Abstract

The year 2019 marks the 10th anniversary of the first report of ultrafast fiber laser mode-locked by graphene. This result has had an important impact on ultrafast laser optics and continues to offer new horizons. Herein, we mainly review the linear and nonlinear photonic properties of two-dimensional (2D) materials, as well as their nonlinear applications in efficient passive mode-locking devices and ultrafast fiber lasers. Initial works and significant progress in this field, as well as new insights and challenges of 2D materials for ultrafast fiber lasers, are reviewed and analyzed.

© 2019 Chinese Laser Press

1. INTRODUCTION

Ultrafast fiber lasers (UFLs), which deliver pulses with extremely short durations (e.g., on the order of femtoseconds or picoseconds), have been proved as the most powerful tool for various and crucial applications such as strong-field physics, nonlinear optics, precision metrology, and ultrafine material processing. One distinguishing property of rare-earth-doped fibers is the large gain bandwidth (i.e., tens of nanometers), making possible the generation of ultrafast mode-locked laser pulses (100  fs). In order to achieve the mode-locking response, cavity longitudinal modes must be forced to lock together by either active electro-optic modulators or passive saturable absorbers (SAs). Comparatively, a passively mode-locked fiber laser using a real SA has the significant advantages of self-starting operation, low cost, high stability, and being maintenance-free.

Currently, the most prevalent absorber technology is the molecular beam epitaxy (MBE)-grown semiconductor SA mirror (SESAM) [1], which is widely applied in semiconductor lasers, UFLs, and solid-state lasers. However, SESAM has its own limitations, including long recovery time (picosecondlevel), narrowband operation (<100  nm), sophisticated fabrication, and a low damage threshold. Therefore, the pursuit of an ideal SA, the key module of a passively mode-locked fiber laser, has long been the goal of scientific researchers.

Two-dimensional (2D) materials, also denoted as atomic layered materials, define a new material morphology where single or few layers of atoms gather together in one direction, while in two other directions, they keep uniform and crystal-like expansions. With the reduction in physical dimension, 2D materials bring totally different energy band structures when compared to their bulk states, and possess unique optical and electronic characteristics [25] that have been employed in applications of microelectronics devices [6], biomedicine [7], energy [8], and chemistry [9]. As summarized in this review, one of the most exciting things is that they could be used as passive SAs, the mode-lockers for UFLs. The origin of saturable absorption in 2D materials is similar to SESAM, in that the absorption of injected light can be saturated under strong excitation due to the depletion of final states (i.e., Pauli blocking).

Ignited by Bao et al. [10] and Sun et al. [11,12], who reported the initial UFLs mode-locked by graphene in 2009, a rapid exploration of the 2D material family as efficient fiber SAs has occurred. The most widely investigated 2D materials in this field are graphene [13,14], topological insulators (TIs) [15,16], transition metal dichalcogenides (TMDs) [17,18], and black phosphorus (BP) [19,20]. In addition, some newly emerging 2D materials continue to join the 2D family, like MXenes [21,22], bismuthene [23], and antimonene [24], all reported recently. The profusion of 2D materials together with diverse fiber integration methods brings quite a great flexibility in fabricating fiber SAs with unique and controllable parameters, allowing for broad bandwidth, ultrafast recovery, high damage threshold, low saturable influence, etc. In combination with rich rare-earth-doped fiber lasers in different wavelength regions, the development of UFLs mode-locked by 2D nanomaterials has been greatly facilitated over the last decade [2529].

In this paper, we cover the state of art of UFLs mode-locked by 2D materials. In Section 2, a brief introduction to dominant 2D materials is made, including their atomic structures, energy band structures, linear and nonlinear absorptions, carrier lifetimes, etc. Related experimental approaches for fabricating these 2D materials and fiber SAs are also mentioned. In Section 3, the historical first demonstrations of UFLs mode-locked by 2D materials are presented. In Section 4, some important and interesting progress in recent years is summarized, mainly focusing on pulse width, repetition rate, and stability characteristics. In Section 5, new insights and current challenges regarding 2D materials are discussed.

2. 2D MATERIAL FAMILY FOR UFLs

In the fields of ultrafast photonics, 2D materials are characterized by their broadband saturable absorptions [3032], ultrafast recovery [3335], large nonlinear refractive indices [36,37], and potential as outstanding mode-lockers for UFLs. What follows is a brief overview of 2D materials’ atomic structures, bandgap structures, and recovery times. Table 1 shows a brief comparison of the 2D material family. Later in this section, corresponding material preparation and fiber integration techniques are also introduced.

Tables Icon

Table 1. 2D Material Family for UFLsa,b

A. 2D Materials

1. Graphene

Graphene, viewed as the pioneer of 2D materials, is a single layer of carbon atoms arranged in a 2D honeycomb lattice [14], facilitating great potential in the application of UFLs. Benefiting from its gapless Dirac cone [13], monolayer graphene is calculated to possess about 2.3% absorption of incident visible to infrared (IR) light. Graphene is special in that it enjoys ultrashort recovery time (<200  fs), low saturable absorption (10  MW/cm2 [38]), great relative modulation depth (>60% per layer [10]), and wavelength-independent operation (ranging from the visible to the terahertz), allowing it to operate efficiently for the generation of broadband ultrafast laser pulses.

2. TIs

TIs define a new kind of material with nontrivial symmetry-protected topological order that behaves as insulators in their interior but whose surfaces contain gapless conducting states [15,16,50]. A small indirect bulk bandgap of 0.2–0.3 eV gives TIs a strong graphene-like broadband nonlinear response from the visible to the mid-IR. The lifetime of their phonon-induced carriers is short of several picoseconds, also making them useful for ultrafast light modulators. Three kinds of TIs, namely, Sb2Te3, Bi2Se3, and Bi2Te3, are the most widely used TI SAs.

3. TMDs

TMDs are a class of more than 40 different semiconductors that share a formula of MX2, where M stands for a transition metal (e.g., Mo, W, Ti, Nb) and X stands for a chalcogen (e.g., S, Se, or Te) [51,52]. In a TMD monolayer, the single transition metal layer is sandwiched between the two chalcogen layers, showing graphene-like layered structure. As for different monolayer TMDs, they have energy bandgaps varying from 1 to 2.5 eV. Surprisingly, the subbandgaps created by the edge states of TMDs allow efficient absorptions of light with photon energy much lower than their normal bandgaps [53,54]. Meanwhile, the short recovery times of TMDs are several picoseconds, which are also fast enough for ultrafast light modulation. For example, MoS2, MoTe2, WSe2, and WS2 have been widely used for UFLs in 1.5 and 2 μm wavelength regions.

4. BP

BP is a thermodynamically stable allotrope of phosphorus at room temperature [19,55]. Like graphene, each phosphorus atom in BP is connected to three adjacent phosphorus atoms, forming a stable six-atom linked ring structure. The difference is that the BP structure is puckered, which reduces its symmetry and brings an angle-dependent nonlinearity [56]. It has tunable direct bandgaps varying from 0.35 eV (bulk) to 2 eV (monolayer), indicating its broadband nonlinear response deep into the mid-IR [57,45], which has been widely used for UFLs as well [58,59]. Research shows that nanosheet BP has a wavelength-dependent recovery time of 0.36 to 1.36 ps excited with photon energies from 1.55 to 0.61 eV [60]. It should be noted that BP would be oxidized when exposed in ambient conditions and needs encapsulation for scaling its long-term stability [61].

5. MXenes

MXenes represent a new class of 2D transition metal carbides, carbonitrides, or nitrides whose chemical formula is Mn+1XnTx(n=1-3). Here, M stands for transition metals (Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, etc.), X is carbide and/or nitride, and Tx represents surface terminations (F, O, OH, etc.) [22,62]. Few-layer Ti3C2Tx has an indirect energy bandgap of <0.2  eV and a low absorption of 1%/nm. Stacking of 2D MXene materials generally occurs through van der Waals interaction without internal surface termination, as in the cases of graphene, phosphorene, and TMDs. A recent study showed that the main features observed in MXene monolayers were well conserved in stacked ones [47], indicating that well-functioning fiber SAs could be made using MXenes, thus avoiding the troublesome processes of monolayer dispersion.

6. Bismuthene

Due to its distinct electronic and mechanical properties, as well as its strong stability, bismuthene has attracted tremendous research interest [23,48]. Recent research shows that the layer-dependent optical bandgap of beta-bismuthene ranges from almost 0 to 0.55 eV, suggesting that it is a promising broadband optical material from the near-IR to the terahertz regions [24]. The short recovery time of bismuthene is 2.8 ps, which also indicates it is a potential ultrafast SA.

7. Other Materials

The aforementioned 2D materials offer distinct, yet complementary properties and hence, new opportunities for optical applications in UFLs [6365]. But these are not enough, since better SAs with enhanced optical properties, such as much shorter carrier lifetimes, higher damage thresholds, and larger modulation depths are always desired. On the one hand, explorations for new 2D materials will never stop. On the other hand, modification of existing materials also provides an opportunity. The possibility of combining different 2D materials to form van der Waals heterostructures offers an exciting prospect for a wide range of new engineerable photonic devices [66,67]. This overcomes the intrinsic drawbacks of single materials, while enhancing performance greatly [68,69]. Recently, several UFLs mode-locked by heterostructure SAs have been reported [70,71].

B. Preparation and Characterization of 2D Materials

To summarize, there are many physical or chemical techniques used to obtain 2D materials, which can be classified into two categories, namely, top-down exfoliation and bottom-up growth [72]. Typical approaches regarding exfoliation are mechanical exfoliation (ME) [73], liquid-phase exfoliation (LPE) [74], and ion-intercalation exfoliation [75]. Meanwhile, chemical vapor deposition (CVD) [76], pulsed laser deposition (PLD) [77], pulsed magnetron sputtering (PMS) [78], and MBE [28] are representative growth techniques.

At the same time, plenty of measurement techniques have been introduced to characterize 2D materials. To analyze the atomic composition and structural characteristics, the X-ray diffractometer, Raman scattering spectroscopy, and photoluminescence measurements are often used. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and atomic resolution scanning transmission electron microscopy (STEM) are used to characterize the morphology. With Z-scan or P-scan measurements, it is possible to measure the third-order nonlinear coefficients and saturable absorptions directly. Pump–probe spectroscopy is used to analyze the carrier lifetime. Recently, both Z-scan [36] and pump–probe spectroscopy [79] have been shifted to mid-IR regions. Micro pump–probe spectroscopy has also been promoted as an efficient tool to investigate 2D materials’ carrier transportation on the scale of micrometers [80,81].

C. Fiber Integration with 2D Materials

To fabricate SAs for all-fiber mode-locked UFLs, 2D materials must be transferred [82] or deposited [83] onto optical fibers, achieving sufficient interaction with intracavity laser light. Meanwhile, 2D materials could be mounted onto a transparent plate or a high-reflectivity mirror. In these cases, UFLs with non-all-fiber formats could also be established with free-space couplings. Both polarization-maintaining (PM) and non-PM fibers could be used for building these UFLs with 2D materials. Figure 1 shows some popular fiber coupling schemes. Briefly, these couplings could be summarized into two kinds of schemes: transmission coupling [Figs. 1(a)1(c)] and evanescent-wave coupling [Figs. 1(d)1(g)].

 figure: Fig. 1.

Fig. 1. Fiber integration with 2D materials. (a)–(c) Transmission coupling; (d)–(g) evanescent-wave coupling; 2D materials are deposited or transferred on (a) fiber ends, (b) transparent plate, (c) reflection mirror, (d) tapered fiber, (e) side-polished fiber, (f) photonic crystal fiber, and (g) cladding-etched fiber.

Download Full Size | PPT Slide | PDF

1. Transmission Coupling

As shown in Fig. 1(a), the most common transmission coupling sandwiches SA materials between two fiber ends directly. Large area uniform 2D materials like ME-prepared graphene, CVD-grown graphene or TMDs, and MBE-grown TIs could be easily integrated with transferring methods [82]. Monolayer or few-layer nanosheet materials embedded in thin organic polyvinyl alcohol (PVA)/polymethyl methacrylate (PMMA)/polydimethylsiloxane (PDMS) films could be sandwiched too. For nanosheets in solutions, direct optical heat deposition to a fiber end is often used. In general, these methods are simple, and commercial fiber connector/physical contact (FC/PC) or fiber connector/angled physical contact (FC/APC) could be used directly. Figures 1(b) and 1(c) depict the cases when 2D materials are transferred or deposited onto a transparent plate or a high-reflectivity mirror, respectively. Besides, discrete optical components such as lenses must be adopted, resulting in free-space coupling with fibers. It should be noted that transmission coupling does have its disadvantages, such as a low damage threshold.

2. Evanescent-Wave Coupling

To scale the damage threshold of fiber SAs, evanescent-wave coupling usually provides a better choice. In this condition, the fiber-guided laser light in the core originally would leak out and interact with 2D materials on the side. The main four evanescent-wave couplings are sketched in Fig. 1, including tapered fiber [84], side-polished fiber [85], photonic crystal fiber [86], and cladding-etched fiber [87]. Both side-polished fiber [88] and photonic crystal fiber [89] have already been demonstrated to support high-power mode-locking operations.

After integration, a fiber SA component should be characterized further with methods including linear transmission spectroscopy and fiber-balanced twin-detector measurement [90], reflecting the fiber SAs’ modulation depths and nonsaturable loss. These tests are always important and indispensable because they reflect whether the integration process has been successful or not.

3. FIRST DEMONSTRATIONS OF UFLs MODE-LOCKED BY 2D MATERIALS

As discussed in Section 2, 2D materials are innate broadband SAs, enabling the realization of mode-locked UFLs at luxuriant wavelengths. The numerous laser transitions available from trivalent rare-earth ions like Yb3+, Er3+, Tm3+, and Ho3+ lend them the ability to generate light over a wide selection of wavelengths [9194]. Despite different kinds of fibers, fibers made of silica and fluoride (ZrF4BaF2LaF3AlF3NaF, ZBLAN) glasses are the most widely used. Figure 2 sketches the very initial demonstrations of 2D materials-based UFLs at 1.0, 1.5, and 2.0 μm (silica), and 3.0 μm (ZBLAN) over the last decade.

 figure: Fig. 2.

Fig. 2. First demonstrations of UFLs mode-locked by 2D materials at different wavelengths.

Download Full Size | PPT Slide | PDF

Bao et al. reported the first graphene Er3+-doped fiber laser (EDFL) at 1550 nm [10] in 2009. From Fig. 3(a), one can see that a ring-cavity EDFL was mode-locked by a CVD-grown graphene film sandwiched between two fiber ends. In this case, a stable and regular soliton pulse train was generated, along with a repetition rate of 1.79 MHz and output power of 2 mW. The output pulses had a temporal width of 756 fs and a spectral bandwidth of 5 nm, indicating the ultrafast characteristics. Soon after that, mode-locked pulses at 1576.3 nm with a pulse width of 415 fs and a repetition rate of 6.84 MHz were obtained by Zhang et al. from a dispersion-managed cavity fiber laser [95]. At the end of 2009, Sun et al. also demonstrated their first work on an ultrafast EDFL mode-locked by monolayer and few-layer graphene flakes [12]. They proposed that high-performance ultrafast pulses could also be obtained with a graphene–PVA composite fabricated by using wet-chemistry techniques. These works in 2009 were pioneering, opening the door for UFLs mode-locked by 2D materials.

 figure: Fig. 3.

Fig. 3. CVD-grown graphene mode-locked EDFL [10]. (a) Laser configuration; (b) output pulse train; (c) output laser spectrum; (d) autocorrelation trace. Reproduced with permission, Copyright 2009, Wiley-VCH.

Download Full Size | PPT Slide | PDF

As aforementioned, it is feasible to transplant mode-locking operation to other wavelengths, since gapless graphene makes it a natural broadband SA. Just one year later, Zhao et al. reported an ultrafast Yb3+-doped fiber laser (YDFL) mode-locked by a few-layer CVD-grown graphene film. They obtained dissipative soliton pulses at 1069.8 nm with a spectral bandwidth of 1.29 nm and a pulse width of 580 ps [96]. In 2012, Zhang et al. reported the first graphene–PVA composite mode-locked Tm3+-doped fiber laser (TDFL) at 1940 nm [97]. The laser output pulses had temporal widths of 3.6 ps and a pulse energy of 0.4  nJ at a repetition rate of 6.46 MHz. UFLs in this wavelength region are important because of eye-safe operation and their potential as laser scalpels. In 2015, a graphene mode-locked Ho3+-doped fiber laser (HDFL) at 2107 nm with a pulse width of 1.8 ps was further demonstrated [98].

In the meantime, researchers also paid much attention to other kinds of 2D materials [3,72]. TIs, TMDs, BP, MXenes, and bismuthene were successively fabricated as fiber SAs and applied into mode-locked UFLs. To the best of our knowledge, the first demonstration of UFLs mode-locked by TIBi2Te3 was in 2012 [99], TMDMoS2 in 2014 [100], BP in 2015 [101], MXene [47] and bismuthene [102] in 2017. Interestingly, almost all these initial demonstrations were at 1.5 μm except TMDMoS2 at 1 μm [100], which might benefit from the telecommunications boom. Meanwhile, these 2D materials were also investigated to explore the broadband lasing wavelengths like graphene [103108]. In summary, not only graphene, but also TIs, TMDs, and BP have been used for the generation of 1, 1.5, and 2.0 μm ultrafast pulses in these corresponding silica fiber lasers. Note that these demonstrations of broadband SA characteristics were indirect because 2D materials were prepared by different groups, even with different methods. In 2014, Fu et al. put forward a direct demonstration of graphene’s broadband saturable absorption by inserting a single-fiber SA into three codoped fiber lasers: YDFL, EDFL, and Tm3+,Ho3+ (THDFL), respectively [30]. Thus,mode-locked pulses with center wavelengths of 1035, 1564, and 1908 nm were achieved.

Since graphene, Tis, and BP are gapless or have small energy bandgaps, as introduced in Section 2, they could also be used for mid-IR mode-locking operations. However, silica fiber does not work in the mid-IR due to its huge absorption. The adoption of fluoride ZBLAN fibers for generating ultrafast pulses opens up another playground in the mid-IR for the nonlinear studies of 2D materials. But due to the lack of mid-IR fiber components, current mid-IR UFLs had to adopt non-all-fiber formats limited by a free-space coupling scheme.

