang, X. Liu, J. Yao, and Y. S. Zhao, “Materials chemistry and engineering in metal halide perovskite lasers,” Chem. Soc. Rev. 49, 951–982 (2020).
[Crossref]

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46, 5204–5236 (2017).
[Crossref]

Chin. Phys. B (1)

Z. Liu, “Research progress of low-dimensional metal halide perovskites for lasing applications,” Chin. Phys. B 27, 114209 (2018).
[Crossref]

Energy Environ. Mater. (1)

H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, and H. Chang, “Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications,” Energy Environ. Mater. (2020).
[Crossref]

IEEE J. Quantum Electron. (1)

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978–987 (2000).
[Crossref]

InfoMat (1)

J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, and X. Liu, “Perovskite quantum dot lasers,” InfoMat 2, 170–183 (2020).
[Crossref]

J. Am. Chem. Soc. (4)

J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, and M. D. Fayer, “Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy,” J. Am. Chem. Soc. 140, 9882–9890 (2018).
[Crossref]

D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “2D homologous perovskites as light-absorbing materials for solar cell applications,” J. Am. Chem. Soc. 137, 7843–7850 (2015).
[Crossref]

D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, “Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation,” J. Am. Chem. Soc. 139, 39–42 (2017).
[Crossref]

D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, “Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites,” J. Am. Chem. Soc. 138, 13798–13801 (2016).
[Crossref]

J. Cryst. Growth (1)

R. André, D. Heger, L. S. Dang, and Y. M. d’Aubigné, “Spectroscopy of polaritons in CdTe-based microcavities,” J. Cryst. Growth 184, 758–762 (1998).
[Crossref]

J. Lumin. (1)

T. Dammak, S. Elleuch, H. Bougzhala, A. Mlayah, R. Chtourou, and Y. Abid, “Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6,” J. Lumin. 129, 893–897 (2009).
[Crossref]

J. Mater. Chem. A (2)

Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, and W. Huang, “Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application,” J. Mater. Chem. A 7, 13860–13872 (2019).
[Crossref]

J. Yan, W. Qiu, G. Wu, P. Heremans, and H. Chen, “Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells,” J. Mater. Chem. A 6, 11063–11077 (2018).
[Crossref]

J. Mater. Chem. C (4)

D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. F. I. Morral, and F. Jaramillo, “Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10thin films,” J. Mater. Chem. C 6, 6216–6221 (2018).
[Crossref]

Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, and S. Liu, “Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector,” J. Mater. Chem. C 7, 1584–1591 (2019).
[Crossref]

D. Marongiu, M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “The role of excitons in 3D and 2D lead halide perovskites,” J. Mater. Chem. C 7, 12006–12018 (2019).
[Crossref]

S. Kim and R. Yan, “Recent developments in photonic, plasmonic and hybrid nanowire waveguides,” J. Mater. Chem. C 6, 11795–11816 (2018).
[Crossref]

J. Phys. Chem. Lett. (2)

L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, “Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots,” J. Phys. Chem. Lett. 10, 3248–3253 (2019).
[Crossref]

T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, “Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites,” J. Phys. Chem. Lett. 7, 2258–2263 (2016).
[Crossref]

Laser Photon. Rev. (1)

H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array,” Laser Photon. Rev. 7, 281–288 (2013).
[Crossref]

Light Sci. Appl. (1)

Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, “Strong light-matter interaction in ZnO microcavities,” Light Sci. Appl. 2, e76 (2013).
[Crossref]

Mater. Today Energy (1)

C. Lan, Z. Zhou, R. Wei, and J. C. Ho, “Two-dimensional perovskite materials: from synthesis to energy-related applications,” Mater. Today Energy 11, 61–82 (2019).
[Crossref]

Materials (1)

L.-C. Chen, C.-H. Tien, Z.-L. Tseng, Y.-S. Dong, and S. Yang, “Influence of PMMA on all-inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix,” Materials 12, 985 (2019).
[Crossref]

Nano Lett. (7)

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, “Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett. 20, 6636–6646 (2020).
[Crossref]

Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, and Q. Zhang, “Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton,” Nano Lett. 20, 1023–1032 (2020).
[Crossref]

R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano Lett. 17, 3982–3988 (2017).
[Crossref]

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, and H. S. Nguyen, “Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces,” Nano Lett. 20, 2113–2119 (2020).
[Crossref]

C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, and R. Sankar, “Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals,” Nano Lett. 18, 3221–3228 (2018).
[Crossref]

Nano Mater. Sci. (1)

Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, and Q. Bao, “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Mater. Sci. 1, 268–287 (2019).
[Crossref]

Nano Res. (1)

D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei, and S. Jin, “Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics,” Nano Res. 10, 2117–2129 (2017).
[Crossref]

Nano-Micro Lett. (1)

J. Bao and V. G. Hadjiev, “Origin of luminescent centers and edge states in low-dimensional lead halide perovskites: controversies, challenges and instructive approaches,” Nano-Micro Lett. 11, 26 (2019).
[Crossref]

Nanomaterials (1)

S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, and J. Kim, “Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films,” Nanomaterials 10, 1032 (2020).
[Crossref]

Nanophotonics (2)

X. Han, Y. Zheng, S. Chai, S. Chen, and J. Xu, “2D organic-inorganic hybrid perovskite materials for nonlinear optics,” Nanophotonics 9, 38 (2020).
[Crossref]