In 2015, Yin et al. designed the first mid-IR UFL mode-locked by 2D materials [109]. The linear-cavity UFL adopted a piece of Ho3+-doped ZBLAN fiber as the gain fiber and a high-reflection gold mirror covered with TIBi2Se3 nanosheets as the SA mirror. The output pulses had a repetition rate of 10.4 MHz, a pulse width of 6  ps, and a center wavelength of 2830 nm. Soon after that in 2015, Zhu et al. also reported the first mid-IR graphene mode-locked Er3+-doped ZBLAN fiber laser at 2.78 μm [110]. A CVD-grown four-to-six layer graphene was transferred onto a gold mirror as the SA. The output had a pulse width of 42 ps and a repetition rate of 25.4 MHz. Few-layer BP SA mirrors have also been built for mid-IR mode-locked UFLs since 2016 [111,112]. In 2016, Qin et al. transferred mechanically exfoliated BP flakes onto a gold mirror as a BP SA mirror [111]. The excellent performance of the BP SA mirror in the mid-IR brought stable mode-locked pulses at 2783 nm with a maximum output power of 613 mW, a repetition rate of 24 MHz, and a pulse width of 42 ps. A recent work showed that BP could even be used to modulate lasing at 3489 nm in an Er3+-doped ZBLAN fiber laser [112], resulting in a stable mode-locked pulse train with a repetition rate of 28.91 MHz.

4. SIGNIFICANT PROGRESS OF UFLs MODE-LOCKED BY 2D MATERIALS

Most of these aforementioned initial UFLs mode-locked by 2D materials are proof-of-concept demonstrations. In fact, their lasing performances are hard to satisfy diverse applications. Therefore, more crucial parameters like SA modifications, cavity dispersion and nonlinearity management, coupling ratio, and gain adjustments are often adopted to improve laser performance. In the following, representative high-performance UFLs mode-locked by 2D materials are reviewed from three aspects: toward shorter pulse widths, higher repetition rates, and better stabilities. Due to the immature ZBLAN fiber components [113], high-performance mode-locked mid-IR fiber lasers are rare. Therefore, we focus on silica fiber-based UFLs in this section.

A. Short Pulse Width

The output pulse width of a mode-locked fiber laser depends mainly on its spectral bandwidth and chirp [114]. In fact, the broadband saturable absorption feature of 2D materials could modulate all longitude modes within the whole gain bandwidth of rare-earth ions, leading to desirable ultrafast pulses. When the laser cavity operates in the anomalous dispersion regime, mode-locked pulses can easily evolve into femtosecond solitons, considering the dispersion is comparable to nonlinearity [115].

Based on numerical simulations, Jeon et al. found that in a mode-locked UFL, the adoption of SAs with larger modulation depth could induce the temporal shortening of output pulses [116]. Considering that monolayer 2D materials’ absorption is low, the problem is how to improve the modulation depth of a 2D material SA. In 2015, Sobon et al. put forward a stacking method for monolayer graphene to achieve the desired number of layers [117]. They demonstrated that by increasing the layer numbers, the graphene SA’s modulation depth increased, and the output pulse width decreased. This idea of engineering modulation depth by modifying layer numbers was soon adopted in other kinds of 2D materials like TIBi2Se3 [118] and TMDMoS2 [119].

In order to shorten the mode-locking pulse width, dispersion management is also indispensable. By adopting gain and passive fibers with opposite dispersions [120] or inserting a dispersion compensation grating [121], the net cavity dispersion could be minimized. Indubitably, external pulse compression is a promising alternative. A fiber chirp pulse amplification (CPA) chain can not only scale up pulse energy, but also induce broadening of the amplified spectrum, leading to a much shorter pulse width after compression. Representative results of UFLs mode-locked by 2D materials at short pulse widths are presented in Table 2.

Tables Icon

Table 2. UFLs Mode-Locked by 2D Materials with Short Pulse Widths

The shortest pulse width (88 fs) output directly from a graphene mode-locked EDFL was reported by Sotor et al. in 2015 [122]. A 60-layer CVD-grown graphene/PMMA composite was sandwiched between two fiber ends as an SA. With dispersion compensation, the ring-cavity EDFL had a net dispersion of 0.0015  ps2, resulting in a stretched mode-locking operation at 1545 nm with a spectral bandwidth of 48 nm. Also utilized with CVD-grown graphene films, shortest pulse widths of 603 fs at 1940 nm [123] and 190 fs at 2059 nm [124] were reported. However, due to the lack of dispersion engineering, the graphene mode-locked ZBLAN fiber laser at 2784.5 nm had a long pulse width of 42 ps [110].

With all-fiber CPA systems, ultrafast pulses shorter than 24 and 260 fs at 1560 and 1968 nm were obtained [125,126], respectively. Figure 4 shows the corresponding result when the shortest pulse width of 24 fs was realized [125]. As presented in Fig. 4(a), the laser system consisted of only two types of PM fibers, ensuring simplicity and stability. A 30-layer graphene/polymer composite as described in detail in Ref. [117], was used as the fiber SA in the mode-locked EDFL. The output pulse from the oscillator had the shortest temporal width of 224 fs, associated with a lasing wavelength of 1560 nm and a spectral bandwidth of 11.5 nm. After amplification with an Er3+-doped fiber amplifier (EDFA) and compression in the gain fiber, the fiber laser system delivered few-cycle optical pulses with a pulse width short of 24 fs and a spectral bandwidth of 136 nm.

 figure: Fig. 4.

Fig. 4. Graphene mode-locked EDFL that delivers 24 fs pulses [125]. (a) Laser configuration; (b) optical spectrum; (c) autocorrelation trace; (d) measured RF spectrum. Reproduced with permission. Copyright 2016, IOP Publishing.

Download Full Size | PPT Slide | PDF

As illustrated in Table 2, one can acquire the shortest output pulse widths for the UFLs mode-locked by other kinds of 2D materials. These results are generated directly from mode-locked laser oscillators without amplification and compression. In the 1.5 μm wavelength region, the shortest output pulses mode-locked by TIs, TMDs, BP, bismuthene, and MXenes were 70 fs [127], 67 fs [129], 102 fs [130], 193 fs [132], and 159 fs [133], respectively. These works demonstrated that other 2D materials also had the ability to generate 100  fs ultrafast laser pulses. Comparatively, the output pulses at other wavelengths like 1 and 2 μm are still much longer than pulses at 1.5 μm, indicating much more work is required to shorten pulses in the future. Meanwhile, robust fiber amplifiers operating in these wavelength ranges are also required to scale up pulse energy and peak power, and further shorten the pulse width.

B. High Repetition Rate

The pursuit of higher repetition rates is another important aspect. In particular, lasers with repetition rates from several to hundreds of gigahertz are important for high-speed optical communication systems and microwave generation. The short recovery times of 2D materials make them good candidates for gigahertz pulse generation.

Table 3 shows the representative results of high repetition rate UFLs mode-locked by 2D materials. For fundamental mode-locking operation, the repetition rate of the pulse train is the same as the longitudinal mode spacing, whose increment can only be achieved by reducing cavity length. In 2012, Martinez et al. reported a graphene mode-locked EDFL with a 1  cm linear cavity, whose pulse repetition rate was 9.67 GHz [134]. In 2015, Wu et al. also demonstrated a MoS2-based short-cavity EDFL at a fundamental repetition rate of 463 MHz [139]. However, due to the fiber gain limitation, short-cavity configuration is difficult to improve the repetition rate further (e.g., >10  GHz).

Tables Icon

Table 3. UFLs Mode-Locked by 2D Materials with High Repetition Rates

By inserting a comb filter like Fabry–Perot (FP) filter or microknot filter into a fiber laser cavity to form a composite cavity, it is also possible to increase output repetition rate by filtering out some longitudinal modes [114]. In 2015, Qi et al. reported the generation of a 100 GHz pulse train in an EDFL by using a graphene tapered fiber SA and an FP filter [136]. Figure 5 shows a recent work by Liu et al. in which a graphene-deposited microfiber knot filter was used in ring-cavity fiber lasers, providing the spectral filtering and saturable absorption effect [137]. When the filter was implemented into a YDFL, a pulse train at 1 μm with a 162 GHz repetition rate was generated. When it was inserted into an EDFL, a pulse train in the 1.5 μm region with a 106.7 GHz repetition rate was addressed.

 figure: Fig. 5.

Fig. 5. Hundred gigahertz repetition rate graphene mode-locked UFLs [137]. (a) Laser configuration; (b) graphene microfiber knot filter; (c) laser spectrum at 1 μm; (d) laser spectrum at 1.5 μm; (e) autocorrelation trace at 1 μm; (f) autocorrelation trace at 1.5 μm. Reproduced with permission. Copyright 2018, OSA Publishing.

Download Full Size | PPT Slide | PDF

The harmonic mode-locking technique is an alternative important approach to realize high repetition rate outputs. In 2012, a graphene-based 21st-harmonic mode-locked fiber laser was reported by Sobon et al., with a pulse repetition rate of 2.22 GHz [135]. Other kinds of 2D materials like TIs, TMDs, and BP are also efficient for achieving harmonic mode-locking operations. With a TIBi2Te3 fiber SA implemented in a ring-cavity EDFL, Luo et al. raised the repetition rate to 2.04 GHz, corresponding to a high harmonic order of 418 [138]. Another work by Yan et al. also utilized a TIBi2Se3 fiber SA in a ring-cavity EDFL, but with a higher fundamental repetition rate of 200 MHz. In this case, a harmonic mode-locking repetition rate of 2.95 GHz was obtained at a 170th-harmonic order [77]. To date, the highest repetition rate of a TMD mode-locked UFL was accomplished by Koo et al. in 2016 [140]. In their work, a MoSe2/PVA composite depositing side-polished fiber was incorporated as an SA within a ring-cavity EDFL, where a repetition rate up to 3.27 GHz at a harmonic order of 212 was obtained. Considering various applications of high repetition rate pulses, we anticipate that high repetition rate UFLs mode-locked by 2D materials will continue to be a hot topic in the future.

C. High Stability

Many applications of UFLs, such as optical frequency combs [142,143] and pure microwave generation, are in great need of highly stable ultralow-noise laser pulses. Therefore, the stability of a UFL is always the first consideration. A simple measurement to reflect the stability is to check the RF spectrum of pulse trains. If a mode-locked fiber laser has a high stability with RF harmonics extending to several gigahertz, it is regarded as an ideal device for gigahertz signal generation. Some representative results of UFLs mode-locked by 2D materials are summarized in Table 4.

Tables Icon

Table 4. Highly Stable UFLs Mode-Locked by 2D Materials

In 2010, Popa et al. demonstrated a highly stable graphene mode-locked EDFL [120]. The ring-cavity laser had a net dispersion of 0.052  ps2. A large RF signal-to-noise ratio (SNR) of 87.4 dB was realized at the fundamental repetition rate of 27.4 MHz. In 2014, Sobon et al. reported a high-power fiber CPA laser system at 1560 nm [144]. A highly stable CVD-grown graphene mode-locked EDFL was selected to provide seed pulses. It had an RF SNR of 70 dB at the repetition rate of 50 MHz, whose RF spectrum exhibits a slight decay compared to the case of 0–10 GHz, implying its high stability. Other 2D materials like TIs and TMDs have also been used for generating low-noise mode-locked UFLs. Yan et al. used the PMS technique to deposit TI and TMD films onto fiber tapers for fabricating high-performance fiber SAs. By inserting these fiber SAs into ring-cavity EDFLs [145,146] and TDFLs [147], stable mode-locked pulse trains with ultrahigh SNRs on RF spectra were obtained. In 2018, Liu et al. prepared a CVD-grown TMD-WSe2 film and transferred it onto a tapered fiber to fabricate a fiber SA. They demonstrated a highest SNR of 96 dB at a pulse repetition rate of 63.133 MHz with a ring-cavity EDFL [146].

Figure 6 depicts the measured optical spectra and RF spectra of these representative results. As can be seen from the optical spectra, these highly stable laser pulses were all typical soliton pulses mode-locked in anomalous regimes. To further characterize the stabilities of mode-locked UFLs, relative intensity noise and time jittering should be taken into account. In the future, we hope that more techniques and methods will be used to suppress lasing noise and enhance long-term stability.

 figure: Fig. 6.

Fig. 6. Highly stable UFLs mode-locked by 2D materials. (a)–(c) Laser spectra; (d)–(f) measured RF spectra. (a) and (d), Ref. [146]; reproduced with permission; copyright 2018, OSA Publishing. (b) and (e), Ref. [148]; reproduced with permission; copyright 2017, OSA Publishing. (c) and (f), Ref. [128]; reproduced with permission; copyright 2018, IOP Publishing.

Download Full Size | PPT Slide | PDF

5. CHALLENGES AND FUTURE DIRECTIONS

According to previous discussions, there are indeed some aspects of 2D materials that are better than those of SESAMs, like excellent broadband saturable absorption and ultrashort recovery time. However, despite the current achievements, the lack of fine-controlled material fabrication still remains a hurdle to mass production of most of these 2D materials [133]. Maybe the industrialization of graphene is a great start. Besides, the long-term stability of these 2D materials should also be further exploited. Methods used for oxidation resistance [2], hydrolytic resistance [61], and suppression of photon-induced degradation should be fully considered as the next steps. We also think that the fabrication of a 2D material fiber SA with customized nonsaturable loss, modulation depth, and recovery time is of critical importance. It is likely that future work in this field will establish more systematic guidelines for SA design and optimization.

Obviously, there is abundant room for further progress in the pursuit of high-performance UFLs mode-locked by 2D materials. The broadband saturable absorption of 2D materials makes them good candidates for two-band mode-locking operations simultaneously. In 2014, Sotor et al. reported a passive synchronization of an EDFL and a TDFL enhanced by a common graphene SA [149]. It might help for few-cycle pulse generation with coherent combination or difference frequency generation in the mid-IR [150]. Meanwhile, the introduction of advanced optical techniques, such as time-lens [151], dispersive Fourier transform [152154], and coherent sampling [155] measurements, to reveal the real-time pulse build-up dynamics of UFLs mode-locked by 2D materials is highly desirable. We believe that after getting insight into the buildup dynamics and making positive modifications to 2D materials-based SAs, many more high-performance UFLs will be put forward in the future. Although the main aim of this paper is to review the progress of UFLs mode-locked by 2D materials, we would like to point out the broadband 2D materials could also be exploited for novel photonic components, like photodetectors [156160], sensors [161164], active-optical modulators [165,166], and all-optical modulators [65,167175]. Besides these, we also have confidence that more unprecedented ultralow-noise ultrafast mode-locked pulses or optical frequency combs will be realized with novel 2D materials-based SAs.

6. CONCLUSIONS

We have reviewed both initial and significant UFLs mode-locked by 2D materials in this paper. The intention of this review is to provide a brief survey of UFLs mode-locked by 2D materials in the past decade. Though it is not yet possible to be completely exhaustive, a number of important results have been covered, and future insights and challenges have been put forward.

Funding

National Natural Science Foundation of China (11802339, 11804387, 11805276, 61801498, 61805282); China Postdoctoral Innovation Science Foundation (BX20180373); Scientific Researches Foundation of National University of Defense Technology (ZK16-03-59, ZK18-01-03, ZK18-03-22, ZK18-03-36); Natural Science Foundation of Hunan Province (2016JJ1021); Open Director Fund of State Key Laboratory of Pulsed Power Laser Technology (SKL2018ZR05); Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology (GNJGJS03); Opening Foundation of State Key Laboratory of Laser Interaction with Matter (SKLLIM1702); Youth Talent Lifting Project (17-JCJQ-QT-004).

REFERENCES

1. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). [CrossRef]  

2. X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Funct. Mater. 29, 1605886 (2017). [CrossRef]  

3. F. Wang, “Two-dimensional materials for ultrafast lasers,” Chin. Phys. B 26, 034202 (2017). [CrossRef]  

4. T. Jiang, R. Miao, J. Zhao, Z. Xu, T. Zhou, K. Wei, J. You, X. Zheng, Z. Wang, and X. A. Cheng, “Electron-phonon coupling in topological insulator Bi2Se3 thin films with different substrates,” Chin. Opt. Lett. 17, 020005 (2019). [CrossRef]  

5. L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang, and S. Wen, “Broadband third order nonlinear optical responses of bismuth telluride nanosheets,” Opt. Mater. Express 6, 2244–2251 (2016). [CrossRef]  

6. Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017). [CrossRef]  

7. T. Fan, Y. Zhou, M. Qiu, and H. Zhang, “Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine,” J. Innov. Opt. Heal. Sci. 11, 1830003 (2018). [CrossRef]  

8. X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017). [CrossRef]  

9. Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, “Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction,” Angew. Chem. (Int. Ed. Engl.) 55, 13849–13853 (2016). [CrossRef]  

10. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009). [CrossRef]  

11. H. Yu, X. Zheng, K. Yin, X. A. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6, 603–609 (2016). [CrossRef]  

12. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010). [CrossRef]  

13. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005). [CrossRef]  

14. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007). [CrossRef]  

15. J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010). [CrossRef]  

16. H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009). [CrossRef]  

17. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016). [CrossRef]  

18. A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016). [CrossRef]  

19. F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014). [CrossRef]  

20. M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014). [CrossRef]  

21. Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018). [CrossRef]  

22. M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, “25th anniversary article: Mxenes: a new family of two-dimensional materials,” Adv. Funct. Mater. 26, 992–1005 (2014). [CrossRef]  

23. E. Aktürk, O. Ü. Aktürk, and S. Ciraci, “Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties,” Phys. Rev. B 94, 014115 (2016). [CrossRef]  

24. M. Pumera and Z. Sofer, “2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus,” Adv. Mater. 29, 1605299 (2017). [CrossRef]  

25. S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20, 702–713 (2014). [CrossRef]  

26. G. Soboń, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [invited],” Photon. Res. 3, A56–A63 (2015). [CrossRef]  

27. Z. C. Luo, M. Liu, A. P. Luo, and W. C. Xu, “Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers,” Chin. Phys. B 27, 094215 (2018). [CrossRef]  

28. K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018). [CrossRef]  

29. J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019). [CrossRef]  

30. B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014). [CrossRef]  

31. Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015). [CrossRef]  

32. L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1  μm to 2.7  μm wavelength,” Laser Phys. Lett. 13, 045801 (2016). [CrossRef]  

33. Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010). [CrossRef]  

34. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30, 427–447 (2012). [CrossRef]  

35. H. Zhang, X. He, W. Lin, R. Wei, F. Zhang, X. Du, G. Dong, and J. Qiu, “Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets,” Opt. Express 23, 13376–13383 (2015). [CrossRef]  

36. H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012). [CrossRef]  

37. X. Zheng, Y. Zhang, R. Chen, X. A. Cheng, Z. Xu, and T. Jiang, “Z-scan measurement of the nonlinear refractive index of monolayer WS2,” Opt. Express 23, 15616–15623 (2015). [CrossRef]  

38. G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, and W. J. Blau, “Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region,” Laser Photon. Rev. 11, 1700166 (2017). [CrossRef]  

39. P. Miró, M. Audiffred, and T. Heine, “An atlas of two-dimensional materials,” Chem. Soc. Rev. 43, 6537–6554 (2014). [CrossRef]  

40. K. J. Koski, C. D. Wessells, B. W. Reed, J. J. Cha, D. Kong, and Y. Cui, “Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons,” J. Am. Chem. Soc. 134, 13773–13779 (2012). [CrossRef]  

41. J. Zhao, Z. Xu, Y. Zang, Y. Gong, X. Zheng, K. He, X. A. Cheng, and T. Jiang, “Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films,” Opt. Express 25, 14635–14643 (2017). [CrossRef]  

42. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010). [CrossRef]  

43. M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013). [CrossRef]  

44. S. Lu and J. Leburton, “Electronic structures of defects and magnetic impurities in MoS2 monolayers,” Nanoscale Res. Lett. 9, 676 (2014). [CrossRef]  

45. V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014). [CrossRef]  

46. V. Tran, R. Fei, and L. Yang, “Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus,” 2D Mater. 2, 044014 (2015). [CrossRef]  

47. Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Funct. Mater. 29, 1702496 (2017). [CrossRef]  

48. M.-Y. Liu, Y. Huang, Q.-Y. Chen, Z.-Y. Li, C. Cao, and Y. He, “Strain and electric field tunable electronic structure of buckled bismuthene,” RSC Adv. 7, 39546–39555 (2017). [CrossRef]  

49. Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018). [CrossRef]  

50. M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010). [CrossRef]  

51. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013). [CrossRef]  

52. M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014). [CrossRef]  

53. J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017). [CrossRef]  

54. Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017). [CrossRef]  

55. A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014). [CrossRef]  

56. J. Sotor, G. Soboń, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015). [CrossRef]  

57. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano 9, 372–377 (2014). [CrossRef]  

58. J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7, 42357 (2017). [CrossRef]  

59. J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24, 30289–30295 (2016). [CrossRef]  

60. K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016). [CrossRef]  

61. D. Na, K. Park, K.-H. Park, and Y.-W. Song, “Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers,” Nanotechnology 28, 475207 (2017). [CrossRef]  

62. M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, “MXene: a promising transition metal carbide anode for lithium-ion batteries,” Electrochem. Commun. 16, 61–64 (2012). [CrossRef]  

63. P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017). [CrossRef]  

64. Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016). [CrossRef]  

65. Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017). [CrossRef]  

66. R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, and A. Castellanos-Gomez, “Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials,” Chem. Soc. Rev. 47, 53–68 (2018). [CrossRef]  

67. Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, “Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength,” Appl. Phys. Lett. 108, 221901 (2016). [CrossRef]  

68. H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015). [CrossRef]  

69. W. Liu, Y.-N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, M. Lei, L.-M. Liu, and Z. Wei, “Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials,” Photon. Res. 6, 220–227 (2018). [CrossRef]  

70. Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2016). [CrossRef]  

71. H. Chen, J. Yin, J. Yang, X. Zhang, M. Liu, Z. Jiang, J. Wang, Z. Sun, T. Guo, W. Liu, and P. Yan, “Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics,” Opt. Lett. 42, 4279–4282 (2017). [CrossRef]  

72. B. G. B. Guo, “2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [invited],” Chin. Opt. Lett. 16, 020004 (2018). [CrossRef]  

73. Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010). [CrossRef]  

74. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013). [CrossRef]  

75. X. Zhang and Y. Xie, “Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies,” Chem. Soc. Rev. 42, 8187–8199 (2013). [CrossRef]  

76. C. Y. Yeh, C. Y. Su, G. R. Lin, H. H. Kuo, L. J. Li, P. L. Huang, S. C. Lin, S. H. Huang, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20, 2460–2465 (2012). [CrossRef]  

77. P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95  GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23, 154–164 (2015). [CrossRef]  

78. M. Kowalczyk, J. Bogusławski, R. Zybała, K. Mars, A. Mikuła, G. Soboń, and J. Sotor, “Sb2Te3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers,” Opt. Mater. Express 6, 2273–2282 (2016). [CrossRef]  

79. L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, “Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime,” Photon. Res. 3, 214–219 (2015). [CrossRef]  

80. H. Hao, Z. Xu, T. Jiang, K. Wei, H. Li, X. Zheng, K. Yin, J. You, C. Shen, and X. A. Cheng, “Visualized charge transfer processes in monolayer composition-graded WS2xSe2(1x) lateral heterojunctions via ultrafast microscopy mapping,” Opt. Express 26, 15867–15886 (2018). [CrossRef]  

81. M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87, 031101 (2016). [CrossRef]  

82. A. Reina, H. B. Son, L. Y. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, and J. Kong, “Transferring and identification of single- and few-layer graphene on arbitrary substrates,” J. Phys. Chem. C 112, 17741–17744 (2008). [CrossRef]  

83. T. Chen, C. Liao, D. N. Wang, and Y. Wang, “Polarization-locked vector solitons in a mode-locked fiber laser using polarization-sensitive few-layer graphene deposited D-shaped fiber saturable absorber,” J. Opt. Soc. Am. B 31, 1377–1382 (2014). [CrossRef]  

84. X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016). [CrossRef]  

85. D. Steinberg, J. Diego Zapata, E. A. Thoroh de Souza, and L. A. M. Saito, “Mechanically exfoliated graphite onto D-shaped optical fiber for femtosecond mode-locked erbium-doped fiber laser,” J. Lightwave Technol. 36, 1868–1874 (2018). [CrossRef]  

86. J. Zhao, S. Ruan, P. Yan, H. Zhang, Y. Yu, H. Wei, and J. Luo, “Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser,” Opt. Eng. 52, 106105 (2013). [CrossRef]  

87. S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016). [CrossRef]  

88. H. Jeong, S. Y. Choi, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, and D.-I. Yeom, “All-fiber mode-locked laser oscillator with pulse energy of 34  nJ using a single-walled carbon nanotube saturable absorber,” Opt. Express 22, 22667–22672 (2014). [CrossRef]  

89. L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photon. Technol. Lett. 28, 1245–1248 (2016). [CrossRef]  

90. D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55  μm,” Opt. Express 23, 27509–27519 (2015). [CrossRef]  

91. H. Shalibeik, Rare-Earth-Doped Fiber Lasers and Amplifiers (Cuvillier Verlag, 2007).

92. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [invited],” Appl. Opt. 53, 6554–6568 (2014). [CrossRef]  

93. D. D. Hudson, “Invited paper: short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol. 20, 631–641 (2014). [CrossRef]  

94. F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20, 650–656 (2014). [CrossRef]  

95. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009). [CrossRef]  

96. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35, 3622–3624 (2010). [CrossRef]  

97. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012). [CrossRef]  

98. N. T. V. Dvoyrin, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium fiber laser operating beyond 2.1  μm,” in European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, Munich, Germany (2015), paper CJ_7_4.

99. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012). [CrossRef]  

100. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014). [CrossRef]  

101. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015). [CrossRef]  

102. L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018). [CrossRef]  

103. Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Opt. Express 22, 24055–24061 (2014). [CrossRef]  

104. M. Jung, J. Lee, J. Koo, J. Park, Y. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014). [CrossRef]  

105. H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014). [CrossRef]  

106. M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015). [CrossRef]  

107. A. A. Latiff, M. F. M. Rusdi, M. B. Hisyam, H. Ahmad, and S. W. Harun, “Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime,” Proc. SPIE 10150, 101500U (2016). [CrossRef]  

108. J. Sotor, G. Soboń, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015). [CrossRef]  

109. K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

110. G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016). [CrossRef]  

111. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41, 56–59 (2016). [CrossRef]  

112. Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5  μm wavelength,” Opt. Express 26, 8224–8231 (2018). [CrossRef]  

113. C. A. Schäfer, H. Uehara, D. Konishi, S. Hattori, H. Matsukuma, M. Murakami, S. Shimizu, and S. Tokita, “Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm,” Opt. Lett. 43, 2340–2343 (2018). [CrossRef]  

114. N. Q. Ngo, Ultra-Fast Fiber Lasers: Principles and Applications with MATLAB Models (CRC Press, 2011).

115. J. R. Taylor, Optical Solitons: Theory and Experiment (Cambridge University, 1992).

116. J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2014). [CrossRef]  

117. G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers,” Opt. Mater. Express 5, 2884–2894 (2015). [CrossRef]  

118. J. Zhang, T. Jiang, T. Zhou, H. Ouyang, C. Zhang, Z. Xin, Z. Wang, and X. A. Cheng, “Saturated absorption of different layered Bi2Se3 films in the resonance zone [invited],” Photon. Res. 6, C8–C14 (2018). [CrossRef]  

119. H.-D. Xia, H.-P. Li, C.-Y. Lan, C. Li, G.-L. Deng, J.-F. Li, and Y. Liu, “Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber,” Chin. Phys. B 24, 084206 (2015). [CrossRef]  

120. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010). [CrossRef]  

121. R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewloka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2018). [CrossRef]  

122. J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and G. Soboń, “Sub-90  fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber,” Opt. Express 23, 27503–27508 (2015). [CrossRef]  

123. G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23, 9339–9346 (2015). [CrossRef]  

124. M. Pawliszewska, A. Przewloka, and J. Sotor, “Stretched-pulse Ho-doped fiber laser mode-locked by graphene based saturable absorber,” Proc. SPIE 10512, 105121A (2018). [CrossRef]  

125. J. Sotor and G. Soboń, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016). [CrossRef]  

126. G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “260  fs and 1  nJ pulse generation from a compact, mode-locked Tm-doped fiber laser,” Opt. Express 23, 31446–31451 (2015). [CrossRef]  

127. W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 6, 19997 (2016). [CrossRef]  

128. W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, and Z. Wei, “Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration,” Nanotechnology 29, 174002 (2018). [CrossRef]  

129. W. Liu, L. Pang, H. Han, M. Liu, M. Lei, S. Fang, H. Teng, and Z. Wei, “Tungsten disulfide saturable absorbers for 67  fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017). [CrossRef]  

130. X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T. C. Wu, Q. Wu, Z. Zheng, and T. Hasan, “102  fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser,” Opt. Express 26, 12506–12513 (2018). [CrossRef]  

131. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016). [CrossRef]  

132. B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200  fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26, 22750–22760 (2018). [CrossRef]  

133. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018). [CrossRef]  

134. A. Martinez and S. Yamashita, “10  GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101, 041118 (2012). [CrossRef]  

135. G. Soboń, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012). [CrossRef]  

136. Y. L. Qi, H. Liu, H. Cui, Y. Q. Huang, Q. Y. Ning, M. Liu, Z. C. Luo, A. P. Luo, and W. C. Xu, “Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser,” Opt. Express 23, 17720–17726 (2015). [CrossRef]  

137. M. Liu, R. Tang, A.-P. Luo, W.-C. Xu, and Z.-C. Luo, “Graphene-decorated microfiber knot as a broadband resonator for ultrahigh repetition-rate pulse fiber lasers,” Photon. Res. 6, C1–C7 (2018). [CrossRef]  

138. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013). [CrossRef]  

139. K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015). [CrossRef]  

140. J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016). [CrossRef]  

141. M. Pawliszewska, Y. Ge, Z. Li, H. Zhang, and J. Sotor, “Fundamental and harmonic mode-locking at 2.1  μm with black phosphorus saturable absorber,” Opt. Express 25, 16916–16921 (2017). [CrossRef]  

142. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016). [CrossRef]  

143. N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13, 146–157 (2019). [CrossRef]  

144. G. Soboń, P. R. Kaczmarek, D. Sliwinska, J. Sotor, and K. M. Abramski, “High-power fiber-based femtosecond CPA system at 1560  nm,” IEEE J. Sel. Top. Quantum Electron. 20, 492–495 (2014). [CrossRef]  

145. P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, and J. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43, 4417–4420 (2018). [CrossRef]  

146. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photon. Res. 6, 535–541 (2018). [CrossRef]  

147. J. Wang, J. Yin, T. He, and P. Yan, “Sb2Te3 mode-locked ultrafast fiber laser at 1.93  μm,” Chin. Phys. B 27, 084214 (2018). [CrossRef]  

148. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42, 5010–5013 (2017). [CrossRef]  

149. J. Sotor, G. Soboń, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014). [CrossRef]  

150. J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018). [CrossRef]  

151. P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018). [CrossRef]  

152. J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1, 20 (2018). [CrossRef]  

153. X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018). [CrossRef]  

154. Y. Cui and X. Liu, “Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers,” Photon. Res. 7, 423–430 (2019). [CrossRef]  

155. X. Yi, Q. F. Yang, K. Y. Yang, and K. Vahala, “Imaging soliton dynamics in optical microcavities,” Nat. Commun. 9, 3565 (2018). [CrossRef]  

156. P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016). [CrossRef]  

157. X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, “Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector,” Adv. Funct. Mater. 27, 1606834 (2017). [CrossRef]  

158. Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, “Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure,” 2D Mater. 2, 035011 (2015). [CrossRef]  

159. T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, and K. He, “Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy,” Adv. Opt. Mater. 5, 1600727 (2017). [CrossRef]  

160. H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, and X. A. Cheng, “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures,” Nanoscale 9, 9325–9332 (2017). [CrossRef]  

161. S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, “Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers,” Small 11, 5807–5813 (2015). [CrossRef]  

162. P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015). [CrossRef]  

163. T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, “A flexible transparent colorimetric wrist strap sensor,” Nanoscale 9, 869–874 (2017). [CrossRef]  

164. T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016). [CrossRef]  

165. D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017). [CrossRef]  

166. J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018). [CrossRef]  

167. Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019). [CrossRef]  

168. K.-J. Peng, C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-H. Cheng, Y.-C. Chi, and G.-R. Lin, “Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching,” Nanophotonics 7, 207–215 (2018). [CrossRef]  

169. Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018). [CrossRef]  

170. J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017). [CrossRef]  

171. Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019). [CrossRef]  

172. Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018). [CrossRef]  

173. Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019). [CrossRef]  