V. Ardizzone, L. De Marco, M. De Giorgi, L. Dominici, D. Ballarini, and D. Sanvitto, “Emerging 2D materials for room-temperature polaritonics,” Nanophotonics 8, 1547–1558 (2019).
[Crossref]

Nanoscale (2)

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, and X. Hu, “Resolving the optical anisotropy of low-symmetry 2D materials,” Nanoscale 10, 8329–8337 (2018).
[Crossref]

W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, “Unveiling lasing mechanism in CsPbBr3 microsphere cavities,” Nanoscale 11, 3145–3153 (2019).
[Crossref]

Nanoscale Res. Lett. (1)

Y.-H. Chang, J.-C. Lin, Y.-C. Chen, T.-R. Kuo, and D.-Y. Wang, “Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties,” Nanoscale Res. Lett. 13, 247 (2018).
[Crossref]

Nat. Commun. (8)

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7, 10896 (2016).
[Crossref]

J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, “Scaling law for excitons in 2D perovskite quantum wells,” Nat. Commun. 9, 2254 (2018).
[Crossref]

S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou, and L. Huang, “Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites,” Nat. Commun. 11, 664 (2020).
[Crossref]

Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. Liu, “Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors,” Nat. Commun. 9, 5302 (2018).
[Crossref]

P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, and R. D. Schaller, “Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites,” Nat. Commun. 9, 2019 (2018).
[Crossref]

G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).
[Crossref]

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. G. Lehmann, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light-matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Nat. Electron. (1)

J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, and X. Zhang, “Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors,” Nat. Electron. 1, 404–410 (2018).
[Crossref]

Nat. Mater. (5)

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[Crossref]

X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, and O. Bushuyev, “Electron-phonon interaction in efficient perovskite blue emitters,” Nat. Mater. 17, 550–556 (2018).
[Crossref]

F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, and A. R. S. Kandada, “Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites,” Nat. Mater. 18, 349–356 (2019).
[Crossref]

K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, and Z. Chen, “Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation,” Nat. Mater. 17, 908–914 (2018).
[Crossref]

D. Sanvitto and S. Kéna-Cohen, “The road towards polaritonic devices,” Nat. Mater. 15, 1061–1073 (2016).
[Crossref]

Nat. Nanotechnol. (3)

M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. 11, 872–877 (2016).
[Crossref]

D. O’carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol. 2, 180–184 (2007).
[Crossref]

B. Piccione, C.-H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7, 640–645 (2012).
[Crossref]

Nat. Photonics (4)

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8, 506–514 (2014).
[Crossref]

B. R. Sutherland and E. H. Sargent, “Perovskite photonic sources,” Nat. Photonics 10, 295–302 (2016).
[Crossref]

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

Nat. Rev. Mater. (3)

Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, and S. Jin, “Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties,” Nat. Rev. Mater. 4, 169–188 (2019).
[Crossref]

G. Grancini and M. K. Nazeeruddin, “Dimensional tailoring of hybrid perovskites for photovoltaics,” Nat. Rev. Mater. 4, 4–22 (2019).
[Crossref]

Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu, “Scalable fabrication of perovskite solar cells,” Nat. Rev. Mater. 3, 18017 (2018).
[Crossref]

Nature (2)

E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, “Two-dimensional halide perovskite lateral epitaxial heterostructures,” Nature 580, 614–620 (2020).
[Crossref]

H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells,” Nature 536, 312–316 (2016).
[Crossref]

New J. Phys. (1)

G. Lanty, A. Brehier, R. Parashkov, J.-S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” New J. Phys. 10, 065007 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, “Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films,” Phys. Chem. Chem. Phys. 18, 14701–14708 (2016).
[Crossref]

Phys. Rep. (1)

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

Phys. Rev. B (6)

M. Litinskaya, “Exciton polariton kinematic interaction in crystalline organic microcavities,” Phys. Rev. B 77, 155325 (2008).
[Crossref]

H. Mathieu, Y. Chen, J. Camassel, J. Allegre, and D. Robertson, “Excitons and polaritons in InP,” Phys. Rev. B 32, 4042–4051 (1985).
[Crossref]

M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, and A. Kavokin, “Polariton-polariton interaction constants in microcavities,” Phys. Rev. B 82, 075301 (2010).
[Crossref]

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57, 12428–12434 (1998).
[Crossref]

W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, and J. J. Baumberg, “Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors,” Phys. Rev. B 91, 161303 (2015).
[Crossref]

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45, 8989–8994 (1992).
[Crossref]

Phys. Rev. Lett. (2)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, and R. P. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Phys. Rev. Mater. (1)

S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, and A. R. S. Kandada, “Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites,” Phys. Rev. Mater. 2, 064605 (2018).
[Crossref]

Phys. Solid State (1)

G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. Kaliteevski, “Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities,” Phys. Solid State 41, 1223–1238 (1999).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proc. Natl. Acad. Sci. USA 116, 58–66 (2019).
[Crossref]

Proc. R. Soc. London Series A (1)

M. N. Saha and A. Fowler, “On a physical theory of stellar spectra,” Proc. R. Soc. London Series A 99, 135–153 (1921).
[Crossref]

Sci. Adv. (1)

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, and D. Gerace, “Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature,” Sci. Adv. 5, eaav9967 (2019).
[Crossref]

Sci. China Mater. (1)

S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, and X. Liu, “Growth of metal halide perovskite materials,” Sci. China Mater. 63, 1438–1463 (2020).
[Crossref]