174. J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017). [CrossRef]  

175. S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [Crossref]
  2. X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Funct. Mater. 29, 1605886 (2017).
    [Crossref]
  3. F. Wang, “Two-dimensional materials for ultrafast lasers,” Chin. Phys. B 26, 034202 (2017).
    [Crossref]
  4. T. Jiang, R. Miao, J. Zhao, Z. Xu, T. Zhou, K. Wei, J. You, X. Zheng, Z. Wang, and X. A. Cheng, “Electron-phonon coupling in topological insulator Bi2Se3 thin films with different substrates,” Chin. Opt. Lett. 17, 020005 (2019).
    [Crossref]
  5. L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang, and S. Wen, “Broadband third order nonlinear optical responses of bismuth telluride nanosheets,” Opt. Mater. Express 6, 2244–2251 (2016).
    [Crossref]
  6. Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
    [Crossref]
  7. T. Fan, Y. Zhou, M. Qiu, and H. Zhang, “Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine,” J. Innov. Opt. Heal. Sci. 11, 1830003 (2018).
    [Crossref]
  8. X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017).
    [Crossref]
  9. Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, “Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction,” Angew. Chem. (Int. Ed. Engl.) 55, 13849–13853 (2016).
    [Crossref]
  10. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  11. H. Yu, X. Zheng, K. Yin, X. A. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6, 603–609 (2016).
    [Crossref]
  12. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  13. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
    [Crossref]
  14. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  15. J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
    [Crossref]
  16. H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
    [Crossref]
  17. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
    [Crossref]
  18. A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
    [Crossref]
  19. F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
    [Crossref]
  20. M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
    [Crossref]
  21. Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018).
    [Crossref]
  22. M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, “25th anniversary article: Mxenes: a new family of two-dimensional materials,” Adv. Funct. Mater. 26, 992–1005 (2014).
    [Crossref]
  23. E. Aktürk, O. Ü. Aktürk, and S. Ciraci, “Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties,” Phys. Rev. B 94, 014115 (2016).
    [Crossref]
  24. M. Pumera and Z. Sofer, “2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus,” Adv. Mater. 29, 1605299 (2017).
    [Crossref]
  25. S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20, 702–713 (2014).
    [Crossref]
  26. G. Soboń, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [invited],” Photon. Res. 3, A56–A63 (2015).
    [Crossref]
  27. Z. C. Luo, M. Liu, A. P. Luo, and W. C. Xu, “Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers,” Chin. Phys. B 27, 094215 (2018).
    [Crossref]
  28. K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
    [Crossref]
  29. J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
    [Crossref]
  30. B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
    [Crossref]
  31. Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
    [Crossref]
  32. L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1  μm to 2.7  μm wavelength,” Laser Phys. Lett. 13, 045801 (2016).
    [Crossref]
  33. Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
    [Crossref]
  34. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30, 427–447 (2012).
    [Crossref]
  35. H. Zhang, X. He, W. Lin, R. Wei, F. Zhang, X. Du, G. Dong, and J. Qiu, “Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets,” Opt. Express 23, 13376–13383 (2015).
    [Crossref]
  36. H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
    [Crossref]
  37. X. Zheng, Y. Zhang, R. Chen, X. A. Cheng, Z. Xu, and T. Jiang, “Z-scan measurement of the nonlinear refractive index of monolayer WS2,” Opt. Express 23, 15616–15623 (2015).
    [Crossref]
  38. G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, and W. J. Blau, “Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region,” Laser Photon. Rev. 11, 1700166 (2017).
    [Crossref]
  39. P. Miró, M. Audiffred, and T. Heine, “An atlas of two-dimensional materials,” Chem. Soc. Rev. 43, 6537–6554 (2014).
    [Crossref]
  40. K. J. Koski, C. D. Wessells, B. W. Reed, J. J. Cha, D. Kong, and Y. Cui, “Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons,” J. Am. Chem. Soc. 134, 13773–13779 (2012).
    [Crossref]
  41. J. Zhao, Z. Xu, Y. Zang, Y. Gong, X. Zheng, K. He, X. A. Cheng, and T. Jiang, “Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films,” Opt. Express 25, 14635–14643 (2017).
    [Crossref]
  42. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
    [Crossref]
  43. M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
    [Crossref]
  44. S. Lu and J. Leburton, “Electronic structures of defects and magnetic impurities in MoS2 monolayers,” Nanoscale Res. Lett. 9, 676 (2014).
    [Crossref]
  45. V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
    [Crossref]
  46. V. Tran, R. Fei, and L. Yang, “Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus,” 2D Mater. 2, 044014 (2015).
    [Crossref]
  47. Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Funct. Mater. 29, 1702496 (2017).
    [Crossref]
  48. M.-Y. Liu, Y. Huang, Q.-Y. Chen, Z.-Y. Li, C. Cao, and Y. He, “Strain and electric field tunable electronic structure of buckled bismuthene,” RSC Adv. 7, 39546–39555 (2017).
    [Crossref]
  49. Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
    [Crossref]
  50. M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
    [Crossref]
  51. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
    [Crossref]
  52. M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
    [Crossref]
  53. J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
    [Crossref]
  54. Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
    [Crossref]
  55. A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
    [Crossref]
  56. J. Sotor, G. Soboń, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
    [Crossref]
  57. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano 9, 372–377 (2014).
    [Crossref]
  58. J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7, 42357 (2017).
    [Crossref]
  59. J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24, 30289–30295 (2016).
    [Crossref]
  60. K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016).
    [Crossref]
  61. D. Na, K. Park, K.-H. Park, and Y.-W. Song, “Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers,” Nanotechnology 28, 475207 (2017).
    [Crossref]
  62. M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, “MXene: a promising transition metal carbide anode for lithium-ion batteries,” Electrochem. Commun. 16, 61–64 (2012).
    [Crossref]
  63. P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
    [Crossref]
  64. Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
    [Crossref]
  65. Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
    [Crossref]
  66. R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, and A. Castellanos-Gomez, “Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials,” Chem. Soc. Rev. 47, 53–68 (2018).
    [Crossref]
  67. Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, “Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength,” Appl. Phys. Lett. 108, 221901 (2016).
    [Crossref]
  68. H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
    [Crossref]
  69. W. Liu, Y.-N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, M. Lei, L.-M. Liu, and Z. Wei, “Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials,” Photon. Res. 6, 220–227 (2018).
    [Crossref]
  70. Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2016).
    [Crossref]
  71. H. Chen, J. Yin, J. Yang, X. Zhang, M. Liu, Z. Jiang, J. Wang, Z. Sun, T. Guo, W. Liu, and P. Yan, “Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics,” Opt. Lett. 42, 4279–4282 (2017).
    [Crossref]
  72. B. G. B. Guo, “2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [invited],” Chin. Opt. Lett. 16, 020004 (2018).
    [Crossref]
  73. Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
    [Crossref]
  74. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
    [Crossref]
  75. X. Zhang and Y. Xie, “Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies,” Chem. Soc. Rev. 42, 8187–8199 (2013).
    [Crossref]
  76. C. Y. Yeh, C. Y. Su, G. R. Lin, H. H. Kuo, L. J. Li, P. L. Huang, S. C. Lin, S. H. Huang, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20, 2460–2465 (2012).
    [Crossref]
  77. P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95  GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23, 154–164 (2015).
    [Crossref]
  78. M. Kowalczyk, J. Bogusławski, R. Zybała, K. Mars, A. Mikuła, G. Soboń, and J. Sotor, “Sb2Te3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers,” Opt. Mater. Express 6, 2273–2282 (2016).
    [Crossref]
  79. L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, “Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime,” Photon. Res. 3, 214–219 (2015).
    [Crossref]
  80. H. Hao, Z. Xu, T. Jiang, K. Wei, H. Li, X. Zheng, K. Yin, J. You, C. Shen, and X. A. Cheng, “Visualized charge transfer processes in monolayer composition-graded WS2xSe2(1−x) lateral heterojunctions via ultrafast microscopy mapping,” Opt. Express 26, 15867–15886 (2018).
    [Crossref]
  81. M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87, 031101 (2016).
    [Crossref]
  82. A. Reina, H. B. Son, L. Y. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, and J. Kong, “Transferring and identification of single- and few-layer graphene on arbitrary substrates,” J. Phys. Chem. C 112, 17741–17744 (2008).
    [Crossref]
  83. T. Chen, C. Liao, D. N. Wang, and Y. Wang, “Polarization-locked vector solitons in a mode-locked fiber laser using polarization-sensitive few-layer graphene deposited D-shaped fiber saturable absorber,” J. Opt. Soc. Am. B 31, 1377–1382 (2014).
    [Crossref]
  84. X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
    [Crossref]
  85. D. Steinberg, J. Diego Zapata, E. A. Thoroh de Souza, and L. A. M. Saito, “Mechanically exfoliated graphite onto D-shaped optical fiber for femtosecond mode-locked erbium-doped fiber laser,” J. Lightwave Technol. 36, 1868–1874 (2018).
    [Crossref]
  86. J. Zhao, S. Ruan, P. Yan, H. Zhang, Y. Yu, H. Wei, and J. Luo, “Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser,” Opt. Eng. 52, 106105 (2013).
    [Crossref]
  87. S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
    [Crossref]
  88. H. Jeong, S. Y. Choi, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, and D.-I. Yeom, “All-fiber mode-locked laser oscillator with pulse energy of 34  nJ using a single-walled carbon nanotube saturable absorber,” Opt. Express 22, 22667–22672 (2014).
    [Crossref]
  89. L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photon. Technol. Lett. 28, 1245–1248 (2016).
    [Crossref]
  90. D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55  μm,” Opt. Express 23, 27509–27519 (2015).
    [Crossref]
  91. H. Shalibeik, Rare-Earth-Doped Fiber Lasers and Amplifiers (Cuvillier Verlag, 2007).
  92. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [invited],” Appl. Opt. 53, 6554–6568 (2014).
    [Crossref]
  93. D. D. Hudson, “Invited paper: short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol. 20, 631–641 (2014).
    [Crossref]
  94. F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20, 650–656 (2014).
    [Crossref]
  95. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
    [Crossref]
  96. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35, 3622–3624 (2010).
    [Crossref]
  97. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
    [Crossref]
  98. N. T. V. Dvoyrin, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium fiber laser operating beyond 2.1  μm,” in European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, Munich, Germany (2015), paper CJ_7_4.
  99. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
    [Crossref]
  100. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
    [Crossref]
  101. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
    [Crossref]
  102. L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
    [Crossref]
  103. Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Opt. Express 22, 24055–24061 (2014).
    [Crossref]
  104. M. Jung, J. Lee, J. Koo, J. Park, Y. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
    [Crossref]
  105. H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
    [Crossref]
  106. M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
    [Crossref]
  107. A. A. Latiff, M. F. M. Rusdi, M. B. Hisyam, H. Ahmad, and S. W. Harun, “Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime,” Proc. SPIE 10150, 101500U (2016).
    [Crossref]
  108. J. Sotor, G. Soboń, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
    [Crossref]
  109. K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).
  110. G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
    [Crossref]
  111. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41, 56–59 (2016).
    [Crossref]
  112. Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5  μm wavelength,” Opt. Express 26, 8224–8231 (2018).
    [Crossref]
  113. C. A. Schäfer, H. Uehara, D. Konishi, S. Hattori, H. Matsukuma, M. Murakami, S. Shimizu, and S. Tokita, “Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm,” Opt. Lett. 43, 2340–2343 (2018).
    [Crossref]
  114. N. Q. Ngo, Ultra-Fast Fiber Lasers: Principles and Applications with MATLAB Models (CRC Press, 2011).
  115. J. R. Taylor, Optical Solitons: Theory and Experiment (Cambridge University, 1992).
  116. J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2014).
    [Crossref]
  117. G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers,” Opt. Mater. Express 5, 2884–2894 (2015).
    [Crossref]
  118. J. Zhang, T. Jiang, T. Zhou, H. Ouyang, C. Zhang, Z. Xin, Z. Wang, and X. A. Cheng, “Saturated absorption of different layered Bi2Se3 films in the resonance zone [invited],” Photon. Res. 6, C8–C14 (2018).
    [Crossref]
  119. H.-D. Xia, H.-P. Li, C.-Y. Lan, C. Li, G.-L. Deng, J.-F. Li, and Y. Liu, “Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber,” Chin. Phys. B 24, 084206 (2015).
    [Crossref]
  120. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
    [Crossref]
  121. R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewloka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2018).
    [Crossref]
  122. J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and G. Soboń, “Sub-90  fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber,” Opt. Express 23, 27503–27508 (2015).
    [Crossref]
  123. G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23, 9339–9346 (2015).
    [Crossref]
  124. M. Pawliszewska, A. Przewloka, and J. Sotor, “Stretched-pulse Ho-doped fiber laser mode-locked by graphene based saturable absorber,” Proc. SPIE 10512, 105121A (2018).
    [Crossref]
  125. J. Sotor and G. Soboń, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016).
    [Crossref]
  126. G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “260  fs and 1  nJ pulse generation from a compact, mode-locked Tm-doped fiber laser,” Opt. Express 23, 31446–31451 (2015).
    [Crossref]
  127. W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 6, 19997 (2016).
    [Crossref]
  128. W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, and Z. Wei, “Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration,” Nanotechnology 29, 174002 (2018).
    [Crossref]
  129. W. Liu, L. Pang, H. Han, M. Liu, M. Lei, S. Fang, H. Teng, and Z. Wei, “Tungsten disulfide saturable absorbers for 67  fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
    [Crossref]
  130. X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T. C. Wu, Q. Wu, Z. Zheng, and T. Hasan, “102  fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser,” Opt. Express 26, 12506–12513 (2018).
    [Crossref]
  131. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
    [Crossref]
  132. B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200  fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26, 22750–22760 (2018).
    [Crossref]
  133. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
    [Crossref]
  134. A. Martinez and S. Yamashita, “10  GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101, 041118 (2012).
    [Crossref]
  135. G. Soboń, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
    [Crossref]
  136. Y. L. Qi, H. Liu, H. Cui, Y. Q. Huang, Q. Y. Ning, M. Liu, Z. C. Luo, A. P. Luo, and W. C. Xu, “Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser,” Opt. Express 23, 17720–17726 (2015).
    [Crossref]
  137. M. Liu, R. Tang, A.-P. Luo, W.-C. Xu, and Z.-C. Luo, “Graphene-decorated microfiber knot as a broadband resonator for ultrahigh repetition-rate pulse fiber lasers,” Photon. Res. 6, C1–C7 (2018).
    [Crossref]
  138. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
    [Crossref]
  139. K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
    [Crossref]
  140. J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
    [Crossref]
  141. M. Pawliszewska, Y. Ge, Z. Li, H. Zhang, and J. Sotor, “Fundamental and harmonic mode-locking at 2.1  μm with black phosphorus saturable absorber,” Opt. Express 25, 16916–16921 (2017).
    [Crossref]
  142. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
    [Crossref]
  143. N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13, 146–157 (2019).
    [Crossref]
  144. G. Soboń, P. R. Kaczmarek, D. Sliwinska, J. Sotor, and K. M. Abramski, “High-power fiber-based femtosecond CPA system at 1560  nm,” IEEE J. Sel. Top. Quantum Electron. 20, 492–495 (2014).
    [Crossref]
  145. P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, and J. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43, 4417–4420 (2018).
    [Crossref]
  146. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photon. Res. 6, 535–541 (2018).
    [Crossref]
  147. J. Wang, J. Yin, T. He, and P. Yan, “Sb2Te3 mode-locked ultrafast fiber laser at 1.93  μm,” Chin. Phys. B 27, 084214 (2018).
    [Crossref]
  148. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42, 5010–5013 (2017).
    [Crossref]
  149. J. Sotor, G. Soboń, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014).
    [Crossref]
  150. J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018).
    [Crossref]
  151. P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
    [Crossref]
  152. J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1, 20 (2018).
    [Crossref]
  153. X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
    [Crossref]
  154. Y. Cui and X. Liu, “Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers,” Photon. Res. 7, 423–430 (2019).
    [Crossref]
  155. X. Yi, Q. F. Yang, K. Y. Yang, and K. Vahala, “Imaging soliton dynamics in optical microcavities,” Nat. Commun. 9, 3565 (2018).
    [Crossref]
  156. P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
    [Crossref]
  157. X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, “Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector,” Adv. Funct. Mater. 27, 1606834 (2017).
    [Crossref]
  158. Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, “Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure,” 2D Mater. 2, 035011 (2015).
    [Crossref]
  159. T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, and K. He, “Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy,” Adv. Opt. Mater. 5, 1600727 (2017).
    [Crossref]
  160. H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, and X. A. Cheng, “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures,” Nanoscale 9, 9325–9332 (2017).
    [Crossref]
  161. S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, “Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers,” Small 11, 5807–5813 (2015).
    [Crossref]
  162. P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
    [Crossref]
  163. T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, “A flexible transparent colorimetric wrist strap sensor,” Nanoscale 9, 869–874 (2017).
    [Crossref]
  164. T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
    [Crossref]
  165. D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
    [Crossref]
  166. J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
    [Crossref]
  167. Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
    [Crossref]
  168. K.-J. Peng, C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-H. Cheng, Y.-C. Chi, and G.-R. Lin, “Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching,” Nanophotonics 7, 207–215 (2018).
    [Crossref]
  169. Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
    [Crossref]
  170. J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
    [Crossref]
  171. Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019).
    [Crossref]
  172. Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
    [Crossref]
  173. Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
    [Crossref]
  174. J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
    [Crossref]
  175. S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
    [Crossref]

2019 (7)

T. Jiang, R. Miao, J. Zhao, Z. Xu, T. Zhou, K. Wei, J. You, X. Zheng, Z. Wang, and X. A. Cheng, “Electron-phonon coupling in topological insulator Bi2Se3 thin films with different substrates,” Chin. Opt. Lett. 17, 020005 (2019).
[Crossref]

J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
[Crossref]

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13, 146–157 (2019).
[Crossref]

Y. Cui and X. Liu, “Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers,” Photon. Res. 7, 423–430 (2019).
[Crossref]

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019).
[Crossref]

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

2018 (33)

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

K.-J. Peng, C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-H. Cheng, Y.-C. Chi, and G.-R. Lin, “Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching,” Nanophotonics 7, 207–215 (2018).
[Crossref]

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

X. Yi, Q. F. Yang, K. Y. Yang, and K. Vahala, “Imaging soliton dynamics in optical microcavities,” Nat. Commun. 9, 3565 (2018).
[Crossref]

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018).
[Crossref]

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1, 20 (2018).
[Crossref]

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

Z. C. Luo, M. Liu, A. P. Luo, and W. C. Xu, “Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers,” Chin. Phys. B 27, 094215 (2018).
[Crossref]

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018).
[Crossref]

T. Fan, Y. Zhou, M. Qiu, and H. Zhang, “Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine,” J. Innov. Opt. Heal. Sci. 11, 1830003 (2018).
[Crossref]

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, and A. Castellanos-Gomez, “Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials,” Chem. Soc. Rev. 47, 53–68 (2018).
[Crossref]

W. Liu, Y.-N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, M. Lei, L.-M. Liu, and Z. Wei, “Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials,” Photon. Res. 6, 220–227 (2018).
[Crossref]

B. G. B. Guo, “2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [invited],” Chin. Opt. Lett. 16, 020004 (2018).
[Crossref]

H. Hao, Z. Xu, T. Jiang, K. Wei, H. Li, X. Zheng, K. Yin, J. You, C. Shen, and X. A. Cheng, “Visualized charge transfer processes in monolayer composition-graded WS2xSe2(1−x) lateral heterojunctions via ultrafast microscopy mapping,” Opt. Express 26, 15867–15886 (2018).
[Crossref]

D. Steinberg, J. Diego Zapata, E. A. Thoroh de Souza, and L. A. M. Saito, “Mechanically exfoliated graphite onto D-shaped optical fiber for femtosecond mode-locked erbium-doped fiber laser,” J. Lightwave Technol. 36, 1868–1874 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5  μm wavelength,” Opt. Express 26, 8224–8231 (2018).
[Crossref]

C. A. Schäfer, H. Uehara, D. Konishi, S. Hattori, H. Matsukuma, M. Murakami, S. Shimizu, and S. Tokita, “Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm,” Opt. Lett. 43, 2340–2343 (2018).
[Crossref]

J. Zhang, T. Jiang, T. Zhou, H. Ouyang, C. Zhang, Z. Xin, Z. Wang, and X. A. Cheng, “Saturated absorption of different layered Bi2Se3 films in the resonance zone [invited],” Photon. Res. 6, C8–C14 (2018).
[Crossref]

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewloka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2018).
[Crossref]

M. Pawliszewska, A. Przewloka, and J. Sotor, “Stretched-pulse Ho-doped fiber laser mode-locked by graphene based saturable absorber,” Proc. SPIE 10512, 105121A (2018).
[Crossref]

W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, and Z. Wei, “Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration,” Nanotechnology 29, 174002 (2018).
[Crossref]

X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T. C. Wu, Q. Wu, Z. Zheng, and T. Hasan, “102  fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser,” Opt. Express 26, 12506–12513 (2018).
[Crossref]

B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200  fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26, 22750–22760 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

M. Liu, R. Tang, A.-P. Luo, W.-C. Xu, and Z.-C. Luo, “Graphene-decorated microfiber knot as a broadband resonator for ultrahigh repetition-rate pulse fiber lasers,” Photon. Res. 6, C1–C7 (2018).
[Crossref]

P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, and J. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43, 4417–4420 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photon. Res. 6, 535–541 (2018).
[Crossref]

J. Wang, J. Yin, T. He, and P. Yan, “Sb2Te3 mode-locked ultrafast fiber laser at 1.93  μm,” Chin. Phys. B 27, 084214 (2018).
[Crossref]

2017 (26)

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42, 5010–5013 (2017).
[Crossref]

M. Pawliszewska, Y. Ge, Z. Li, H. Zhang, and J. Sotor, “Fundamental and harmonic mode-locking at 2.1  μm with black phosphorus saturable absorber,” Opt. Express 25, 16916–16921 (2017).
[Crossref]

W. Liu, L. Pang, H. Han, M. Liu, M. Lei, S. Fang, H. Teng, and Z. Wei, “Tungsten disulfide saturable absorbers for 67  fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

H. Chen, J. Yin, J. Yang, X. Zhang, M. Liu, Z. Jiang, J. Wang, Z. Sun, T. Guo, W. Liu, and P. Yan, “Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics,” Opt. Lett. 42, 4279–4282 (2017).
[Crossref]

D. Na, K. Park, K.-H. Park, and Y.-W. Song, “Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers,” Nanotechnology 28, 475207 (2017).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7, 42357 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Funct. Mater. 29, 1702496 (2017).
[Crossref]

M.-Y. Liu, Y. Huang, Q.-Y. Chen, Z.-Y. Li, C. Cao, and Y. He, “Strain and electric field tunable electronic structure of buckled bismuthene,” RSC Adv. 7, 39546–39555 (2017).
[Crossref]

G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, and W. J. Blau, “Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region,” Laser Photon. Rev. 11, 1700166 (2017).
[Crossref]

J. Zhao, Z. Xu, Y. Zang, Y. Gong, X. Zheng, K. He, X. A. Cheng, and T. Jiang, “Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films,” Opt. Express 25, 14635–14643 (2017).
[Crossref]

X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017).
[Crossref]

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Funct. Mater. 29, 1605886 (2017).
[Crossref]

F. Wang, “Two-dimensional materials for ultrafast lasers,” Chin. Phys. B 26, 034202 (2017).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

M. Pumera and Z. Sofer, “2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus,” Adv. Mater. 29, 1605299 (2017).
[Crossref]

T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, and K. He, “Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy,” Adv. Opt. Mater. 5, 1600727 (2017).
[Crossref]

H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, and X. A. Cheng, “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures,” Nanoscale 9, 9325–9332 (2017).
[Crossref]

X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, “Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector,” Adv. Funct. Mater. 27, 1606834 (2017).
[Crossref]

T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, “A flexible transparent colorimetric wrist strap sensor,” Nanoscale 9, 869–874 (2017).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

2016 (27)

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

E. Aktürk, O. Ü. Aktürk, and S. Ciraci, “Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties,” Phys. Rev. B 94, 014115 (2016).
[Crossref]

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1  μm to 2.7  μm wavelength,” Laser Phys. Lett. 13, 045801 (2016).
[Crossref]

H. Yu, X. Zheng, K. Yin, X. A. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6, 603–609 (2016).
[Crossref]

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
[Crossref]

L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang, and S. Wen, “Broadband third order nonlinear optical responses of bismuth telluride nanosheets,” Opt. Mater. Express 6, 2244–2251 (2016).
[Crossref]

Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, “Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction,” Angew. Chem. (Int. Ed. Engl.) 55, 13849–13853 (2016).
[Crossref]

J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24, 30289–30295 (2016).
[Crossref]

K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016).
[Crossref]

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2016).
[Crossref]

Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, “Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength,” Appl. Phys. Lett. 108, 221901 (2016).
[Crossref]

M. Kowalczyk, J. Bogusławski, R. Zybała, K. Mars, A. Mikuła, G. Soboń, and J. Sotor, “Sb2Te3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers,” Opt. Mater. Express 6, 2273–2282 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
[Crossref]

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87, 031101 (2016).
[Crossref]

A. A. Latiff, M. F. M. Rusdi, M. B. Hisyam, H. Ahmad, and S. W. Harun, “Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime,” Proc. SPIE 10150, 101500U (2016).
[Crossref]

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photon. Technol. Lett. 28, 1245–1248 (2016).
[Crossref]

X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

J. Sotor and G. Soboń, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41, 56–59 (2016).
[Crossref]

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 6, 19997 (2016).
[Crossref]

2015 (24)

Y. L. Qi, H. Liu, H. Cui, Y. Q. Huang, Q. Y. Ning, M. Liu, Z. C. Luo, A. P. Luo, and W. C. Xu, “Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser,” Opt. Express 23, 17720–17726 (2015).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

H.-D. Xia, H.-P. Li, C.-Y. Lan, C. Li, G.-L. Deng, J.-F. Li, and Y. Liu, “Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber,” Chin. Phys. B 24, 084206 (2015).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers,” Opt. Mater. Express 5, 2884–2894 (2015).
[Crossref]

G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “260  fs and 1  nJ pulse generation from a compact, mode-locked Tm-doped fiber laser,” Opt. Express 23, 31446–31451 (2015).
[Crossref]

J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and G. Soboń, “Sub-90  fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber,” Opt. Express 23, 27503–27508 (2015).
[Crossref]

G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23, 9339–9346 (2015).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55  μm,” Opt. Express 23, 27509–27519 (2015).
[Crossref]

J. Sotor, G. Soboń, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95  GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23, 154–164 (2015).
[Crossref]

L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, “Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime,” Photon. Res. 3, 214–219 (2015).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

J. Sotor, G. Soboń, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

H. Zhang, X. He, W. Lin, R. Wei, F. Zhang, X. Du, G. Dong, and J. Qiu, “Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets,” Opt. Express 23, 13376–13383 (2015).
[Crossref]

X. Zheng, Y. Zhang, R. Chen, X. A. Cheng, Z. Xu, and T. Jiang, “Z-scan measurement of the nonlinear refractive index of monolayer WS2,” Opt. Express 23, 15616–15623 (2015).
[Crossref]

V. Tran, R. Fei, and L. Yang, “Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus,” 2D Mater. 2, 044014 (2015).
[Crossref]

G. Soboń, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [invited],” Photon. Res. 3, A56–A63 (2015).
[Crossref]

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, “Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure,” 2D Mater. 2, 035011 (2015).
[Crossref]

S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, “Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers,” Small 11, 5807–5813 (2015).
[Crossref]

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

2014 (23)

G. Soboń, P. R. Kaczmarek, D. Sliwinska, J. Sotor, and K. M. Abramski, “High-power fiber-based femtosecond CPA system at 1560  nm,” IEEE J. Sel. Top. Quantum Electron. 20, 492–495 (2014).
[Crossref]

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20, 702–713 (2014).
[Crossref]

M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, “25th anniversary article: Mxenes: a new family of two-dimensional materials,” Adv. Funct. Mater. 26, 992–1005 (2014).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

S. Lu and J. Leburton, “Electronic structures of defects and magnetic impurities in MoS2 monolayers,” Nanoscale Res. Lett. 9, 676 (2014).
[Crossref]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
[Crossref]

P. Miró, M. Audiffred, and T. Heine, “An atlas of two-dimensional materials,” Chem. Soc. Rev. 43, 6537–6554 (2014).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano 9, 372–377 (2014).
[Crossref]

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

T. Chen, C. Liao, D. N. Wang, and Y. Wang, “Polarization-locked vector solitons in a mode-locked fiber laser using polarization-sensitive few-layer graphene deposited D-shaped fiber saturable absorber,” J. Opt. Soc. Am. B 31, 1377–1382 (2014).
[Crossref]

H. Jeong, S. Y. Choi, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, and D.-I. Yeom, “All-fiber mode-locked laser oscillator with pulse energy of 34  nJ using a single-walled carbon nanotube saturable absorber,” Opt. Express 22, 22667–22672 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Opt. Express 22, 24055–24061 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
[Crossref]

W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [invited],” Appl. Opt. 53, 6554–6568 (2014).
[Crossref]

D. D. Hudson, “Invited paper: short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol. 20, 631–641 (2014).
[Crossref]

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20, 650–656 (2014).
[Crossref]

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2014).
[Crossref]

J. Sotor, G. Soboń, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014).
[Crossref]

2013 (6)

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

J. Zhao, S. Ruan, P. Yan, H. Zhang, Y. Yu, H. Wei, and J. Luo, “Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser,” Opt. Eng. 52, 106105 (2013).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

X. Zhang and Y. Xie, “Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies,” Chem. Soc. Rev. 42, 8187–8199 (2013).
[Crossref]

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

2012 (9)

K. J. Koski, C. D. Wessells, B. W. Reed, J. J. Cha, D. Kong, and Y. Cui, “Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons,” J. Am. Chem. Soc. 134, 13773–13779 (2012).
[Crossref]

S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30, 427–447 (2012).
[Crossref]

H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
[Crossref]

M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, “MXene: a promising transition metal carbide anode for lithium-ion batteries,” Electrochem. Commun. 16, 61–64 (2012).
[Crossref]

C. Y. Yeh, C. Y. Su, G. R. Lin, H. H. Kuo, L. J. Li, P. L. Huang, S. C. Lin, S. H. Huang, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20, 2460–2465 (2012).
[Crossref]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

A. Martinez and S. Yamashita, “10  GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101, 041118 (2012).
[Crossref]

G. Soboń, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

2010 (8)

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35, 3622–3624 (2010).
[Crossref]

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
[Crossref]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

2009 (3)

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
[Crossref]

2008 (1)

A. Reina, H. B. Son, L. Y. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, and J. Kong, “Transferring and identification of single- and few-layer graphene on arbitrary substrates,” J. Phys. Chem. C 112, 17741–17744 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Abramski, K. M.

J. Sotor, G. Soboń, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

J. Sotor, G. Soboń, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers,” Opt. Mater. Express 5, 2884–2894 (2015).
[Crossref]

G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23, 9339–9346 (2015).
[Crossref]

G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “260  fs and 1  nJ pulse generation from a compact, mode-locked Tm-doped fiber laser,” Opt. Express 23, 31446–31451 (2015).
[Crossref]

G. Soboń, P. R. Kaczmarek, D. Sliwinska, J. Sotor, and K. M. Abramski, “High-power fiber-based femtosecond CPA system at 1560  nm,” IEEE J. Sel. Top. Quantum Electron. 20, 492–495 (2014).
[Crossref]

J. Sotor, G. Soboń, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014).
[Crossref]

G. Soboń, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Ahmad, H.

A. A. Latiff, M. F. M. Rusdi, M. B. Hisyam, H. Ahmad, and S. W. Harun, “Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime,” Proc. SPIE 10150, 101500U (2016).
[Crossref]

Aksimsek, S.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Aktürk, E.

E. Aktürk, O. Ü. Aktürk, and S. Ciraci, “Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties,” Phys. Rev. B 94, 014115 (2016).
[Crossref]

Aktürk, O. Ü.

E. Aktürk, O. Ü. Aktürk, and S. Ciraci, “Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties,” Phys. Rev. B 94, 014115 (2016).
[Crossref]

Albrow-Owen, T.

Alvarez, J. V.

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

Anasori, B.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Funct. Mater. 29, 1702496 (2017).
[Crossref]

Audiffred, M.

P. Miró, M. Audiffred, and T. Heine, “An atlas of two-dimensional materials,” Chem. Soc. Rev. 43, 6537–6554 (2014).
[Crossref]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Bae, M.-K.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

Bai, J.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Bai, S.

S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, “Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers,” Small 11, 5807–5813 (2015).
[Crossref]

Baker-Murray, A. A.

G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, and W. J. Blau, “Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region,” Laser Photon. Rev. 11, 1700166 (2017).
[Crossref]

Balakrishnan, K.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Bao, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, “Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength,” Appl. Phys. Lett. 108, 221901 (2016).
[Crossref]

Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2016).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
[Crossref]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35, 3622–3624 (2010).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Bao, Q. L.

Barsoum, M. W.

M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, “25th anniversary article: Mxenes: a new family of two-dimensional materials,” Adv. Funct. Mater. 26, 992–1005 (2014).
[Crossref]

M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, “MXene: a promising transition metal carbide anode for lithium-ion batteries,” Electrochem. Commun. 16, 61–64 (2012).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Bhattacharya, S.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018).
[Crossref]

Billet, C.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Blanter, S. I.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

Blau, W. J.

G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, and W. J. Blau, “Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region,” Laser Photon. Rev. 11, 1700166 (2017).
[Crossref]

K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Boguslawski, J.

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewloka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2018).
[Crossref]

M. Kowalczyk, J. Bogusławski, R. Zybała, K. Mars, A. Mikuła, G. Soboń, and J. Sotor, “Sb2Te3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers,” Opt. Mater. Express 6, 2273–2282 (2016).
[Crossref]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Bradley, A. J.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Buscema, M.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

Cao, C.

M.-Y. Liu, Y. Huang, Q.-Y. Chen, Z.-Y. Li, C. Cao, and Y. He, “Strain and electric field tunable electronic structure of buckled bismuthene,” RSC Adv. 7, 39546–39555 (2017).
[Crossref]

Cao, R.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

Castellanos-Gomez, A.

R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, and A. Castellanos-Gomez, “Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials,” Chem. Soc. Rev. 47, 53–68 (2018).
[Crossref]

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

Cha, J. J.

K. J. Koski, C. D. Wessells, B. W. Reed, J. J. Cha, D. Kong, and Y. Cui, “Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons,” J. Am. Chem. Soc. 134, 13773–13779 (2012).
[Crossref]

Cha, Y.-H.

Chander, D. S.

Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, “Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure,” 2D Mater. 2, 035011 (2015).
[Crossref]

Chandran, B. K.

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

Chang, Y. M.

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
[Crossref]

Chekurov, N.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Chen, B.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Chen, C.

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Chen, G.

X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Chen, H.

Chen, J.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7, 42357 (2017).
[Crossref]

Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, “Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength,” Appl. Phys. Lett. 108, 221901 (2016).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

Chen, N.

Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, “Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction,” Angew. Chem. (Int. Ed. Engl.) 55, 13849–13853 (2016).
[Crossref]

Chen, Q.-Y.

M.-Y. Liu, Y. Huang, Q.-Y. Chen, Z.-Y. Li, C. Cao, and Y. He, “Strain and electric field tunable electronic structure of buckled bismuthene,” RSC Adv. 7, 39546–39555 (2017).
[Crossref]

Chen, R.

Chen, S.

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Chen, T.

Chen, X.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017).
[Crossref]

T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, “A flexible transparent colorimetric wrist strap sensor,” Nanoscale 9, 869–874 (2017).
[Crossref]

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, “Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers,” Small 11, 5807–5813 (2015).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Chen, X. H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano 9, 372–377 (2014).
[Crossref]

Chen, Y.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Cheng, C.-H.

K.-J. Peng, C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-H. Cheng, Y.-C. Chi, and G.-R. Lin, “Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching,” Nanophotonics 7, 207–215 (2018).
[Crossref]

Cheng, W. H.

Cheng, X.

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

Cheng, X. A.

T. Jiang, R. Miao, J. Zhao, Z. Xu, T. Zhou, K. Wei, J. You, X. Zheng, Z. Wang, and X. A. Cheng, “Electron-phonon coupling in topological insulator Bi2Se3 thin films with different substrates,” Chin. Opt. Lett. 17, 020005 (2019).
[Crossref]

H. Hao, Z. Xu, T. Jiang, K. Wei, H. Li, X. Zheng, K. Yin, J. You, C. Shen, and X. A. Cheng, “Visualized charge transfer processes in monolayer composition-graded WS2xSe2(1−x) lateral heterojunctions via ultrafast microscopy mapping,” Opt. Express 26, 15867–15886 (2018).
[Crossref]

J. Zhang, T. Jiang, T. Zhou, H. Ouyang, C. Zhang, Z. Xin, Z. Wang, and X. A. Cheng, “Saturated absorption of different layered Bi2Se3 films in the resonance zone [invited],” Photon. Res. 6, C8–C14 (2018).
[Crossref]

H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, and X. A. Cheng, “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures,” Nanoscale 9, 9325–9332 (2017).
[Crossref]

T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, and K. He, “Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy,” Adv. Opt. Mater. 5, 1600727 (2017).
[Crossref]

J. Zhao, Z. Xu, Y. Zang, Y. Gong, X. Zheng, K. He, X. A. Cheng, and T. Jiang, “Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films,” Opt. Express 25, 14635–14643 (2017).
[Crossref]

H. Yu, X. Zheng, K. Yin, X. A. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6, 603–609 (2016).
[Crossref]

X. Zheng, Y. Zhang, R. Chen, X. A. Cheng, Z. Xu, and T. Jiang, “Z-scan measurement of the nonlinear refractive index of monolayer WS2,” Opt. Express 23, 15616–15623 (2015).
[Crossref]

Chertopalov, S.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018).
[Crossref]

Chhowalla, M.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

Chi, Y.-C.

K.-J. Peng, C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-H. Cheng, Y.-C. Chi, and G.-R. Lin, “Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching,” Nanophotonics 7, 207–215 (2018).
[Crossref]

Chim, C. Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Choi, S. Y.

Chu, P. K.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Churkin, D. V.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1, 20 (2018).
[Crossref]

Ciraci, S.

E. Aktürk, O. Ü. Aktürk, and S. Ciraci, “Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties,” Phys. Rev. B 94, 014115 (2016).
[Crossref]

Coleman, J. N.

K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Come, J.

M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, “MXene: a promising transition metal carbide anode for lithium-ion batteries,” Electrochem. Commun. 16, 61–64 (2012).
[Crossref]

Crommie, M. F.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

Cui, H.

Cui, Y.

Y. Cui and X. Liu, “Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers,” Photon. Res. 7, 423–430 (2019).
[Crossref]

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

K. J. Koski, C. D. Wessells, B. W. Reed, J. J. Cha, D. Kong, and Y. Cui, “Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons,” J. Am. Chem. Soc. 134, 13773–13779 (2012).
[Crossref]

da Jornada, F. H.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

Dai, L.

Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, “Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction,” Angew. Chem. (Int. Ed. Engl.) 55, 13849–13853 (2016).
[Crossref]

Dai, Q.

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Dai, X.

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Datta, S.

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Deng, G.-L.

H.-D. Xia, H.-P. Li, C.-Y. Lan, C. Li, G.-L. Deng, J.-F. Li, and Y. Liu, “Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber,” Chin. Phys. B 24, 084206 (2015).
[Crossref]

Dhanabalan, S. C.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Diego Zapata, J.

Dong, B.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Dong, G.

Dong, Y.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018).
[Crossref]

Dou, Z.

Dresselhaus, M. S.

A. Reina, H. B. Son, L. Y. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, and J. Kong, “Transferring and identification of single- and few-layer graphene on arbitrary substrates,” J. Phys. Chem. C 112, 17741–17744 (2008).
[Crossref]

Du, J.

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7, 42357 (2017).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Du, X.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Dudley, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Dvoyrin, N. T. V.

N. T. V. Dvoyrin, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium fiber laser operating beyond 2.1  μm,” in European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, Munich, Germany (2015), paper CJ_7_4.

Dyatkin, B.

M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, “MXene: a promising transition metal carbide anode for lithium-ion batteries,” Electrochem. Commun. 16, 61–64 (2012).
[Crossref]

Eda, G.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

Fan, B.

A. Reina, H. B. Son, L. Y. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, and J. Kong, “Transferring and identification of single- and few-layer graphene on arbitrary substrates,” J. Phys. Chem. C 112, 17741–17744 (2008).
[Crossref]

Fan, D.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Fan, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Fan, T.

T. Fan, Y. Zhou, M. Qiu, and H. Zhang, “Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine,” J. Innov. Opt. Heal. Sci. 11, 1830003 (2018).
[Crossref]

Fang, L.

T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, and K. He, “Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy,” Adv. Opt. Mater. 5, 1600727 (2017).
[Crossref]

H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, and X. A. Cheng, “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures,” Nanoscale 9, 9325–9332 (2017).
[Crossref]

Fang, Q.

Fang, S.

Fang, X.

Fang, Z.

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Fei, R.

V. Tran, R. Fei, and L. Yang, “Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus,” 2D Mater. 2, 044014 (2015).
[Crossref]

Feng, D.

L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang, and S. Wen, “Broadband third order nonlinear optical responses of bismuth telluride nanosheets,” Opt. Mater. Express 6, 2244–2251 (2016).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano 9, 372–377 (2014).
[Crossref]

Feng, Y.

G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, and W. J. Blau, “Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region,” Laser Photon. Rev. 11, 1700166 (2017).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Ferrari, A. C.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Fischer, M. C.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87, 031101 (2016).
[Crossref]

Fleisher, A. J.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Fox, D.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Frisenda, R.

R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, and A. Castellanos-Gomez, “Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials,” Chem. Soc. Rev. 47, 53–68 (2018).
[Crossref]

Fu, B.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Gan, X.

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55  μm,” Opt. Express 23, 27509–27519 (2015).
[Crossref]

Gant, P.

R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, and A. Castellanos-Gomez, “Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials,” Chem. Soc. Rev. 47, 53–68 (2018).
[Crossref]

Gao, L.

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photon. Technol. Lett. 28, 1245–1248 (2016).
[Crossref]

Gao, L.-F.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

Gao, Y.

Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, “Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength,” Appl. Phys. Lett. 108, 221901 (2016).
[Crossref]

Ge, Q.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano 9, 372–377 (2014).
[Crossref]

Ge, Y.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

M. Pawliszewska, Y. Ge, Z. Li, H. Zhang, and J. Sotor, “Fundamental and harmonic mode-locking at 2.1  μm with black phosphorus saturable absorber,” Opt. Express 25, 16916–16921 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Ge, Y. Q.

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Genty, G.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Godbout, N.

Gogotsi, Y.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Funct. Mater. 29, 1702496 (2017).
[Crossref]

M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, “25th anniversary article: Mxenes: a new family of two-dimensional materials,” Adv. Funct. Mater. 26, 992–1005 (2014).
[Crossref]

M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, “MXene: a promising transition metal carbide anode for lithium-ion batteries,” Electrochem. Commun. 16, 61–64 (2012).
[Crossref]

Gong, K.

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

Gong, Y.

H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, and X. A. Cheng, “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures,” Nanoscale 9, 9325–9332 (2017).
[Crossref]

T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, and K. He, “Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy,” Adv. Opt. Mater. 5, 1600727 (2017).
[Crossref]

J. Zhao, Z. Xu, Y. Zang, Y. Gong, X. Zheng, K. He, X. A. Cheng, and T. Jiang, “Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films,” Opt. Express 25, 14635–14643 (2017).
[Crossref]

Gorbachev, R. V.

R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, and A. Castellanos-Gomez, “Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials,” Chem. Soc. Rev. 47, 53–68 (2018).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Groenendijk, D. J.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

Gu, M.

Guo, B.

Guo, B. G. B.

Guo, C.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Guo, J.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Guo, P.

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

Guo, Q.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Funct. Mater. 29, 1605886 (2017).
[Crossref]

Guo, T.

Guo, X.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Guo, Y.

T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, “A flexible transparent colorimetric wrist strap sensor,” Nanoscale 9, 869–874 (2017).
[Crossref]

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

Guo, Z.

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7, 42357 (2017).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1  μm to 2.7  μm wavelength,” Laser Phys. Lett. 13, 045801 (2016).
[Crossref]

J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24, 30289–30295 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Hai, T.

Han, D.

X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Han, H.

W. Liu, L. Pang, H. Han, M. Liu, M. Lei, S. Fang, H. Teng, and Z. Wei, “Tungsten disulfide saturable absorbers for 67  fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
[Crossref]

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 6, 19997 (2016).
[Crossref]

Han, W.

Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, “Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure,” 2D Mater. 2, 035011 (2015).
[Crossref]

Han, W.-S.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

Han, X.

X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Hänsch, T. W.

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13, 146–157 (2019).
[Crossref]

Hao, H.

Harun, S. W.

A. A. Latiff, M. F. M. Rusdi, M. B. Hisyam, H. Ahmad, and S. W. Harun, “Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime,” Proc. SPIE 10150, 101500U (2016).
[Crossref]

Hasan, M. Z.

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Hasan, T.

X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T. C. Wu, Q. Wu, Z. Zheng, and T. Hasan, “102  fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser,” Opt. Express 26, 12506–12513 (2018).
[Crossref]

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Hattori, S.

Haxsen, F.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20, 650–656 (2014).
[Crossref]

He, H.

He, J.

J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
[Crossref]

Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, “Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength,” Appl. Phys. Lett. 108, 221901 (2016).
[Crossref]

He, K.

J. Zhao, Z. Xu, Y. Zang, Y. Gong, X. Zheng, K. He, X. A. Cheng, and T. Jiang, “Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films,” Opt. Express 25, 14635–14643 (2017).
[Crossref]

T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, and K. He, “Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy,” Adv. Opt. Mater. 5, 1600727 (2017).
[Crossref]

He, T.

He, X.

He, Y.

M.-Y. Liu, Y. Huang, Q.-Y. Chen, Z.-Y. Li, C. Cao, and Y. He, “Strain and electric field tunable electronic structure of buckled bismuthene,” RSC Adv. 7, 39546–39555 (2017).
[Crossref]

He, Z.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Heine, T.

P. Miró, M. Audiffred, and T. Heine, “An atlas of two-dimensional materials,” Chem. Soc. Rev. 43, 6537–6554 (2014).
[Crossref]

Hisyam, M. B.

A. A. Latiff, M. F. M. Rusdi, M. B. Hisyam, H. Ahmad, and S. W. Harun, “Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime,” Proc. SPIE 10150, 101500U (2016).
[Crossref]

Ho, J. C.

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

Hodges, J. T.

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Hou, H.

W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, and Z. Wei, “Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration,” Nanotechnology 29, 174002 (2018).
[Crossref]

Hou, J.

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

Howe, R. C. T.

Hu, C.-X.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

Hu, G.

X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T. C. Wu, Q. Wu, Z. Zheng, and T. Hasan, “102  fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser,” Opt. Express 26, 12506–12513 (2018).
[Crossref]

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7, 42357 (2017).
[Crossref]

Hu, L.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018).
[Crossref]

Hu, Y.

Hua, Y.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

Huang, C.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

Huang, H.

Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019).
[Crossref]

B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200  fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26, 22750–22760 (2018).
[Crossref]

Huang, K.

X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017).
[Crossref]

Huang, P. L.

Huang, S. H.

Huang, W.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photon. Technol. Lett. 28, 1245–1248 (2016).
[Crossref]

Huang, Y.

M.-Y. Liu, Y. Huang, Q.-Y. Chen, Z.-Y. Li, C. Cao, and Y. He, “Strain and electric field tunable electronic structure of buckled bismuthene,” RSC Adv. 7, 39546–39555 (2017).
[Crossref]

Huang, Y. Q.

Huang, Y.-F.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

Huang, Z.

X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017).
[Crossref]

X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, “Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector,” Adv. Funct. Mater. 27, 1606834 (2017).
[Crossref]

Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, “Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure,” 2D Mater. 2, 035011 (2015).
[Crossref]

Huang, Z.-P.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

Hudson, D. D.

D. D. Hudson, “Invited paper: short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol. 20, 631–641 (2014).
[Crossref]

Hussain, Z.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

Island, J. O.

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

Jang, S.-Y.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

Jarillo-Herrero, P.

R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, and A. Castellanos-Gomez, “Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials,” Chem. Soc. Rev. 47, 53–68 (2018).
[Crossref]

Jeon, J.

Jeong, D.-Y.

Jeong, H.

Jhon, Y. I.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Funct. Mater. 29, 1702496 (2017).
[Crossref]

Jhon, Y. M.

Ji, J.

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

Jia, B.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Jia, Y.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Jiang, B.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Jiang, G.

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Jiang, Q.

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, “Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction,” Angew. Chem. (Int. Ed. Engl.) 55, 13849–13853 (2016).
[Crossref]

Jiang, T.

T. Jiang, R. Miao, J. Zhao, Z. Xu, T. Zhou, K. Wei, J. You, X. Zheng, Z. Wang, and X. A. Cheng, “Electron-phonon coupling in topological insulator Bi2Se3 thin films with different substrates,” Chin. Opt. Lett. 17, 020005 (2019).
[Crossref]

H. Hao, Z. Xu, T. Jiang, K. Wei, H. Li, X. Zheng, K. Yin, J. You, C. Shen, and X. A. Cheng, “Visualized charge transfer processes in monolayer composition-graded WS2xSe2(1−x) lateral heterojunctions via ultrafast microscopy mapping,” Opt. Express 26, 15867–15886 (2018).
[Crossref]

J. Zhang, T. Jiang, T. Zhou, H. Ouyang, C. Zhang, Z. Xin, Z. Wang, and X. A. Cheng, “Saturated absorption of different layered Bi2Se3 films in the resonance zone [invited],” Photon. Res. 6, C8–C14 (2018).
[Crossref]

H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, and X. A. Cheng, “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures,” Nanoscale 9, 9325–9332 (2017).
[Crossref]

T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, and K. He, “Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy,” Adv. Opt. Mater. 5, 1600727 (2017).
[Crossref]

J. Zhao, Z. Xu, Y. Zang, Y. Gong, X. Zheng, K. He, X. A. Cheng, and T. Jiang, “Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films,” Opt. Express 25, 14635–14643 (2017).
[Crossref]

H. Yu, X. Zheng, K. Yin, X. A. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6, 603–609 (2016).
[Crossref]

X. Zheng, Y. Zhang, R. Chen, X. A. Cheng, Z. Xu, and T. Jiang, “Z-scan measurement of the nonlinear refractive index of monolayer WS2,” Opt. Express 23, 15616–15623 (2015).
[Crossref]

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

Jiang, X.

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Jiang, Y.

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, “Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime,” Photon. Res. 3, 214–219 (2015).
[Crossref]

Jiang, Z.

Jiao, L. Y.

A. Reina, H. B. Son, L. Y. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, and J. Kong, “Transferring and identification of single- and few-layer graphene on arbitrary substrates,” J. Phys. Chem. C 112, 17741–17744 (2008).
[Crossref]

Jin, X.

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T. C. Wu, Q. Wu, Z. Zheng, and T. Hasan, “102  fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser,” Opt. Express 26, 12506–12513 (2018).
[Crossref]

Joo, B. S.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Jung, M.

Kaczmarek, P. R.

G. Soboń, P. R. Kaczmarek, D. Sliwinska, J. Sotor, and K. M. Abramski, “High-power fiber-based femtosecond CPA system at 1560  nm,” IEEE J. Sel. Top. Quantum Electron. 20, 492–495 (2014).
[Crossref]

Kane, C. L.

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Kelleher, E. J. R.

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kian Ping, L.

Kim, H.

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
[Crossref]

Kim, J.

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
[Crossref]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Kim, W.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Ko, S.

Kockaert, P.

Kong, D.

K. J. Koski, C. D. Wessells, B. W. Reed, J. J. Cha, D. Kong, and Y. Cui, “Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons,” J. Am. Chem. Soc. 134, 13773–13779 (2012).
[Crossref]

Kong, J.

A. Reina, H. B. Son, L. Y. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, and J. Kong, “Transferring and identification of single- and few-layer graphene on arbitrary substrates,” J. Phys. Chem. C 112, 17741–17744 (2008).
[Crossref]

Kong, L.

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1  μm to 2.7  μm wavelength,” Laser Phys. Lett. 13, 045801 (2016).
[Crossref]

Konishi, D.

Koo, J.

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Koski, K. J.

K. J. Koski, C. D. Wessells, B. W. Reed, J. J. Cha, D. Kong, and Y. Cui, “Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons,” J. Am. Chem. Soc. 134, 13773–13779 (2012).
[Crossref]

Kowalczyk, M.

Kracht, D.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20, 650–656 (2014).
[Crossref]

Krajewska, A.

Kuo, H. H.

Kurkov, A.

N. T. V. Dvoyrin, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium fiber laser operating beyond 2.1  μm,” in European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, Munich, Germany (2015), paper CJ_7_4.

Lai, J.

Lan, C.-Y.

H.-D. Xia, H.-P. Li, C.-Y. Lan, C. Li, G.-L. Deng, J.-F. Li, and Y. Liu, “Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber,” Chin. Phys. B 24, 084206 (2015).
[Crossref]

Latiff, A. A.

A. A. Latiff, M. F. M. Rusdi, M. B. Hisyam, H. Ahmad, and S. W. Harun, “Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime,” Proc. SPIE 10150, 101500U (2016).
[Crossref]

Laurell, F.

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewloka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2018).
[Crossref]

Leburton, J.

S. Lu and J. Leburton, “Electronic structures of defects and magnetic impurities in MoS2 monolayers,” Nanoscale Res. Lett. 9, 676 (2014).
[Crossref]

Lee, J.

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2014).
[Crossref]

Lee, J. H.

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Funct. Mater. 29, 1702496 (2017).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2014).
[Crossref]

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
[Crossref]

Lee, K.

Lee, S.

Lee, S. T.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Lei, M.

W. Liu, Y.-N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, M. Lei, L.-M. Liu, and Z. Wei, “Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials,” Photon. Res. 6, 220–227 (2018).
[Crossref]

W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, and Z. Wei, “Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration,” Nanotechnology 29, 174002 (2018).
[Crossref]

W. Liu, L. Pang, H. Han, M. Liu, M. Lei, S. Fang, H. Teng, and Z. Wei, “Tungsten disulfide saturable absorbers for 67  fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
[Crossref]

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 6, 19997 (2016).
[Crossref]

Lei, X.

S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, “Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers,” Small 11, 5807–5813 (2015).
[Crossref]

Li, C.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

H.-D. Xia, H.-P. Li, C.-Y. Lan, C. Li, G.-L. Deng, J.-F. Li, and Y. Liu, “Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber,” Chin. Phys. B 24, 084206 (2015).
[Crossref]

Li, D.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Li, H.

Li, H.-P.

H.-D. Xia, H.-P. Li, C.-Y. Lan, C. Li, G.-L. Deng, J.-F. Li, and Y. Liu, “Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber,” Chin. Phys. B 24, 084206 (2015).
[Crossref]

Li, J.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
[Crossref]

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photon. Res. 6, 535–541 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42, 5010–5013 (2017).
[Crossref]

X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, “Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector,” Adv. Funct. Mater. 27, 1606834 (2017).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Li, J.-F.

H.-D. Xia, H.-P. Li, C.-Y. Lan, C. Li, G.-L. Deng, J.-F. Li, and Y. Liu, “Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber,” Chin. Phys. B 24, 084206 (2015).
[Crossref]

Li, L.

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5  μm wavelength,” Opt. Express 26, 8224–8231 (2018).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano 9, 372–377 (2014).
[Crossref]

Li, L. J.

Li, L.-J.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

Li, P.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Li, S.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Li, X.

Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, “Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength,” Appl. Phys. Lett. 108, 221901 (2016).
[Crossref]

Li, Y.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Li, Y. J.

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photon. Technol. Lett. 28, 1245–1248 (2016).
[Crossref]

Li, Z.

X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, “Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector,” Adv. Funct. Mater. 27, 1606834 (2017).
[Crossref]

M. Pawliszewska, Y. Ge, Z. Li, H. Zhang, and J. Sotor, “Fundamental and harmonic mode-locking at 2.1  μm with black phosphorus saturable absorber,” Opt. Express 25, 16916–16921 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017).
[Crossref]

Li, Z.-Y.

M.-Y. Liu, Y. Huang, Q.-Y. Chen, Z.-Y. Li, C. Cao, and Y. He, “Strain and electric field tunable electronic structure of buckled bismuthene,” RSC Adv. 7, 39546–39555 (2017).
[Crossref]

Liang, T.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

Liang, W.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Liang, Y.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
[Crossref]

Liang, Z.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Liao, C.

Liao, L.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Lin, G. R.

Lin, G.-R.

K.-J. Peng, C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-H. Cheng, Y.-C. Chi, and G.-R. Lin, “Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching,” Nanophotonics 7, 207–215 (2018).
[Crossref]

Lin, H.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Lin, R.

Lin, S. C.

Lin, W.

Lin, Y.-H.

K.-J. Peng, C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-H. Cheng, Y.-C. Chi, and G.-R. Lin, “Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching,” Nanophotonics 7, 207–215 (2018).
[Crossref]

Lindberg, R.

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewloka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2018).
[Crossref]

Lipsanen, H.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Liu, A.

Liu, C.

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Liu, F.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Liu, H.

Liu, J.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24, 30289–30295 (2016).
[Crossref]

J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24, 30289–30295 (2016).
[Crossref]

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Opt. Express 22, 24055–24061 (2014).
[Crossref]

Liu, L.-M.

Liu, M.

W. Liu, Y.-N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, M. Lei, L.-M. Liu, and Z. Wei, “Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials,” Photon. Res. 6, 220–227 (2018).
[Crossref]

Z. C. Luo, M. Liu, A. P. Luo, and W. C. Xu, “Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers,” Chin. Phys. B 27, 094215 (2018).
[Crossref]

W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, and Z. Wei, “Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration,” Nanotechnology 29, 174002 (2018).
[Crossref]

M. Liu, R. Tang, A.-P. Luo, W.-C. Xu, and Z.-C. Luo, “Graphene-decorated microfiber knot as a broadband resonator for ultrahigh repetition-rate pulse fiber lasers,” Photon. Res. 6, C1–C7 (2018).
[Crossref]

W. Liu, L. Pang, H. Han, M. Liu, M. Lei, S. Fang, H. Teng, and Z. Wei, “Tungsten disulfide saturable absorbers for 67  fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
[Crossref]

H. Chen, J. Yin, J. Yang, X. Zhang, M. Liu, Z. Jiang, J. Wang, Z. Sun, T. Guo, W. Liu, and P. Yan, “Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics,” Opt. Lett. 42, 4279–4282 (2017).
[Crossref]

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photon. Technol. Lett. 28, 1245–1248 (2016).
[Crossref]

Y. L. Qi, H. Liu, H. Cui, Y. Q. Huang, Q. Y. Ning, M. Liu, Z. C. Luo, A. P. Luo, and W. C. Xu, “Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser,” Opt. Express 23, 17720–17726 (2015).
[Crossref]

H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

Liu, M.-Y.

M.-Y. Liu, Y. Huang, Q.-Y. Chen, Z.-Y. Li, C. Cao, and Y. He, “Strain and electric field tunable electronic structure of buckled bismuthene,” RSC Adv. 7, 39546–39555 (2017).
[Crossref]

Liu, R.-T.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

Liu, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Liu, W.

Liu, X.

Y. Cui and X. Liu, “Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers,” Photon. Res. 7, 423–430 (2019).
[Crossref]

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Funct. Mater. 29, 1605886 (2017).
[Crossref]

X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Liu, Y.

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, and K. He, “Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy,” Adv. Opt. Mater. 5, 1600727 (2017).
[Crossref]

H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, and X. A. Cheng, “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures,” Nanoscale 9, 9325–9332 (2017).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

H.-D. Xia, H.-P. Li, C.-Y. Lan, C. Li, G.-L. Deng, J.-F. Li, and Y. Liu, “Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber,” Chin. Phys. B 24, 084206 (2015).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Liu, Z.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Liu, Z. F.

A. Reina, H. B. Son, L. Y. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, and J. Kong, “Transferring and identification of single- and few-layer graphene on arbitrary substrates,” J. Phys. Chem. C 112, 17741–17744 (2008).
[Crossref]

Loh, K. P.

Long, D. A.

Lotya, M.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Louie, S. G.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

Lu, F.

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

Lu, K.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Lu, L.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Lu, R.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Lu, S.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang, and S. Wen, “Broadband third order nonlinear optical responses of bismuth telluride nanosheets,” Opt. Mater. Express 6, 2244–2251 (2016).
[Crossref]

L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, “Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime,” Photon. Res. 3, 214–219 (2015).
[Crossref]

S. Lu and J. Leburton, “Electronic structures of defects and magnetic impurities in MoS2 monolayers,” Nanoscale Res. Lett. 9, 676 (2014).
[Crossref]

Lu, S. B.

Lu, Y.

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

Luo, A. P.

Luo, A.-P.

Luo, H.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Luo, J.

J. Zhao, S. Ruan, P. Yan, H. Zhang, Y. Yu, H. Wei, and J. Luo, “Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser,” Opt. Eng. 52, 106105 (2013).
[Crossref]

Luo, L.

S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, “Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers,” Small 11, 5807–5813 (2015).
[Crossref]

Luo, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Luo, Y.

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

Luo, Z. C.

Luo, Z.-C.

Ma, G.

W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, and Z. Wei, “Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration,” Nanotechnology 29, 174002 (2018).
[Crossref]

Ma, J.

Ma, W.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24, 30289–30295 (2016).
[Crossref]

Macherzynski, W.

J. Sotor, G. Soboń, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

J. Sotor, G. Soboń, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

Magan, J. J.

K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016).
[Crossref]

Mak, K. F.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

Maleski, K.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018).
[Crossref]

Mao, D.

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55  μm,” Opt. Express 23, 27509–27519 (2015).
[Crossref]

Mars, K.

Martinez, A.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20, 702–713 (2014).
[Crossref]

A. Martinez and S. Yamashita, “10  GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101, 041118 (2012).
[Crossref]

Martynkien, T.

Massar, S.

Matsukuma, H.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Mei, T.

Mergo, P.

Merolla, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Miao, L.

L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang, and S. Wen, “Broadband third order nonlinear optical responses of bismuth telluride nanosheets,” Opt. Mater. Express 6, 2244–2251 (2016).
[Crossref]

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, “Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime,” Photon. Res. 3, 214–219 (2015).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Miao, R.

Mikula, A.

Miró, P.

P. Miró, M. Audiffred, and T. Heine, “An atlas of two-dimensional materials,” Chem. Soc. Rev. 43, 6537–6554 (2014).
[Crossref]

Mo, S.-K.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

Mochalin, V. N.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018).
[Crossref]

M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, “25th anniversary article: Mxenes: a new family of two-dimensional materials,” Adv. Funct. Mater. 26, 992–1005 (2014).
[Crossref]

Moore, J. E.

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Mu, H.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, “Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength,” Appl. Phys. Lett. 108, 221901 (2016).
[Crossref]

Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2016).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Murakami, M.

Na, D.

D. Na, K. Park, K.-H. Park, and Y.-W. Song, “Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers,” Nanotechnology 28, 475207 (2017).
[Crossref]

Naguib, M.

M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, “25th anniversary article: Mxenes: a new family of two-dimensional materials,” Adv. Funct. Mater. 26, 992–1005 (2014).
[Crossref]

M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, “MXene: a promising transition metal carbide anode for lithium-ion batteries,” Electrochem. Commun. 16, 61–64 (2012).
[Crossref]

Narasimha-Acharya, K. L.

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

Närhi, M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Navarro-Moratalla, E.

R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, and A. Castellanos-Gomez, “Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials,” Chem. Soc. Rev. 47, 53–68 (2018).
[Crossref]

Neumann, J.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20, 650–656 (2014).
[Crossref]

Ngo, N. Q.

N. Q. Ngo, Ultra-Fast Fiber Lasers: Principles and Applications with MATLAB Models (CRC Press, 2011).

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Ning, Q. Y.

Norwood, R. A.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [invited],” Appl. Opt. 53, 6554–6568 (2014).
[Crossref]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

O’Neill, A.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Ou, X.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano 9, 372–377 (2014).
[Crossref]

Ouyang, H.

OuYang, Y.

W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, and Z. Wei, “Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration,” Nanotechnology 29, 174002 (2018).
[Crossref]

Palacios, J. J.

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

Paletko, P.

J. Sotor, G. Soboń, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

J. Sotor, G. Soboń, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

Pan, A.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

Pang, L.

W. Liu, L. Pang, H. Han, M. Liu, M. Lei, S. Fang, H. Teng, and Z. Wei, “Tungsten disulfide saturable absorbers for 67  fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
[Crossref]

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 6, 19997 (2016).
[Crossref]

Park, J.

Park, K.

D. Na, K. Park, K.-H. Park, and Y.-W. Song, “Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers,” Nanotechnology 28, 475207 (2017).
[Crossref]

Park, K.-H.

D. Na, K. Park, K.-H. Park, and Y.-W. Song, “Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers,” Nanotechnology 28, 475207 (2017).
[Crossref]

Pasiskevicius, V.

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewloka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2018).
[Crossref]

Pasternak, I.

Pawliszewska, M.

M. Pawliszewska, A. Przewloka, and J. Sotor, “Stretched-pulse Ho-doped fiber laser mode-locked by graphene based saturable absorber,” Proc. SPIE 10512, 105121A (2018).
[Crossref]

M. Pawliszewska, Y. Ge, Z. Li, H. Zhang, and J. Sotor, “Fundamental and harmonic mode-locking at 2.1  μm with black phosphorus saturable absorber,” Opt. Express 25, 16916–16921 (2017).
[Crossref]

Peng, J.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1, 20 (2018).
[Crossref]

Peng, K.-J.

K.-J. Peng, C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-H. Cheng, Y.-C. Chi, and G.-R. Lin, “Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching,” Nanophotonics 7, 207–215 (2018).
[Crossref]

Peng, P.

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7, 42357 (2017).
[Crossref]

Perez De Lara, D.

R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, and A. Castellanos-Gomez, “Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials,” Chem. Soc. Rev. 47, 53–68 (2018).
[Crossref]

Peyghambarian, N.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [invited],” Appl. Opt. 53, 6554–6568 (2014).
[Crossref]

Picqué, N.

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13, 146–157 (2019).
[Crossref]

Plusquellic, D. F.

Podila, R.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018).
[Crossref]

Ponraj, J. S.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Popa, D.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Popov, S. V.

Prada, E.

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

Presser, V.

M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, “MXene: a promising transition metal carbide anode for lithium-ion batteries,” Electrochem. Commun. 16, 61–64 (2012).
[Crossref]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Przewloka, A.

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewloka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2018).
[Crossref]

M. Pawliszewska, A. Przewloka, and J. Sotor, “Stretched-pulse Ho-doped fiber laser mode-locked by graphene based saturable absorber,” Proc. SPIE 10512, 105121A (2018).
[Crossref]

Pumera, M.

M. Pumera and Z. Sofer, “2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus,” Adv. Mater. 29, 1605299 (2017).
[Crossref]

Qi, M.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Qi, X.

X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, “Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector,” Adv. Funct. Mater. 27, 1606834 (2017).
[Crossref]

X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017).
[Crossref]

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, “Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure,” 2D Mater. 2, 035011 (2015).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Qi, Y. L.

Qian, L.

Qiao, H.

X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, “Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector,” Adv. Funct. Mater. 27, 1606834 (2017).
[Crossref]

Qin, Z.

Qiu, D. Y.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

Qiu, J.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Funct. Mater. 29, 1605886 (2017).
[Crossref]

H. Zhang, X. He, W. Lin, R. Wei, F. Zhang, X. Du, G. Dong, and J. Qiu, “Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets,” Opt. Express 23, 13376–13383 (2015).
[Crossref]

Qiu, M.

T. Fan, Y. Zhou, M. Qiu, and H. Zhang, “Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine,” J. Innov. Opt. Heal. Sci. 11, 1830003 (2018).
[Crossref]

Qiu, Y.

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

Rao, A. M.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Funct. Mater. 30, 1705714 (2018).
[Crossref]

Reed, B. W.

K. J. Koski, C. D. Wessells, B. W. Reed, J. J. Cha, D. Kong, and Y. Cui, “Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons,” J. Am. Chem. Soc. 134, 13773–13779 (2012).
[Crossref]

Reed, Z. D.

Reina, A.

A. Reina, H. B. Son, L. Y. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, and J. Kong, “Transferring and identification of single- and few-layer graphene on arbitrary substrates,” J. Phys. Chem. C 112, 17741–17744 (2008).
[Crossref]

Ren, L.

Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, “Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure,” 2D Mater. 2, 035011 (2015).
[Crossref]

Ren, X.

X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, “Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector,” Adv. Funct. Mater. 27, 1606834 (2017).
[Crossref]

X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017).
[Crossref]

Ren, Z.

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Riikonen, J.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Robles, F. E.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87, 031101 (2016).
[Crossref]

Rotermund, F.

Ruan, S.

Ruan, W.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

Rusdi, M. F. M.

A. A. Latiff, M. F. M. Rusdi, M. B. Hisyam, H. Ahmad, and S. W. Harun, “Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime,” Proc. SPIE 10150, 101500U (2016).
[Crossref]

Rutkowski, L.

Ryczkowski, P.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Saito, L. A. M.

Sang, D.

X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, “Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector,” Adv. Funct. Mater. 27, 1606834 (2017).
[Crossref]

Schäfer, C. A.

Schunemann, P. G.

Seo, M.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Funct. Mater. 29, 1702496 (2017).
[Crossref]

Shalibeik, H.

H. Shalibeik, Rare-Earth-Doped Fiber Lasers and Amplifiers (Cuvillier Verlag, 2007).

Shan, J.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

Shen, C.

Shen, D.

Shen, X.

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shen, Z.-X.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

Shi, B.

Shi, M.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

Shi, S.-F.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

Shi, W.

Shimizu, S.

Shin, H. S.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

Shivananju, B. N.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Si, C.

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

Simon, P.

M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, “MXene: a promising transition metal carbide anode for lithium-ion batteries,” Electrochem. Commun. 16, 61–64 (2012).
[Crossref]

Sliwinska, D.

G. Soboń, P. R. Kaczmarek, D. Sliwinska, J. Sotor, and K. M. Abramski, “High-power fiber-based femtosecond CPA system at 1560  nm,” IEEE J. Sel. Top. Quantum Electron. 20, 492–495 (2014).
[Crossref]

Sobon, G.

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018).
[Crossref]

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

J. Sotor and G. Soboń, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016).
[Crossref]

M. Kowalczyk, J. Bogusławski, R. Zybała, K. Mars, A. Mikuła, G. Soboń, and J. Sotor, “Sb2Te3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers,” Opt. Mater. Express 6, 2273–2282 (2016).
[Crossref]

J. Sotor, G. Soboń, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

G. Soboń, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [invited],” Photon. Res. 3, A56–A63 (2015).
[Crossref]

G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “260  fs and 1  nJ pulse generation from a compact, mode-locked Tm-doped fiber laser,” Opt. Express 23, 31446–31451 (2015).
[Crossref]

J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and G. Soboń, “Sub-90  fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber,” Opt. Express 23, 27503–27508 (2015).
[Crossref]

G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23, 9339–9346 (2015).
[Crossref]

J. Sotor, G. Soboń, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers,” Opt. Mater. Express 5, 2884–2894 (2015).
[Crossref]

J. Sotor, G. Soboń, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014).
[Crossref]

G. Soboń, P. R. Kaczmarek, D. Sliwinska, J. Sotor, and K. M. Abramski, “High-power fiber-based femtosecond CPA system at 1560  nm,” IEEE J. Sel. Top. Quantum Electron. 20, 492–495 (2014).
[Crossref]

G. Soboń, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Sofer, Z.

M. Pumera and Z. Sofer, “2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus,” Adv. Mater. 29, 1605299 (2017).
[Crossref]

Soklaski, R.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
[Crossref]

Son, H. B.

A. Reina, H. B. Son, L. Y. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, and J. Kong, “Transferring and identification of single- and few-layer graphene on arbitrary substrates,” J. Phys. Chem. C 112, 17741–17744 (2008).
[Crossref]

Song, J.

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Song, Y.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
[Crossref]

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Opt. Express 22, 24055–24061 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

Song, Y.-W.

D. Na, K. Park, K.-H. Park, and Y.-W. Song, “Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers,” Nanotechnology 28, 475207 (2017).
[Crossref]

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97, 211102 (2010).
[Crossref]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

Sorokin, E.

N. T. V. Dvoyrin, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium fiber laser operating beyond 2.1  μm,” in European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, Munich, Germany (2015), paper CJ_7_4.

Sorokina, I.

N. T. V. Dvoyrin, E. Sorokin, I. Sorokina, and A. Kurkov, “Graphene-mode-locked Holmium fiber laser operating beyond 2.1  μm,” in European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, Munich, Germany (2015), paper CJ_7_4.

Sorokina, M.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1, 20 (2018).
[Crossref]

Sotor, J.

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26, 11756–11763 (2018).
[Crossref]

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

M. Pawliszewska, A. Przewloka, and J. Sotor, “Stretched-pulse Ho-doped fiber laser mode-locked by graphene based saturable absorber,” Proc. SPIE 10512, 105121A (2018).
[Crossref]

R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewloka, F. Laurell, V. Pasiskevicius, and J. Sotor, “Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 1101709 (2018).
[Crossref]

M. Pawliszewska, Y. Ge, Z. Li, H. Zhang, and J. Sotor, “Fundamental and harmonic mode-locking at 2.1  μm with black phosphorus saturable absorber,” Opt. Express 25, 16916–16921 (2017).
[Crossref]

J. Sotor and G. Soboń, “24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016).
[Crossref]

M. Kowalczyk, J. Bogusławski, R. Zybała, K. Mars, A. Mikuła, G. Soboń, and J. Sotor, “Sb2Te3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers,” Opt. Mater. Express 6, 2273–2282 (2016).
[Crossref]

J. Sotor, G. Soboń, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23, 9339–9346 (2015).
[Crossref]

J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and G. Soboń, “Sub-90  fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber,” Opt. Express 23, 27503–27508 (2015).
[Crossref]

G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “260  fs and 1  nJ pulse generation from a compact, mode-locked Tm-doped fiber laser,” Opt. Express 23, 31446–31451 (2015).
[Crossref]

G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers,” Opt. Mater. Express 5, 2884–2894 (2015).
[Crossref]

J. Sotor, G. Soboń, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

G. Soboń, P. R. Kaczmarek, D. Sliwinska, J. Sotor, and K. M. Abramski, “High-power fiber-based femtosecond CPA system at 1560  nm,” IEEE J. Sel. Top. Quantum Electron. 20, 492–495 (2014).
[Crossref]

J. Sotor, G. Soboń, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014).
[Crossref]

G. Soboń, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Steele, G. A.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

Steinberg, D.

Strupinski, W.

Su, C. Y.

Su, L.

Sugavanam, S.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1, 20 (2018).
[Crossref]

Sun, B.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

Sun, C.

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, “Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers,” Small 11, 5807–5813 (2015).
[Crossref]

Sun, C.-L.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

Sun, H.

H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, and X. A. Cheng, “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures,” Nanoscale 9, 9325–9332 (2017).
[Crossref]

T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, and K. He, “Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy,” Adv. Opt. Mater. 5, 1600727 (2017).
[Crossref]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Sun, X.

T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, “A flexible transparent colorimetric wrist strap sensor,” Nanoscale 9, 869–874 (2017).
[Crossref]

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, “Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers,” Small 11, 5807–5813 (2015).
[Crossref]

Sun, Z.

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

H. Chen, J. Yin, J. Yang, X. Zhang, M. Liu, Z. Jiang, J. Wang, Z. Sun, T. Guo, W. Liu, and P. Yan, “Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics,” Opt. Lett. 42, 4279–4282 (2017).
[Crossref]

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Szydlowska, B. M.

G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, and W. J. Blau, “Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region,” Laser Photon. Rev. 11, 1700166 (2017).
[Crossref]

K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016).
[Crossref]

Taberna, P.-L.

M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, “MXene: a promising transition metal carbide anode for lithium-ion batteries,” Electrochem. Commun. 16, 61–64 (2012).
[Crossref]

Tang, D.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Tang, D. Y.

Tang, H.

Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, “Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure,” 2D Mater. 2, 035011 (2015).
[Crossref]

Tang, R.

Tang, X.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

Tang, Y.-L.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

Tao, L.

J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
[Crossref]

Tarasov, N.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1, 20 (2018).
[Crossref]

Tarka, J.

Taylor, J. R.

Teng, H.

Thoroh de Souza, E. A.

Tian, J.

Tian, W.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 6, 19997 (2016).
[Crossref]

Tokita, S.

Torrisi, F.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Tran, V.

V. Tran, R. Fei, and L. Yang, “Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus,” 2D Mater. 2, 044014 (2015).
[Crossref]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
[Crossref]

Turitsyn, S. K.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1, 20 (2018).
[Crossref]

Uehara, H.

Ugeda, M. M.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

Vahala, K.

X. Yi, Q. F. Yang, K. Y. Yang, and K. Vahala, “Imaging soliton dynamics in optical microcavities,” Nat. Commun. 9, 3565 (2018).
[Crossref]

van der Zant, H. S.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14, 3347–3352 (2014).
[Crossref]

van der Zant, H. S. J.

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

Vicarelli, L.

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

Virally, S.

Wan, P.

T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, “A flexible transparent colorimetric wrist strap sensor,” Nanoscale 9, 869–874 (2017).
[Crossref]

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, “Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers,” Small 11, 5807–5813 (2015).
[Crossref]

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

Wandt, D.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20, 650–656 (2014).
[Crossref]

Wang, C.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019).
[Crossref]

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

Wang, D. H.

Wang, D. N.

Wang, F.

F. Wang, “Two-dimensional materials for ultrafast lasers,” Chin. Phys. B 26, 034202 (2017).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Wang, F.-Z.

Wang, G.

G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, and W. J. Blau, “Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region,” Laser Photon. Rev. 11, 1700166 (2017).
[Crossref]

K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016).
[Crossref]

Wang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Wang, H.-Y.

K.-J. Peng, C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-H. Cheng, Y.-C. Chi, and G.-R. Lin, “Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching,” Nanophotonics 7, 207–215 (2018).
[Crossref]

Wang, J.

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photon. Res. 6, 535–541 (2018).
[Crossref]

J. Wang, J. Yin, T. He, and P. Yan, “Sb2Te3 mode-locked ultrafast fiber laser at 1.93  μm,” Chin. Phys. B 27, 084214 (2018).
[Crossref]

P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, and J. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43, 4417–4420 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photon. Res. 6, 535–541 (2018).
[Crossref]

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, and W. J. Blau, “Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region,” Laser Photon. Rev. 11, 1700166 (2017).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

H. Chen, J. Yin, J. Yang, X. Zhang, M. Liu, Z. Jiang, J. Wang, Z. Sun, T. Guo, W. Liu, and P. Yan, “Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics,” Opt. Lett. 42, 4279–4282 (2017).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42, 5010–5013 (2017).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42, 5010–5013 (2017).
[Crossref]

K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016).
[Crossref]

J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24, 30289–30295 (2016).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Wang, J. J.

G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, and W. J. Blau, “Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region,” Laser Photon. Rev. 11, 1700166 (2017).
[Crossref]

K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016).
[Crossref]

Wang, K.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, and W. J. Blau, “Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region,” Laser Photon. Rev. 11, 1700166 (2017).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Wang, Q.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang, and S. Wen, “Broadband third order nonlinear optical responses of bismuth telluride nanosheets,” Opt. Mater. Express 6, 2244–2251 (2016).
[Crossref]

Wang, R.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Wang, S.

Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, “Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction,” Angew. Chem. (Int. Ed. Engl.) 55, 13849–13853 (2016).
[Crossref]

Wang, S. H.

Wang, T.

T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, “A flexible transparent colorimetric wrist strap sensor,” Nanoscale 9, 869–874 (2017).
[Crossref]

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

Wang, W.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Wang, Y.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019).
[Crossref]

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, “Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength,” Appl. Phys. Lett. 108, 221901 (2016).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55  μm,” Opt. Express 23, 27509–27519 (2015).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55  μm,” Opt. Express 23, 27509–27519 (2015).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55  μm,” Opt. Express 23, 27509–27519 (2015).
[Crossref]

T. Chen, C. Liao, D. N. Wang, and Y. Wang, “Polarization-locked vector solitons in a mode-locked fiber laser using polarization-sensitive few-layer graphene deposited D-shaped fiber saturable absorber,” J. Opt. Soc. Am. B 31, 1377–1382 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Z.

T. Jiang, R. Miao, J. Zhao, Z. Xu, T. Zhou, K. Wei, J. You, X. Zheng, Z. Wang, and X. A. Cheng, “Electron-phonon coupling in topological insulator Bi2Se3 thin films with different substrates,” Chin. Opt. Lett. 17, 020005 (2019).
[Crossref]

J. Zhang, T. Jiang, T. Zhou, H. Ouyang, C. Zhang, Z. Xin, Z. Wang, and X. A. Cheng, “Saturated absorption of different layered Bi2Se3 films in the resonance zone [invited],” Photon. Res. 6, C8–C14 (2018).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2016).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Wang, Z. X.

Warren, W. S.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87, 031101 (2016).
[Crossref]

Wei, H.

J. Zhao, S. Ruan, P. Yan, H. Zhang, Y. Yu, H. Wei, and J. Luo, “Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser,” Opt. Eng. 52, 106105 (2013).
[Crossref]

Wei, K.

Wei, R.

Wei, Z.

W. Liu, Y.-N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, M. Lei, L.-M. Liu, and Z. Wei, “Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials,” Photon. Res. 6, 220–227 (2018).
[Crossref]

W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, and Z. Wei, “Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration,” Nanotechnology 29, 174002 (2018).
[Crossref]

W. Liu, L. Pang, H. Han, M. Liu, M. Lei, S. Fang, H. Teng, and Z. Wei, “Tungsten disulfide saturable absorbers for 67  fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
[Crossref]

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 6, 19997 (2016).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Wen, B.

Wen, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

Wen, S.

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41, 56–59 (2016).
[Crossref]

L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang, and S. Wen, “Broadband third order nonlinear optical responses of bismuth telluride nanosheets,” Opt. Mater. Express 6, 2244–2251 (2016).
[Crossref]

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, “Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime,” Photon. Res. 3, 214–219 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Wen, S. C.

Wen, X.

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

Wessells, C. D.

K. J. Koski, C. D. Wessells, B. W. Reed, J. J. Cha, D. Kong, and Y. Cui, “Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons,” J. Am. Chem. Soc. 134, 13773–13779 (2012).
[Crossref]

Wienke, A.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20, 650–656 (2014).
[Crossref]

Wilson, J. W.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87, 031101 (2016).
[Crossref]

Wu, C.-L.

K.-J. Peng, C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-H. Cheng, Y.-C. Chi, and G.-R. Lin, “Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching,” Nanophotonics 7, 207–215 (2018).
[Crossref]

Wu, H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano 9, 372–377 (2014).
[Crossref]

Wu, K.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

Wu, L.

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Wu, Q.

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T. C. Wu, Q. Wu, Z. Zheng, and T. Hasan, “102  fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser,” Opt. Express 26, 12506–12513 (2018).
[Crossref]

Wu, T. C.

Wu, X.

X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35, 3622–3624 (2010).
[Crossref]

Wu, Z. X.

Xia, F.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Xia, H.-D.

H.-D. Xia, H.-P. Li, C.-Y. Lan, C. Li, G.-L. Deng, J.-F. Li, and Y. Liu, “Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber,” Chin. Phys. B 24, 084206 (2015).
[Crossref]

Xiang, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Xiao, P.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Xiao, S.

Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, “Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength,” Appl. Phys. Lett. 108, 221901 (2016).
[Crossref]

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Xiao, X.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

Xie, G.

Xie, Y.

X. Zhang and Y. Xie, “Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies,” Chem. Soc. Rev. 42, 8187–8199 (2013).
[Crossref]

Xin, Z.

Xing, F.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

Xu, B.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20, 702–713 (2014).
[Crossref]

Xu, G.

X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017).
[Crossref]

Xu, J.

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

Xu, L.

Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, “Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction,” Angew. Chem. (Int. Ed. Engl.) 55, 13849–13853 (2016).
[Crossref]

Xu, M.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

Xu, S.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Xu, W. C.

Xu, W.-C.

Xu, Y.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Xu, Z.

Xue, H.

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Xue, Y.

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Yamashita, S.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20, 702–713 (2014).
[Crossref]

S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30, 427–447 (2012).
[Crossref]

A. Martinez and S. Yamashita, “10  GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101, 041118 (2012).
[Crossref]

Yan, H.

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, “Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers,” Small 11, 5807–5813 (2015).
[Crossref]

Yan, P.

P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, and J. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43, 4417–4420 (2018).
[Crossref]

J. Wang, J. Yin, T. He, and P. Yan, “Sb2Te3 mode-locked ultrafast fiber laser at 1.93  μm,” Chin. Phys. B 27, 084214 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photon. Res. 6, 535–541 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42, 5010–5013 (2017).
[Crossref]

H. Chen, J. Yin, J. Yang, X. Zhang, M. Liu, Z. Jiang, J. Wang, Z. Sun, T. Guo, W. Liu, and P. Yan, “Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics,” Opt. Lett. 42, 4279–4282 (2017).
[Crossref]

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs mode-locked erbium-doped fiber laser with topological insulator,” Sci. Rep. 6, 19997 (2016).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95  GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23, 154–164 (2015).
[Crossref]

J. Zhao, S. Ruan, P. Yan, H. Zhang, Y. Yu, H. Wei, and J. Luo, “Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser,” Opt. Eng. 52, 106105 (2013).
[Crossref]

Yan, Y.

H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, and X. A. Cheng, “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures,” Nanoscale 9, 9325–9332 (2017).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yang, C.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

Yang, H.

X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Yang, J.

Yang, K. Y.

X. Yi, Q. F. Yang, K. Y. Yang, and K. Vahala, “Imaging soliton dynamics in optical microcavities,” Nat. Commun. 9, 3565 (2018).
[Crossref]

Yang, L.

V. Tran, R. Fei, and L. Yang, “Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus,” 2D Mater. 2, 044014 (2015).
[Crossref]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
[Crossref]

Yang, Q. F.

X. Yi, Q. F. Yang, K. Y. Yang, and K. Vahala, “Imaging soliton dynamics in optical microcavities,” Nat. Commun. 9, 3565 (2018).
[Crossref]

Yang, Q.-Q.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

Yang, T.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Yang, X.

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

Yang, Y.

X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Yang, Z.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

Yao, X.

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Ye, F.

D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, and Z. Sun, “Graphene actively Q-switched lasers,” 2D Mater. 4, 025095 (2017).
[Crossref]

Ye, G. J.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano 9, 372–377 (2014).
[Crossref]

Yeh, C. Y.

Yeom, D.-I.

Yi, J.

Yi, X.

X. Yi, Q. F. Yang, K. Y. Yang, and K. Vahala, “Imaging soliton dynamics in optical microcavities,” Nat. Commun. 9, 3565 (2018).
[Crossref]

Yi, Y.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Yin, J.

Yin, K.

You, J.

Yu, H.

H. Yu, X. Zheng, K. Yin, X. A. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6, 603–609 (2016).
[Crossref]

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

Yu, K. M.

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

Yu, X.

Yu, X. F.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Yu, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano 9, 372–377 (2014).
[Crossref]

J. Zhao, S. Ruan, P. Yan, H. Zhang, Y. Yu, H. Wei, and J. Luo, “Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser,” Opt. Eng. 52, 106105 (2013).
[Crossref]

Yu, Z.

T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, “A flexible transparent colorimetric wrist strap sensor,” Nanoscale 9, 869–874 (2017).
[Crossref]

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Opt. Express 22, 24055–24061 (2014).
[Crossref]

Yuan, J.

Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2016).
[Crossref]

Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, “Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength,” Appl. Phys. Lett. 108, 221901 (2016).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Yuan, P.

Zandbergen, H. W.

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Mater. 1, 025001 (2014).
[Crossref]

Zang, Y.

J. Zhao, Z. Xu, Y. Zang, Y. Gong, X. Zheng, K. He, X. A. Cheng, and T. Jiang, “Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films,” Opt. Express 25, 14635–14643 (2017).
[Crossref]

T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, and K. He, “Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy,” Adv. Opt. Mater. 5, 1600727 (2017).
[Crossref]

H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, and X. A. Cheng, “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures,” Nanoscale 9, 9325–9332 (2017).
[Crossref]

Zeng, C.

X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, and C. Zeng, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Zeng, H.

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1, 20 (2018).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55  μm,” Opt. Express 23, 27509–27519 (2015).
[Crossref]

Zhai, B.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Zhang, C.

Zhang, D.

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Zhang, F.

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019).
[Crossref]

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200  fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26, 22750–22760 (2018).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

H. Zhang, X. He, W. Lin, R. Wei, F. Zhang, X. Du, G. Dong, and J. Qiu, “Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets,” Opt. Express 23, 13376–13383 (2015).
[Crossref]

Zhang, H.

J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
[Crossref]

Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, and H. Zhang, “An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator,” Laser Photon. Rev. 13, 1800313 (2019).
[Crossref]

Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019).
[Crossref]

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, “All-optical phosphorene phase modulator with enhanced stability under ambient conditions,” Laser Photon. Rev. 12, 1800016 (2018).
[Crossref]

Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, “Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices,” Adv. Opt. Mater. 6, 1701166 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2018).
[Crossref]

B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200  fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26, 22750–22760 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).
[Crossref]

T. Fan, Y. Zhou, M. Qiu, and H. Zhang, “Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine,” J. Innov. Opt. Heal. Sci. 11, 1830003 (2018).
[Crossref]

X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7, 42357 (2017).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

M. Pawliszewska, Y. Ge, Z. Li, H. Zhang, and J. Sotor, “Fundamental and harmonic mode-locking at 2.1  μm with black phosphorus saturable absorber,” Opt. Express 25, 16916–16921 (2017).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, “Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector,” Adv. Funct. Mater. 27, 1606834 (2017).
[Crossref]

T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, “A flexible transparent colorimetric wrist strap sensor,” Nanoscale 9, 869–874 (2017).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, “On-nanowire axial heterojunction design for high-performance photodetectors,” ACS Nano 10, 8474–8481 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, and W. Ma, “Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals,” Adv. Mater. 28, 3535–3542 (2016).
[Crossref]

J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24, 30289–30295 (2016).
[Crossref]

Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2016).
[Crossref]

Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, “Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction,” Angew. Chem. (Int. Ed. Engl.) 55, 13849–13853 (2016).
[Crossref]

L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang, and S. Wen, “Broadband third order nonlinear optical responses of bismuth telluride nanosheets,” Opt. Mater. Express 6, 2244–2251 (2016).
[Crossref]

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1  μm to 2.7  μm wavelength,” Laser Phys. Lett. 13, 045801 (2016).
[Crossref]

Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

H. Zhang, X. He, W. Lin, R. Wei, F. Zhang, X. Du, G. Dong, and J. Qiu, “Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets,” Opt. Express 23, 13376–13383 (2015).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, “Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime,” Photon. Res. 3, 214–219 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, “Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure,” 2D Mater. 2, 035011 (2015).
[Crossref]

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, “Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers,” Small 11, 5807–5813 (2015).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

J. Zhao, S. Ruan, P. Yan, H. Zhang, Y. Yu, H. Wei, and J. Luo, “Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser,” Opt. Eng. 52, 106105 (2013).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263–275 (2013).
[Crossref]

H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35, 3622–3624 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Zhang, H.-L.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

Zhang, J.

Zhang, L.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zhang, M.

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019).
[Crossref]

X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T. C. Wu, Q. Wu, Z. Zheng, and T. Hasan, “102  fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser,” Opt. Express 26, 12506–12513 (2018).
[Crossref]

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7, 42357 (2017).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

Zhang, Q.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Zhang, S.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55  μm,” Opt. Express 23, 27509–27519 (2015).
[Crossref]

H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).
[Crossref]

Zhang, W.

Zhang, X.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited),” Opt. Commun. 406, 214–229 (2018).
[Crossref]

G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, and W. J. Blau, “Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region,” Laser Photon. Rev. 11, 1700166 (2017).
[Crossref]

H. Chen, J. Yin, J. Yang, X. Zhang, M. Liu, Z. Jiang, J. Wang, Z. Sun, T. Guo, W. Liu, and P. Yan, “Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics,” Opt. Lett. 42, 4279–4282 (2017).
[Crossref]

K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, and W. J. Blau, “Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared,” ACS Nano 10, 6923–6932 (2016).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

X. Zhang and Y. Xie, “Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies,” Chem. Soc. Rev. 42, 8187–8199 (2013).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zhang, Y.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

X. Zheng, Y. Zhang, R. Chen, X. A. Cheng, Z. Xu, and T. Jiang, “Z-scan measurement of the nonlinear refractive index of monolayer WS2,” Opt. Express 23, 15616–15623 (2015).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano 9, 372–377 (2014).
[Crossref]

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091–1095 (2014).
[Crossref]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Zhang, Z.-Q.

Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, and H.-L. Zhang, “2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers,” Nanoscale 10, 21106–21115 (2018).
[Crossref]

Zhao, C.

L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang, and S. Wen, “Broadband third order nonlinear optical responses of bismuth telluride nanosheets,” Opt. Mater. Express 6, 2244–2251 (2016).
[Crossref]

Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2016).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41, 56–59 (2016).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, “Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime,” Photon. Res. 3, 214–219 (2015).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Zhao, C. J.

Zhao, C.-J.

Zhao, J.

T. Jiang, R. Miao, J. Zhao, Z. Xu, T. Zhou, K. Wei, J. You, X. Zheng, Z. Wang, and X. A. Cheng, “Electron-phonon coupling in topological insulator Bi2Se3 thin films with different substrates,” Chin. Opt. Lett. 17, 020005 (2019).
[Crossref]

Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, and H. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7, 871–878 (2019).
[Crossref]

J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, and Z. Sun, “Graphene actively mode-locked lasers,” Adv. Funct. Mater. 28, 1801539 (2018).
[Crossref]

J. Zhao, Z. Xu, Y. Zang, Y. Gong, X. Zheng, K. He, X. A. Cheng, and T. Jiang, “Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films,” Opt. Express 25, 14635–14643 (2017).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55  μm,” Opt. Express 23, 27509–27519 (2015).
[Crossref]

J. Zhao, S. Ruan, P. Yan, H. Zhang, Y. Yu, H. Wei, and J. Luo, “Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser,” Opt. Eng. 52, 106105 (2013).
[Crossref]

Zhao, L.

Zhao, L. M.

Zhao, Q.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zheng, J.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).
[Crossref]

J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, “Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Zheng, X.

T. Jiang, R. Miao, J. Zhao, Z. Xu, T. Zhou, K. Wei, J. You, X. Zheng, Z. Wang, and X. A. Cheng, “Electron-phonon coupling in topological insulator Bi2Se3 thin films with different substrates,” Chin. Opt. Lett. 17, 020005 (2019).
[Crossref]

H. Hao, Z. Xu, T. Jiang, K. Wei, H. Li, X. Zheng, K. Yin, J. You, C. Shen, and X. A. Cheng, “Visualized charge transfer processes in monolayer composition-graded WS2xSe2(1−x) lateral heterojunctions via ultrafast microscopy mapping,” Opt. Express 26, 15867–15886 (2018).
[Crossref]

J. Zhao, Z. Xu, Y. Zang, Y. Gong, X. Zheng, K. He, X. A. Cheng, and T. Jiang, “Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films,” Opt. Express 25, 14635–14643 (2017).
[Crossref]

T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, and K. He, “Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy,” Adv. Opt. Mater. 5, 1600727 (2017).
[Crossref]

H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, and X. A. Cheng, “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures,” Nanoscale 9, 9325–9332 (2017).
[Crossref]

H. Yu, X. Zheng, K. Yin, X. A. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6, 603–609 (2016).
[Crossref]

X. Zheng, Y. Zhang, R. Chen, X. A. Cheng, Z. Xu, and T. Jiang, “Z-scan measurement of the nonlinear refractive index of monolayer WS2,” Opt. Express 23, 15616–15623 (2015).
[Crossref]

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

Zheng, X. W.

Zheng, Z.

Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, and H. Zhang, “MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber,” Adv. Mater. Technol. 4, 1800532 (2019).
[Crossref]

X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T. C. Wu, Q. Wu, Z. Zheng, and T. Hasan, “102  fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser,” Opt. Express 26, 12506–12513 (2018).
[Crossref]

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7, 42357 (2017).
[Crossref]

Zhong, J.

X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017).
[C